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Abstract—As a promising data-driven technology, deep learn-
ing has been widely employed in a variety of Internet-of-Things
(IoT) applications. Examples include automated navigation,
telemedicine, and smart home. To protect the data privacy of
deep-learning-based IoT applications, a few privacy-preserving
approaches have also been exploited, designed, and imple-
mented in various scenarios. However, state-of-the-art works are
still defective in accuracy, efficiency, and functionality. In this
article, we propose the privacy-aware and asynchronous deep-
learning-assisted IoT applications (PADL), a privacy-aware and
asynchronous deep learning framework that enables multiple
data collecting sites to collaboratively train deep neural networks
(DNNs), while keeping the confidentiality of private data to
each other. Specifically, we first design a layerwise importance
propagation (LIP) algorithm to quantify the importance of the
model’s weights held by each site. Then, we present the cus-
tomized perturbation mechanism, a precise combination of the
LIP algorithm and differential privacy mechanism, which helps
to make optimal tradeoffs between the availability and privacy of
local models. Furthermore, to fully use the computing resources
of all sites, for the first time, we propose an advanced asyn-
chronous optimization (AAO) protocol to perform global updates
without waiting. Theoretical analysis shows that the PADL is
robust to extreme collusion even with only one reliable site while
supporting lock-free optimization. Finally, extensive experiments
conducted on real-world data sets using TensorFlow library show
that the PADL outperforms the existing systems in terms of
efficiency and prediction accuracy.

Index Terms—Deep learning, differential privacy, Internet of
Things (IoT), privacy.
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I. INTRODUCTION

W ITH the rapid development of the Internet and tra-
ditional telecommunication networks, abundant of

terminal devices are accessing the network and generate mas-
sive amounts of data every day [1]–[3]. Meanwhile, with
the advantage of intelligent decisions driven by big data,
deep-learning-based technologies have been widely applied to
assist the Internet-of-Things (IoT) applications [4]. In par-
ticular, deep-learning-based IoT applications have recently
demonstrated superior performance in various fields, e.g.,
smart city [5], [6], smart home [7], personalized healthcare
system [8], and autonomous vehicles (AVs) [9].

However, for training a deep neural network (DNN), a
large amount of data should be collected from various IoT
devices, which usually includes sensitive information about
users. Under such circumstances, it is obvious that the data
owners will lose control of their data after “sharing” them.
Interest-driven adversaries could induce irreversible damage
to users with private information. For instance, deep learning
models can predict patients’ health status based on physiolog-
ical data, such as pulse, temperature, and blood pressure (BP)
collected by wearable IoT devices [10]–[13]. The leakage of
these private data may result in huge economic losses to data
owners, even endanger their lives [14]. In the field of AVs, a
deep-learning-based intelligent decision system may be inter-
fered with malicious adversaries, who can acquire the users’
location privacy. The result will cause life-threatening traffic
safety problems and bring anxiety to society [15]. Therefore,
there is no doubt that protecting the privacy of users’ data is
a fundamental issue in the process of deep-learning-assisted
IoT applications.

To address such privacy concerns [16]–[22], a few stud-
ies focusing on privacy-preserving deep learning have been
proposed, the technologies can be categorized into the
following three types, i.e., federated learning [23], [24],
encryption-based technologies [25]–[28], and differential pri-
vacy [29], [30]. Federated learning refers to that multiple
participants collaboratively learn a unified model, and the local
gradients uploaded by each participant are aggregated through
the synchronous aggregation rules of the cloud server [31].
However, Hitaj et al. [32] suggested that attackers can still
recover users’ private data through local gradients. Moreover,
encryption-based technologies, such as homomorphic encryp-
tion and secret sharing, usually require additional overhead
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to implement. Specifically, homomorphic encryption can be
used to perform calculations in the ciphertext domain [33].
Additional encryption and decryption calculations are essen-
tial. Hence, homomorphic encryption is not suitable for
high-dimensional data and large-scale participants. The other
is secret sharing, which requires multiple rounds of com-
munication between participants. In this mode, participants
should keep online, which does not apply to resources-limited
devices in IoT applications. Compared with encryption-based
technologies, differential privacy has low communication and
computation costs [34]. Nevertheless, there is no way to pro-
vide privacy protection for free. Achieving differential privacy
always requires noise, which drops the accuracy of the system.
Therefore, when traditional differential privacy meets deep
learning, the utility–privacy tradeoff ought to be made.

In addition to the methodological shortcomings discussed
above, none of the existing schemes take into consideration
asynchronous optimization, which generally comprises asyn-
chronous learning and asynchronous updates. Implementing
asynchronous optimization usually divides the training into
multiple submodules, which are performed in parallel by
multiple entities. Compared with federated learning that only
supports asynchronous learning, asynchronous optimization is
featured with the following advantages:

1) markedly improves the efficiency of the training due to
the asynchronous updates;

2) strikingly increases the accuracy of the model due to the
proportional increase in fresh data per unit time;

3) effectively solves the problem of data and update loss
during the training process.

Also, it significantly increases the robustness of the system,
because traditional deep learning requires training data to be
concentrated in one data center, which can lead to more seri-
ous losses in the case of a single-point failure of the data
center, while only a portion of the training data is leaked in
an asynchronously optimized system.

From the above, it is meaningful and urgent to design a pri-
vacy preserving, lightweight solution while supporting asyn-
chronous optimization for IoT applications. In this article, we
propose the privacy-aware and asynchronous deep-learning-
assisted IoT applications (PADL) for IoT applications, the first
privacy-aware deep learning framework while supporting asyn-
chronous optimization. Specifically, before uploading the local
model to the cloud server, each data collection site calculates
the importance of each weight by the layerwise importance
propagation (LIP) algorithm. Then, they adaptively perturb the
weights for protecting the privacy of training data. Finally,
an advanced asynchronous optimization (AAO) protocol is
designed to orderly process global updates. Specifically, the
contributions of the PADL can be summarized as follows.

1) We design an LIP algorithm, that combines with differ-
ential privacy to form a novel perturbation mechanism.
Compared to the traditional differential privacy mecha-
nism, our approach offers amazing advantages in terms
of prediction accuracy.

2) We propose the first AAO protocol, which achieves
completely lock-free and noninteractive optimization in
high-throughput IoT applications. Moreover, this kind

Fig. 1. System model: the cloud server holds a circle of M deep learning
models. Multiple data collecting sites train model over local training data.

of deployment can also significantly improve prediction
accuracy.

3) Security analysis proves that it is intractable to reverse
the training data even in the extreme case of the collu-
sion with only one reliable site in our PADL. Besides,
extensive experiments conducted on real-world data sets
show that the PADL outperforms the existing systems
in terms of efficiency and prediction accuracy.

The remainder of this article is organized as follows. In
Section II, we start by providing the problem statement and
prerequisites. Subsequently, Section III introduces our novel
PADL in detail and Section IV carries out the properties anal-
ysis. What is more, Section V includes experimental analysis
in the performance and efficiency of this article. The related
works are summarized in Section VI. Finally, we conclude this
article in Section VII.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this section, we first outline the system architecture, and
introduce the problem in our scenario. After that, we review
the main concepts of deep learning and differential privacy.

A. System Architecture

As shown in Fig. 1, our system model consists of two main
components: 1) data collecting sites and 2) cloud server.

1) Data Collecting Sites: Each data collecting site holds a
replica of DNN and a private database. They train their
own models over the local database, as well as share the
local models for global updates.

2) Cloud Server: The cloud server works as an “exchanger,”
who receives the perturbed models from the data collect-
ing sites and returns another model to them.

B. Threat Model and Privacy Requirements

In this article, we consider that both entities, i.e., the cloud
and the data collecting sites, are “honest-but-curious,” which
means that they correctly execute the protocols while keep-
ing curious to users’ private data. Besides, both of them may
collude to eavesdrop particular users’ data privacy. From the
knowledge of the adversary perspective, the data collecting
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Fig. 2. DNN: DNN composes of the input layer, hidden layers, and output
layer.

sites and the cloud server do not only have access to the trained
model but may also have the full knowledge of the training
mechanism.

Under the above threat model, we provide a rigorous pri-
vacy guarantee to the training data of the data collecting sites
while still ensuring that each site can benefit from other sites’
models. Besides, asynchronous sites-server communication not
only contributes to efficiency processing real-time data stream
in IoT applications but also provides an additional gain in
privacy, i.e., even the server colludes with n − 1 out of n
sites, the remaining site’ private information still cannot be
eavesdropped.

C. Deep Learning and Deep Neural Network

DNNs, as the infrastructure of deep learning models, are
extremely effective for solving many complex deep learning
tasks [35]. As shown in Fig. 2, the structure of DNN consists
of one input layer, two hidden layers, and one output layer,
and each layer is connected by the weights ω. In this article,
we focus on the representative convolutional neural network
(CNN), which can efficiently process high-dimensional data.

Our model focuses on a supervised setting, where the train-
ing data consist of a feature vector and corresponding data
label, i.e., D = {(xi, yi)}ni=1, where xi ∈ R

v are v-dimensional
feature vector. Each neuron receives the output of neurons
in the previous layer along with the weights. Assuming that
the neurons in the input layer receive 3-D training data
xi = {xi1, xi2, xi3}, the weights are ω = {ω1,4, ω2,4, ω3,4}
between neuron a4 and the neurons in the input layer. The
neuron a4 outputs F(

∑j=3
j=1 ωj,4 ∗ xj), where F() is an activa-

tion function, e.g., sigmoid(x) = [1/(1 + e−x)]. The outputs
of the model refer to the outputs of the neurons on the output
layer, expressed as F(xi, ω). The loss function � is defined to
penalize the difference of the model output and the true label,
e.g., �(F(xi, ω), yi) = (F(xi, ω)− yi)

2.
Subsequently, we adopt the mini-batch stochastic gradient

descent algorithm to optimize the model, which is one of the
most popular ways to iteratively adjust the weights for mini-
mizing the loss �. Specifically, for the rth iteration, the partial
derivatives ∇L(D, ωr) of the loss function to the weights,
also called gradients, are calculated. Along with the oppo-
site direction of the gradients, the weights ωr are updated as

follows:

ωr+1 = ωr − η ×∇L(
D, ωr)

where η represents the learning rate. For efficiency reasons,
the more common practice is to randomly select mini-batch
subset of data B

r (Br ∈ D) to estimate ∇L(D, ωr) for each
iteration, as follows:

∇L(Br, ωr) = 1

|Br|
∑

(xi,yi)∈Br

∇�
(F(

xi, ω
r), yi

)
.

D. Differential Privacy

Dwork [34] designed differential privacy which is a prob-
abilistic mechanism to provide theoretically provable privacy
guarantee.

Definition 1 [(ε, δ)-Differential Privacy]: Given any neigh-
boring data sets D1 and D2, which differ by at most one
record, a randomized algorithm Γ preserves (ε, δ)-differential
privacy if

∀Y ⊆ Range(Γ ) : Pr[Γ (D1) ∈ Y ] ≤ eε × Pr[Γ (D2) ∈ Y ]+ δ

where Range(Γ ) represents all possible outputs of the algo-
rithm Γ . ε denotes the privacy budget which restricts the
privacy guarantee level of algorithm Γ . δ (δ ≥ 0) is the
failure probability that allows differential privacy to fail. A
tighter bound of differential privacy is achieved when δ = 0.
We limit the failure possibility of differential privacy to 0 for
obtaining a strictly strong privacy guarantee. Therefore, we
use ε-differential privacy in this article.

The sequential composition and parallel composition of dif-
ferential privacy are very useful in the design of multistep
mechanisms [36], as defined in Theorems 1 and 2.

Theorem 1 (Sequential Composition): Given algorithm Γ1,
Γ2, . . . , Γk that satisfy ε1-differential privacy, ε2-differential
privacy, . . . , εk-differential privacy, respectively, we have
Γ (D) = 〈Γ1(D), Γ2(D), . . . , Γk(D)〉 satisfies (

∑k
i=1 εi)-

differential privacy.
Theorem 2 (Parallel Composition): Given algorithm

Γ1, Γ2, . . . , Γk that satisfy ε1-differential privacy, ε2-
differential privacy, . . . , εk-differential privacy, respectively.
D1, D2, . . . ,Dk are the deterministic partitioning of data
set D, Γ (D) = 〈Γ1(D1), Γ2(D2), . . . , Γk(Dk)〉 will provide
(maxi∈[1,k] εi)-differential privacy.

The Laplace mechanism is the main technology to imple-
ment ε-differential privacy, which perturbs the true value by
adding noise sampled from the Laplace distribution

Γ̂ (D) = Γ (D)+ Laplace

(
�f

ε

)

where Laplace(�f /ε) is a random value sampled from Laplace
distribution, whose mean is 0 and the scale is (�f /ε). The
noise is proportional to the sensitivity �f of the algorithm Γ ,
where �f = maxD1,D2 ‖Γ (D1)−Γ (D2)‖1 is the maximal dif-
ference of the algorithm Γ () over the neighboring data sets D1
and D2. After the perturbation, the probability of the algorithm
Γ̂ () outputting Y over D1 and D2 is (1/2λ)e[(−|Y−Γ (D1)|)/λ]
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TABLE I
PARAMETERS

and (1/2λ)e[(−|Y−Γ (D2)|)/λ], respectively, where λ = (�f /ε).
The ratio of the probability is

ln
e
−|Y−Γ (D1)|

λ

e
−|Y−Γ (D2)|

λ

≤ |Γ (D1)− Γ (D2)|
λ

≤ ε

which is also known as privacy loss. We can see that a
smaller privacy budget ε represents a higher level of privacy
protection, and vice versa.

III. PROPOSED SCHEME

In this section, we give a detailed description of the PADL
from the perspective of the data collection site and the cloud
server.

A. Overview

The goal of the PADL is to efficiently train over real-
time data stream in IoT applications while providing privacy
guarantees to local private data.

To achieve that, we adopt differential privacy to protect the
privacy of data for efficiency reasons. To address the short-
comings of differential privacy: the reduction in accuracy,
we propose an LIP algorithm to calculate the importance of
model weights on the output. Then, we adaptively perturb
the model’s weight values by combining differential privacy
and the LIP algorithm. Besides, based on the nature of IoT
applications: high-throughput data and devices with varying
computing power, we design an AAO protocol to orderly
process global updates.

For ease of reference, Table I lists the symbols appeared in
this article and their descriptions.

B. Data Collecting Sites

In IoT applications, each data collecting site continuously
takes over and processes real-time data from a large number of
different IoT sensors, and then feeds them back to the current
task, i.e., to train high-accurate large DNN models over local
data at low latency. Meanwhile, the data collection sites require
not only the ability to run deep learning training missions

but also the ability to support bidirectional communication
with the cloud server for uploading and downloading the
parameters. Also, for privacy and efficiency reasons, the data
collection site provides privacy protection to the parameters of
the models and training data via differential privacy. However,
traditional practices to directly add Laplace noise inevitably
sacrifice the accuracy of the system.

To solve the problem of accuracy degradation caused by
differential privacy, we propose a customized perturbation
mechanism to improve the model accuracy at the same level
of privacy. First, before uploading the local model to the cloud
server, we quantify the importance of weights in the current
model by the LIP algorithm. Then, we creatively combine
the differential privacy mechanism with the LIP algorithm in
an application-specific manner, which filters out superfluous
noise to provide higher prediction accuracy at the same privacy
budget. Specifically, according to the importance of weights,
less noise will be injected into the weights for improving
accuracy when the importance is high. While there is lower
importance, the more noise will be allocated for protecting
privacy.

1) Layerwise Importance Propagation Algorithm: By
default, the weights have varying importance to the model.
In the following phase, the parameter ωp,q denotes the weight
between neurons ap and aq in adjacent layers, and the ele-
ment Ip,q of the importance vector I represents the importance
of the weight ωp,q. We calculate the importance of neu-
rons as intermediate values for conveniently calculating the
importance vector I. In addition, assuming that the training
termination symbol for each data collection site is r.

The LIP algorithm consists of the preparation phase and
quantification phase as follows.

Preparation Phase:
1) Each data collection site downloads a new model from

the cloud server, and trains it over local database until
r iterations. Particularly, the mini-batch stochastic gra-
dient descent method [37] is also used to optimize the
model as many state-of-the-art works [38], [39]. In this
phase, we make some minor adjustments, that clips the
l2 norm of each gradient [40]. Each data collecting site
sets a norm bound α of gradients. Then, they bound the
gradients as follows:

∇g[ωp,q]← ∇L
(
B, ωp,q

)
/ max

⎛

⎜
⎝1,

∥
∥
∥∇L(

B, ωp,q
)∥∥
∥

2

α

⎞

⎟
⎠.

(1)

The weight ωp,q is updated until r iterations as follows:

ωt+1
p,q = ωt

p,q − η ×∇g[
ωt

p,q

] (2)

where t ∈ [0, r].
2) Each data collecting site initializes the importance vector

I to zero vector, which is a γ -dimensional vector, where
γ is the total number of gradients.
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Algorithm 1 Pseudocode of the LIP Algorithm
Input: Given “new” model ω, private database: D, where
〈xi, yi〉 ∈ D.

Output: The importance vector I.
1: for each round t = 1, 2, ..., r do
2: B

t ← (Random set of D)
3: ωt+1

p,q = ωt
p,q − η ×∇g[ωt

p,q]
4: end for
5: if neuron ap is in the output layer: then
6: iloap ← Fap(xi, ω)

7: end if
8: for each layer do
9: if

∑
ap∈lh−1

|apwp,q| = 0 then
10: Ip,q ← 0
11: else
12: Ip,q ← |apwp,q|∑

ap∈lh−1
|apwp,q| i

lh
aq

13: end if
14: ilh−1

ap =
∑

aq∈lh Ip,q

15: end for
16: Return the importance vector I

Quantification Phase:
1) Starting from the neuron ap in the output layer lo, whose

importance iap is equal to its output value as follows:

iloap
= Fap(xi, ω). (3)

2) For the weight ωp,q in adjacent layers, e.g., the (h−1)th
and the hth layers, whose importance Ip,q is as follows:

Ip,q =
⎧
⎨

⎩

|apωp,q|∑
ap∈lh−1

|apωp,q| i
lh
aq

∑
ap∈lh−1

∣
∣apωp,q

∣
∣ �= 0

0
∑

ap∈lh−1

∣
∣apωp,q

∣
∣ = 0

(4)

where ap in the formula represents the output value of
the neuron ap.

3) Except the output layer, for the neuron ap in the (h−1)th
layer, whose importance iap is as follows:

ilh−1
ap =

∑

aq∈lh

Ip,q (5)

4) Repeat steps 2) and 3) until h = 1.
When h = 1, all the weights in the model have been calcu-

lated layer by layer. The pseudocodes of the LIP algorithm is
given as Algorithm 1.

2) Customized Perturbation Mechanism: By creatively
combining the differential privacy mechanism with the LIP
algorithm in an application-specific manner, we provide a
novel customized perturbation mechanism. This mechanism
can mitigate the negative effect brought by differential pri-
vacy on the system accuracy, so that the utility of the model
is dramatically improved.

First, we normalize the importance vector by

Ĩp,q ← Ip,q − Imin

2(Imax − Imin)
+ 0.5 (6)

which limits Ip,q into the interval [0.5, 1.0], where Imin and
Imax are the minimum and maximum values in the importance

Algorithm 2 Pseudocode of the AAO Protocol
1: for each data collecting site do
2: Receive a new model
3: if the model m (mod M) in cloud have never been

initialized then
4: Replace the model m (mod M)
5: Inform the data collecting site to continue to train

with the current model
6: else
7: Replace the model m+ 1 (mod M) in cloud
8: Return the model m (mod M) for model request
9: end if

10: end for
11: Prediction: average the weights of M models

vector I, respectively. We introduce privacy budget εp,q for
each weight as follows:

εp,q ← Ĩp,q
∑ Ĩp,q

× εT (7)

where εT represents the total privacy budget. εp,q can be con-
sidered as a shuffle of the Laplace noise, which transfers the
noise from more important items to fewer ones.

Then, before submitting the whole model to the cloud
server, each weight is perturbed by noise as follows:

ω̂r
p,q = ωr

p,q + Laplace

(
�f

εp,q

)

(8)

where the sensitivity �f = 2α × η.
3) Request Model: After uploading the current training

model, the data collecting site requests a new training model
from the cloud server for the next training.

C. Cloud Server

In this article, we introduce an AAO protocol to achieve
lock-free and asynchronous optimization. To be specific, the
cloud deploys a circle of M deep learning models labeled as 0,
1, . . . , M− 1, to orderly process the updates. Pihur et al. [41]
designed a randomly “draw” and “discard” scheme to process
the updates, however, which results in the updates to be lost. It
is worth noting that the AAO protocol ensures that no updates
loss occurs. Algorithm 2 presents a detailed algorithm.

1) Advanced Asynchronous Optimization Protocol: The
data collecting sites upload the trained model accompanied
by requesting a new training model for the next round. When
the model in the server has not been initialized, it is directly
replaced with the model submitted by the data collecting sites,
and the data collecting site is informed to continue to train
with the current model. After M models have been completely
replaced once, the server returns the previous updated model
labeled as m, where m ∈ [0, M − 1]. With that, the model
labeled as m+1 in the cloud is replaced by the model uploaded
by the data collecting sites, where (m + 1) ∈ [0, M − 1].
After each interaction with the data collecting sites, the server
performs m← m+ 1(mod M).
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In the AAO protocol, every update can be utilized with
no data loss. This seemingly simple strategy has an essential
improvement in performance, efficiency, and privacy, which is
analyzed and proved in Section IV.

2) Model Prediction: The server averages the weights of
all deep learning models in the server to build a tempo-
rary prediction model, and always saves an optimal prediction
model for prediction tasks. Specifically, first, the server calcu-
lates a temporary prediction model every M interactions with
the data collecting sites. Then, the server verifies the prediction
accuracy of each temporary model over the validation data
set, and always saves the model with the highest prediction
accuracy for prediction tasks.

In order to ensure high prediction accuracy, a supplementary
condition should be added, which is M%2 = 0. We consider
it the synergy effect between noises.

IV. PROPERTIES ANALYSIS

In this section, we describe the characteristics of the PADL,
which make it more practical and effective in IoT applications.

A. Asynchronous Optimization

The foremost innovation of our approach comes from com-
pletely asynchronous property. The cloud server holds the
circle of M models to process thousands of updates per second.
In this article, the AAO protocol is very simple to implement
and does not require any locking mechanism to pause the train-
ing. We explain from two aspects of asynchronous learning
and asynchronous update.

1) Asynchronous Learning: The asynchronous learning can
be simply thought that multiple copies of the model are trained
in stand-alone data collecting sites in parallel. In this article,
each data collecting site holds a replica of the DNN model,
as well as a portion of training data. With the current model
parameters and the private database, they train the local model
independently. There is no doubt that our solution implements
asynchronous learning.

2) Asynchronous Update: As shown in Fig. 3, at the begin-
ning of the interaction between each data collecting site and
the cloud server, the data collecting sites upload the trained
model parameters, and require a new model for the next train-
ing. The cloud replaces the model labeled as m+1 with the one
uploaded by data collecting site, and returns the model labeled
as m for the model request for m ∈ [0, M−1]. Pihur et al. [41]
experimentally proved that when the number of the models M
in the server and the number of data collecting sites N satisfy:
M2 = N, asynchronous update can be completely realized.
At this time, N data collecting sites can obtain the global
parameters without any waiting.

Compared with the existing solutions, the AAO protocol has
the following advantages.

1) Due to the lock-free mechanism, the data collecting sites
can spend more time in the training deep learning model
instead of waiting for averaging gradients.

2) Our solution dramatically increases data throughput for
the learning tasks.

Fig. 3. AAO protocol: the top describes the circle of deep learning models
in the server, and the bottoms are the training process for the data collecting
sites.

3) Each data collecting site can complete a single train-
ing with only one round of interaction with the server.
Hence, each data collecting site gets fresh data stream
from other sites faster than federated learning.

4) Computing power and resources can be fully utilized for
each data collecting site.

5) There are no data or update loss in the PADL, which
greatly increases the availability and reliability of the
system.

B. Privacy

In this article, only the privacy of training data is consid-
ered. We acknowledge that the integrity and availability of the
scheme will be compromised when malicious adversaries con-
duct security attacks [16]–[19], such as a poisoning attack [18]
or an inference attack [42]. Even so, we still claim that our
approach provides a rigorous privacy guarantee to the training
data, and the local model theoretically satisfies ε-differential
privacy. What is more, the PADL still is robustness, even in
the case of extreme collusion, where only one honest and
legitimate data collecting site exists.

1) Differential Privacy: According to the result of the
LIP algorithm, i.e., the importance vector I, we adaptively
inject Laplace noise into the model parameters before send-
ing them to the server, which makes the local model satisfies
ε-differential privacy.

Lemma 1: Assuming that two neighboring data sets D1 and
D2 which only differ in one record. After r iterations, our
model parameters are ωr

p,q = ωr−1
p,q − η × ∇g[ωr−1

p,q ]. Before
sending them to the cloud server, let

ω̂r
p,q = ωr

p,q + Laplace

(
�f

εp,q

)

where the sensitivity �f = 2α × η. Then, the local model
satisfies ε-differential privacy.
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Proof: Given the bounded gradient ∇g[ω], which is lim-
ited to the interval [− α, α]. The weight ωp,q is updated with
the gradient ∇g[ωp,q] based on (2). The sensitivity �f can be
calculated as follows:

�f = max
D1,D2

∥
∥ωp,q(D1)− ωp,q(D2)

∥
∥

1

= 2× η ×max
∥
∥
∥∇g[ωp,q]

∥
∥
∥

1
= 2α × η.

Then, we have

Pr
(

̂ωp,q(D1) = Y
)

Pr
(

̂ωp,q(D2) = Y
) =

Pr
(
ωp,q(D1)+ Laplace

(
�f
εp,q

)
= Y

)

Pr
(
ωp,q(D2)+ Laplace

(
�f
εp,q

)
= Y

)

=
Pr

(
Laplace

(
�f
εp,q

)
= Y − ωp,q(D1)

)

Pr
(

Laplace
(

�f
εp,q

)
= Y − ωp,q(D2)

)

=
εp,q

2×�f × e
−|Y−ωp,q(D1)|×εp,q

�f

εp,q
2×�f × e

−|Y−ωp,q(D2)|×εp,q
�f

≤ e
εp,q×|ωp,q(D1)−ωp,q(D2)|

�f

≤ eεp,q .

Consequently, we get the knowledge that the weight ωp,q

(p, q ∈ [0, γ − 1]) satisfies εp,q-differential privacy. As men-
tioned in Section II-D, the composition property of differential
privacy, the entire model satisfies εT -differential privacy.

2) Against Honest-But-Curious Cloud Server: The cloud
server is viewed as honest-but-curious: on the one hand, it
faithfully and correctly executes the protocols in the system.
On the other hand, it is curious to users’ private data thus
violating the intent of the legal data collecting sites.

Differential privacy is a powerful privacy concept, which
can be used to limit the disclosure of private information
of records stored in a database. When it is used to protect
privacy for deep learning, the purpose usually is to main-
tain the privacy of training data. In this article, each model
in the cloud server satisfies εm-differential privacy, where
m ∈ [0, M − 1]. The parameter εm represents the privacy
budget of the mth model in the circle, which is replaced
by the local model preserving differential privacy. The pri-
vate database of each data collecting site can be considered
as a partition of all training data. According to the parallel
composition of differential privacy discussed in Section II-D,
the circle in the server satisfies maxm∈[0,M−1]{εm}-differential
privacy.

To sum up, our solution holds the privacy property that
honest-but-curious server learning nothing about training data.

3) Against the Collusion Between Malicious
Participants: In this setting, a malicious adversary com-
promises multiple participants in the protocol, they aim to
eavesdrop the private information of particular participants.
Nevertheless, nothing they can obtain about other sites.

Since the data collecting sites asynchronously train the
models, the interaction with the server cannot be accurately

predicted. For instance, the model requested by the malicious
parties cannot be determined from which data collecting sites,
and other information such as the interaction time with the
server, or which model in the server is replaced. Any data
collecting sites can appear in the following steps, and maybe
repeat more than once, or never participate in. The global
model update steps are as follows:

ωServer
0 ← ω̂r

0 = ωr
0 + Laplace

(
�f0
ε0

)

...

ωServer
m ← ω̂r

m = ωr
m + Laplace

(
�fm
εm

)

...

ωServer
M−1 ← ω̂r

M−1 = ωr
M−1 + Laplace

(
�fM−1

εM−1

)

ωServer
0 ← ω̂r

M = ωr
M + Laplace

(
�fM
εM

)

where ωServer
m is the parameters of the mth model in the server

(m ∈ [0, M−1]). Each data collecting site sets the norm bound
α of gradients independently so that the gradients in the local
model are limited to different intervals in practical applica-
tions. When data collecting site Px sets αx = 1, the sensitivity
is �fx = 2× ηx.

Hitaj et al. [32] suggested that the gradients could also lead
to the leakage of sensitive data via the generative adversarial
networks (GANs). Whereas, on account of the asynchronous
property of the PADL, it is difficult to obtain the prior model
parameters for the adversary. Within the capability range,
they only can obtain the perturbed model parameters. When
the privacy budget is set to 1.0, the prediction accuracy of
the model reaches about 11.87% according to Section V-B.
Intuitively, the gradients keep “confidential” for any data
collecting sites and the cloud. Besides, the differential pri-
vacy mechanism also ensures that the adversary cannot obtain
additional information.

In general, when multiple malicious parties collude to eaves-
drop the private information of particular data collecting sites,
this article is still robust.

4) Against the Extreme Collusion Between Malicious
Participants and the Cloud Server: In the worst case, only
one data collecting site is reliable, while all the other n − 1
sites collude with the cloud server.

In this setting, the behavior of the legitimate data collect-
ing site can be detected or inferred. Assume that the reliable
site P1 obtains the “initial” model parameters ωServer

initial from the
server. After multiple interactions, the cloud finally obtains
perturbed model parameters ωServer

final . From the perspective of
malicious parties, the behaviors of P1 are as follows:

ω0
1 ← ωServer

initial

ω1
1 = ω0

1 − η1 ×∇g0
1

...

ωr
1 = ωr−1

1 − η1 ×∇gr−1
1
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TABLE II
DETAILS INFORMATION ABOUT TASKS

ω̂r
1 = ωr

1 + Laplace

(
�f1
ε1

)

ωServer
final ← ω̂r

1

where the learning rate η1 will be different for each iteration
if the data collecting site P1 dynamically fine-tunes, where
t ∈ [0, r] denotes the tth iteration. The process in the frame
is executed locally and is not visible to the malicious party.
What the latter can easily grasp is the initial training model
ωServer

initial and the trained model ωServer
final , as follows:

ωServer
initial − ωServer

final =
∑

t∈[0,r]

(
η1 ×∇gt

1

)+ Laplace
(

�f1
ε1

)
. (9)

The right-hand side of (9) is the sum of the product of the
gradient and the learning rate for all rounds, also including
the Laplace noise in this article. Accordingly, the malicious
adversaries decompose perturbed weights parameters, which
is equivalent to the subset sum problem.

In conclusion, our solution is still robustness even with only
one reliable data collecting site, unless the subset sum problem
in dynamic programming is solved.

C. Cumulative Privacy Loss

Iterated learning with differential privacy always causes
cumulative noise, which increases the risk of privacy leakage.
We adopt Rényi differential privacy (RDP) [43], a relax-
ation of differential privacy, to analyze cumulative privacy
loss [44]. Specifically, let Γ be an adaptive composition of
k mechanisms all satisfying ε-differential privacy, given two
neighboring data sets: 1) D1 and 2) D2, for ∀Y ⊆ Range(Γ ),
we have

Pr[Γ (D1) ∈ Y ] ≤ e

(
2ε
√

k log 1/Pr[Γ (D2)∈Y ]
)

× Pr[Γ (D2) ∈ Y ]

where adaptive composition means Γκ taking as input the same
data set and the output of Γκ−1.

V. PERFORMANCE EVALUATION

In this section, we conduct our experiments to evaluate
the performance of the PADL, in the context of multiple
classification applications.

A. Experimental Setup

We evaluate the performance of the PADL by two tasks:
1) handwritten digits recognition (MNIST) [45] and 2) images
recognition (CIFAR-10) [46]. The detailed information about
data sets and model architecture of each task is described as
follows. More details about the tasks are also listed in Table II.

1) Handwritten Digits Recognition (MNIST): This task is
to recognize the handwritten digits from 0 to 9 on the
MNIST data set, which consists of 60 000 training exam-
ples and 10 000 test examples. The input size of each

example is 28× 28× 1. The model architecture in this
task is guided by the TensorFlow CNN tutorial [47],
which consists of two convolutional layers with 5 × 5
convolutions, and two fully connected layers with 512
neurons and 10 neurons, respectively.

2) Images Recognition (CIFAR-10): The task is performed
on the CIFAR-10 data set, which includes 50 000 train-
ing examples and 10 000 test examples. The goal of this
task is to recognize ten different real objects in the real
world, such as airplane, bird, truck, and so on, which
are not only noisy but also have different proportions
and features. The model architecture in this task is the
ResNet-50 model.

All data collection sites set the batch size to 128,
using tf.train.AdamOptimizer to control the learning rate.
Besides, we run our experiments on a workstation running
Lenovo server, which equipped with Intel Xeon E5-2620
2.10-GHz CPU, 256 SSD, 16-GB RAM, 1-TB mechanical
hard disk.

B. Accuracy of the Local Model

In this section, we discuss the accuracy of the PADL. One
of the drawbacks of differential privacy is that it always needs
accuracy–privacy tradeoffs [48]. However, we creatively pro-
pose the LIP algorithm, which effectively mitigates the pitfall
of differential privacy and improves the accuracy of the system
given a privacy budget. In this experiment, we compare the
effect of the LIP algorithm on model accuracy. When the LIP
algorithm is not used, each data collection site perturbs local
model parameters through the traditional differential privacy
mechanism.

In the task of handwritten digits recognition, we randomly
select a trained model with an accuracy of 0.9813 to test the
effect of the LIP algorithm on the model accuracy. As shown
in the left of Table III, the results of experiments turn out
that the LIP algorithm can greatly improve the accuracy of
the model. More specifically, when ε = 1.0, the accuracy of
the model is about 0.1641 with the LIP algorithm, while it
is about 0.1187 without the LIP algorithm. The proportion
of promotion is more than 21.83%. Besides, the prediction
accuracy of the model significantly improves with the increase
of privacy budget ε, i.e., ε = 0.5/1.0/5.0/10.0.

In the task of images recognition, we choose the local model
with an accuracy of 0.8732 to evaluate the performance of
the LIP algorithm. As shown in the right of Table III, even
in the deeper model architecture of the second task, the LIP
algorithm we presented still shows excellent performance.

After receiving a “random” model from the server, the data
collecting site continuously optimizes with the new model
parameters over the local database. We can observe from
Fig. 4 that the recovery period of the new model with different
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TABLE III
PERFORMANCE OF THE LIP ALGORITHM

Fig. 4. Accuracy of the PADL. We compare the recovery periods required for the retraining of data collecting sites. Given four different privacy budgets
ε = 0.5/1.0/5.0/10.0, we observe the model accuracy of the tasks of handwritten digits recognition (MNIST) and images recognition (CIFAR-10) within 100
iterations.

privacy budgets, i.e., ε = 0.5/1.0/5.0/10.0. The recovery
period is defined as the time required to achieve the retrained
model accuracy of more than 0.90 or 0.80 for the tasks of
handwritten digits recognition (MNIST) and images recog-
nition (CIFAR-10), respectively. Fig. 4(a) shows that the
model satisfying (ε = 0.5)-differential privacy has an ini-
tial accuracy of almost 0.10 for the task of handwritten digits
recognition (MNIST) [0.09 for the task of images recognition
(CIFAR-10)], whose recovery period is more than 100 itera-
tions. The recovery period of the model with privacy budget
ε = 1.0 is about 30 iterations for the task of handwritten digits
recognition (MNIST) [40 for the task of images recognition
(CIFAR-10)], as shown in Fig. 4(b). What is more, when the
privacy budget of the initial model is ε = 10.0, no recovery
period is required as shown in Fig. 4(d). It is owing to that
the Laplace noise with ε = 10.0 is enough small and has a
little negative effect on the prediction accuracy. It is worth
mentioning that the lower the accuracy of the initial model,
the longer the recovery period is.

Overall, with the help of the LIP algorithm, we significantly
improve the prediction accuracy and effectively shorten the
recovery period of the model. The purpose of the latter is
to put more fresh data into the training as soon as possible,
as well as to improve the information update speed for the
task.

C. Accuracy of Prediction

In our PADL, the cloud server deploys multiple model stor-
age spaces, described as M models. As described before, for
the prediction task, our solution is to average the weights
of the M models to form a temporary prediction model.
While the other common prediction schemes are averaging
prediction results, randomly selecting a prediction model, and
collecting gradients as traditionally distributed deep learning
done. We assess the performance of four prediction strategies
in six different numbers of models deployed in the server,
i.e., M = 1/10/20/30/50/100. All schemes are given four

different privacy budgets, i.e., ε = 0.5/1.0/5.0/10.0. It is
worth mentioning that the perturbed gradients collected by the
server also satisfy differential privacy given the same privacy
budget as follows:

∇̂g[ωr] = ∇g[ωr] + Laplace

(
�fg
ε

)

where the sensitivity of the gradient is �fg = 2× α.
Comparing with the above three schemes, our approach

exhibits extremely high prediction accuracy as shown in
Figs. 5 and 6. When the server has only one model (M = 1),
there is no doubt that averaging weights, averaging prediction
results, and randomly selecting a prediction model have the
same result. Nevertheless, the accuracy of the solution of col-
lecting gradients is not satisfactory as shown in Figs. 5 and 6.
When the number of models deployed in the server exceeds 1,
i.e., M > 1, our strategy of averaging weights has a more
obvious advantage. In particular, when the privacy budget ε is
taken at 1.0, the accuracy of our solution is over 0.9186 in the
task of handwritten digits recognition (MNIST) as described
in Fig. 5, and about 0.8616 in the task of images recognition
(CIFAR-10) as shown in Fig. 6.

In general, the solution of averaging weights not only con-
tributes to stable estimation but also helps to neutralize the
negative effects generated by noises, which results in higher
prediction accuracy.

D. Asynchronous Optimization

1) Performance of Advanced Asynchronous Optimization
Protocol: In traditionally distributed deep learning, the server
collects the gradients of participants, and calculates the
weighted average of the gradients for global update. Finally,
the aggregated global gradient update value is broadcast to
all participants. In this section, we only take the example
of handwritten digits recognition (MNIST). We consider the
following three special examples to explain the advantage of
asynchronous optimization.
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Fig. 5. Prediction accuracy of handwritten digits recognition (MNIST). (a) M = 1. (b) M = 10. (c) M = 20. (d) M = 30. (e) M = 50. (f) M = 100.

Fig. 6. Prediction accuracy of images recognition (CIFAR-10). (a) M = 1. (b) M = 10. (c) M = 20. (d) M = 30. (e) M = 50. (f) M = 100.

Special Case:
Case 1: Usually, there are many possible causes for dif-

ferent computing power between participants. It

is assumed that among the ten participants, the
first participant has extremely high computing
power, while the tenth participant is the last one
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Fig. 7. AAO protocol for the data collecting sites with different computing
power: the computing power of P1 is ten times than that of P10, where each
interval represents a complete training session.

in the rank of computing power. After submit-
ting the gradients, the first participant will wait
until the other nine participants finish training.
That results in wasting the computing power of
the first participant and delaying the training. Being
aware that in practice, data are always continuously
generated.

Case 2: Assume that the server needs to collect the gradi-
ents from ten participants, and it has collected the
gradients from nine participants. However, all the
remaining participants are out of training. Under
such circumstances, the server will be waiting
for the tenth participant, and the whole training
process will be stagnant.

Case 3: The server takes measures on the participant’s drop
out or the difference in computing power: if the
node is over a certain time, the server updates with
the collected gradients. It is assumed that over the
time limit, only one participant’s gradients are col-
lected. Under such circumstances, the server will
broadcast the gradients to all participants, which
will result in the leakage of personal privacy [32].

Case 2 leads to training stagnation, case 3 brings about pri-
vacy threat. Here, we focus on the negative impact brought by
case 1. As described in Fig. 7, we make a comparison with the
different computing power among ten sites. The data collect-
ing site P1 has the strongest computing power, and the running
time includes training one epoch and interactions before the
next training: TP1 = TOne,Training + TUpload + TDownload =
10 s, . . . , TP10 = TOne,Training + TUpload + TDownload = 100 s.

Assume that a basic data volume is 60 000, training one
epoch adds 10% fresh data. Comparing with traditional deep
learning, as shown in Table IV, P1 needs to wait until the
last second after 10 s, with 0 fresh data. While in the AAO
protocol, P1 immediately conducts the next training after the
first submitting, and continues to train nine epochs in 100 s.
After ten epochs, a single data collecting site brings 81 475
fresh data into models. Considering ten sites in 100 s, the

TABLE IV
PERFORMANCE OF ASYNCHRONOUS OPTIMIZATION

Fig. 8. Accuracy of asynchronous optimization (privacy budget ε = 1.0).

total amount of fresh data brought by P1 – P10 is 81 475 +
27 846+12 600+6000+6000 = 133 921. Referring to Fig. 8,
given the privacy budget ε = 1.0, the accuracy is increasing
in 100 s due to the ongoing joining fresh data. At the 70
and 90 s, the prediction accuracy drops a little. We consider
this phenomenon when the number of models is singular, the
cancellation ability of noises is lower than even numbers.

In summary, the AAO protocol is more practical and
advanced in practical IoT applications.

E. Efficiency

In this section, we discuss the computation overhead and
communication overhead of the PADL.

As described before, in addition to the normal deep learn-
ing training in the PADL, we propose the LIP algorithm,
which combines with differential privacy to efficiently provide
privacy protection. We compare with the privacy-preserving
deep learning system in combination with additively homo-
morphic encryption [49], which encrypts the gradients of the
local model via Paillier encryption or LWE-based encryption
after local calculation. Then, they adopt the form of pack-
ing ciphertext for reducing communication overhead, where
real numbers in ciphertext are represented by 32 bits, while
16 bits in plaintext. For fairness, the experimental configura-
tion and model architectures are the same as ours. Besides, the
number of data collection sites N = 50. Note that since the
number of training examples in the task of handwritten digits
recognition is 60 000, each data collection site randomly holds
60 000/50 = 1200 examples. Similarly, each data collection
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TABLE V
PROPORTION OF ADDITIONAL COMPUTATION OVERHEAD

Fig. 9. Computation cost for each data collecting site. (a) Computation cost
with different number of weights. (b) Computation cost with different number
of the data collecting sites.

site randomly holds almost 1 000 examples in the task of
images recognition (all used in [49]).

1) Computation Overhead: In the PADL, each data col-
lection site is only required to perform additional customized
perturbations. In our experimental environment, for the task
of handwritten digits recognition, the perturbed model param-
eters in plaintext are sent in around 8 ms via 1 Gb/s
communication channel, i.e., TUpload = 8 ms. The data col-
lecting site downloads a new model from the server, which
also takes 8 ms, i.e., TDownload = 8 ms, and trains 200
iterations taking T200,Training = 30.30 ms/iteration × 200 iter-
ations = 6060.00 ms. Besides, the average time of performing
perturbation is 0.091 ms. Hence, additional privacy protection
mechanism accounts for 0.1498% of each round of training.

Table V details the proportion of the additional computa-
tion overhead of the different methods in the total training
process. For deeper model architecture, training takes longer,
which is related to many factors such as the complexity of the
network structure. While the computation overhead of encryp-
tion and decryption only increases linearly with the number
of model parameters, so the proportion of privacy protection
mechanisms in images recognition tasks is reduced. Besides,
with the deepening of the network architecture, the ratio of
the overhead of the PADL is also decreasing.

Fig. 9 depicted the computation cost of each data collecting
site with a different number of weights/data collection sites
for the task of handwritten digits recognition. For the images
recognition task, the result is the same, so let us just take
MNIST as an example. We can observe that the computation
overhead in the PADL is much lower than that of homomor-
phic encryption. Note that the computation cost of the method
of LWE-based encryption with 12 threads of computation is
higher than our solution with 1 thread as Fig. 9(b) shown.

Overall, our scheme has negligible additional computation
overhead, which is very friendly to data collection points with
limited computing power.

2) Communication Overhead: As listed in Table II, the
model architecture of the handwritten digits recognition task

Fig. 10. Communication cost for each data collecting site. (a) Communication
cost with different number of weights. (b) Communication cost with different
number of data collecting sits.

TABLE VI
COMMUNICATION OVERHEAD AT EACH UPLOAD/DOWNLOAD

is commonly used four-layer DNN, which has a total of
0.43 million parameters, while 23.7 million parameters in the
ResNet-50. In the PADL, the data collection sites send the per-
turbed model parameters in plaintext to the cloud server, while
in [49], the parameters are sent by the form of ciphertext. For
the task of handwritten digits recognition, the communication
overhead of the PADL at each upload or download is

0.43× 106 × 16

8× 106
≈ 0.82 MB.

While the communication overhead of the Paillier encryp-
tion with the packing technology at each upload or download
is 5.04 MB, and 4.25 MB for LWE-based encryption with
the packing technology. The communication cost of the two
encryption methods is 6.36× and 5.07× higher than ours.
Table VI shows more information about the communication
overhead at each upload/download.

Fig. 10 shows the comparison of the communication cost of
the PADL and the solution of homomorphic encryption. With
the increase in the number of weights/data collection sites, the
communication overhead of our solution is significantly low.
For the images recognition task, the result is the same, so let
us just take MNIST as an example.

Therefore, our scheme is also excellent in terms of commu-
nication cost.

VI. RELATED WORK

In this section, we introduce the existing works for the data
privacy of IoT applications. Besides, since we focus on deep-
learning-based IoT applications in this article, we also review
the related works from the perspective of deep learning.

A. Data Privacy in IoT Applications

The most popular IoT architecture consists of three lay-
ers: 1) sensor/perception; 2) middleware; and 3) application
layer [50]. The security and privacy issues in each layer
should be taken into account and addressed [51]. For instance,
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Gope et al. [6] designed a lightweight and privacy-preserving
RFID-based authentication scheme for the perception layer of
IoT-based infrastructure. Elmisery et al. [52] built a cognitive-
based middleware for private IoT-enabled data mashup to serve
a centralized environmental monitoring service. As for the
application layer, the solution to address security and pri-
vacy issues should be application specific. For example, in
the personalized healthcare systems (PHS), enormous amounts
of vital signs and wearable sensor data, such as BP, body
temperature, electrocardiograms (ECG), and oxygen satura-
tion are collected. They are transmitted into static or mobile
electronic devices with heterogeneous computing and storage
capability, such as laptops, smartphones, and medical termi-
nals [8], [53]. Son et al. [54] proposed a dynamic access
control model for preserving the privacy of personal healthcare
data in a cloud environment. Another example is AVs, which
typically equipped with varieties of rich sensor-based devices,
such as a global position system (GPS), LiDAR, and cameras,
to perceive their surrounding environment. The data are fed
into the computing system in the AV for controlling AV [55].
Yu et al. [56] utilized encryption and obfuscation techniques
to prevent the information of automobiles from sniffing.

B. Privacy-Preserving Deep-Learning-Based IoT
Applications

The vast majority of deep-learning-based IoT applica-
tions focus on the actual performance of the application.
For instance, Garg et al. [57]–[59] proposed a hybrid deep-
learning-based model for anomaly detection. Jiang et al. [60]
put forward deep-learning-based multichannel intelligent
attack detection. However, on the one hand, data privacy
is critical for both IoT applications and deep learning. On
the other hand, deep-learning-based IoT applications are pop-
ping up. Therefore, it is necessary to pay close attention to
privacy-preserving IoT applications from the perspective of
deep learning.

There are a few existing privacy-preserving IoT applications
from the perspective of deep learning, which mainly involves
three underlying technologies: 1) federated learning [23], [24];
2) encryption-based technologies [26]–[28]; and 3) differential
privacy [29], [30]. For instance, Jiang et al. [24] developed
a federated learning framework for the IoT Edge devices to
protect data privacy. However, federated learning is achieved
at the expense of high communication overhead. Moreover,
Melis et al. [61] have proved that a malicious participant
can infer sensitive information from the “shared” gradients in
federated learning. By exploiting the encryption-based tech-
nology, Li et al. [28] proposed a privacy-preserving data
aggregation scheme for mobile-edge computing-assisted IoT
applications. Unfortunately, most existing encryption-based
technologies always involve expensive overhead in computa-
tion, which leads to system performance degradation greatly.
Xu et al. [30] designed a deep inference framework-based edge
computing with local differential privacy for mobile data ana-
lytics, which has low communication and computation costs.
However, their method suffers from a loss of accuracy.

In this article, we propose the PADL, which is a privacy-
preserving deep learning framework for IoT applications.

Moreover, our solution is the first to implement deep learning
with asynchronous optimization. Theoretical analysis shows
that it also is robustness to extreme collusion even with only
one reliable site. Compared with previous works, the PADL
can perform deep learning training tasks efficiently, while
ensuring data privacy in IoT applications.

VII. CONCLUSION

The traditional deep learning methods assisted IoT applica-
tions are vulnerable to privacy risks and data breaches. In this
article, we have presented a feasible solution (PADL) to pro-
tect the privacy of training data and handle large data streams
in IoT applications. Properties analysis demonstrates that the
PADL has the characteristic of asynchronous optimization,
and the privacy property against the extreme collusion attack.
Experiments performed on the real-world data sets describe
the practical performance of our proposed strategy. In future
work, we will take into consideration the data integrity and
availability of the scheme at security attacks.
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