
Improving the Java Memory
Model Using CRF

Jan-Willem Maessen

Arvind

Xiaowei Shen

[jmaessen,arvind]@lcs.mit.edu,
xwshen@us.ibm.com

! Incomplete
- No semantics for final fields

! Disallows important optimizations
- Reordering of loads to same location
- Some reordering are inexpressible in

source

! Difficult to understand
- Memory updates not atomic

Java Memory Model: Problems

!Examples of JMM problems
! Desired Programming Discipline

– Well-behaved programs

– Source-level algebraic reasoning

! Translating Java into CRF

! Conclusions

Roadmap

class MyString {
private final char[] theCharacters;
public MyString(char[] value) {
 char[] internalValue = value.clone();
 theCharacters = internalValue;
}
...

}

Thread 1
char [] a = {‘H’,’i’};
s = new MyString(a);

Thread 2

print(s);

Thread 2 should either print “Hi” or throw an exception

Final fields: The String Example

Thread 1

v = p.f;

w = q.f;

x = p.f;

Thread 2

p.f = 2;

Can we replace x = p.f by x = v ?

! Old JMM: No!
What if p==q? Reads must be ordered!

! Proposed JMM: Yes!

Reads can be reordered

Enabling Optimizations

v = q.g;
w = p.f;
p.f = 42;

u = p.f;
v = q.g;
w = p.f;
p.f = 42;

w = p.f;
p.f = 42;
v = q.g;

u = p.f;
w = p.f;
p.f = 42;
v = q.g;

_

_X

Program behavior is context-sensitive [Pugh99]

The old JMM semantics are simply too convoluted!

Confusing Semantics

The Java Memory Model
[Gosling, Joy, Steele, 1st ed., Ch 17]

thread

shared memory

. . .
cache

thread

cache

thread

cache

! Seven axioms define permitted reorderings

 - use and assign occur in program order

- store and write to a location occur in order

- read and load from a location occur in order

store

write

assign

load

read

use

Solution: Make Reorderings Explicit

thread

shared memory

. . .
cache

thread

cache

thread

cache

Reorder at the thread level
Make instructions atomic

Plan of action

! Define a desired programming style for Java

! Give high-level description of program behavior

! Capture high-level description in a precise
semantics

! Regular Memory

v = LoadR p.f StoreR p.f,v

! Volatile Memory

v = LoadV p.f StoreV p.f,v

! Final Memory

v = LoadF p.f StoreF p.f,v

EndCon

! Monitors

Enter l Exit l

Java Memory Operations

Constrained only by data dependence

! Load/Store must be protected by monitors

– If it's shared, it must be locked during access

! Read-only objects can omit synchronization

– But only when reached through final fields

Regular fields

Allow creation of read-only data

! An object must not escape its constructor

! Final fields may be read without synchronization

– Includes referenced read-only objects

Final Fields and Constructors

Allow free-form data exchange

! Volatile operations occur in program order

! Volatile loads act like Enter

! Volatile stores act like Exit

! Any field may safely be made volatile

Volatile Fields

! Source-to-source program manipulation

– See the effects of reordering

– Reason about incorrect program behavior

! Captures legal static reorderings

! Easy to reason about interleaved execution

! Implied by dynamic semantics

Algebraic Rules

! Must respect usual dependencies:
Store p.f,4; x = Load p.f; Store p.f,5;

! Regular & Final operations reorder freely:
StoreR p.f,4; y = LoadF q.g;
x = LoadF q.g; x = LoadF q.g;
y = LoadF q.g; StoreR p.f,4;

! Volatile operations do not reorder!

Load/Store Reordering

! Any Load/Store may enter synchronization

LoadR q.f; Enter p.l;

Enter p.l; LoadR q.f;

LoadR p.f; LoadR p.f;

Exit p.l; LoadR q.g;

LoadR q.g; Exit p.l;

! Non-finals may not escape synchronization

! Enter must be ordered wrt both Enter and Exit.

Synchronization

! LoadV acts like Enter, StoreV acts like Exit
LoadR q.f; LoadV p.v;
LoadV p.v; LoadR q.f;
LoadR p.f; LoadR p.f;
StoreV p.v; LoadR q.g;
LoadR q.g; StoreV p.v;

! EndCon keeps stores in, non-final stores out:
StoreF p.f, 5; StoreF p.f, 5;
EndCon; StoreF q.g, p;
StoreF q.g, p; EndCon;
StoreR r.h, p; StoreR r.h, p;

Other Interactions

Thread 1

int tmp1 = p.flag;
if (tmp1==1) {

int tmp2 = p.flag;
system.out.print("yes");
if (tmp2 == 0) {
 system.out.print("BAD");
}

}

Thread 2

p.flag = 1;

Consequence

of poor

synchronization

Reordering Around Control Flow

Compilation

! Dependency Analysis = Reordering

– Read/write constraints don’t capture reorderings

! Type & alias analyses permit read/write reordering

– Regular, volatile, and final storage are disjoint!

! Escape analysis permits local operation reordering

! Pointer analysis spots fetches via final pointers

! Examples of JMM problems

! Desired Programming Discipline

– Well-behaved programs

– Source-level algebraic reasoning

!Translating Java into CRF
! Conclusions

Roadmap

Sparc PowerPCX86

Java Threads

Commit-Reconcile & Fences (CRF)

(regular, final, volatile, monitors)

Alpha

CRF: A General Representation

(Shen, Arvind, Rudolph, ISCA99)

x = LoadR p.f;

StoreR p.f, y;

Reconcile p.f;

x = LoadL p.f;

StoreL p.f, y;

Commit p.f;

_

_

Java to CRF: Regular Memory

thread

shared memory

. . .
cache

thread

cache

thread

cache

! data caching via semantic caches

– Cache updates at any time (background)

– Commit, Reconcile force updates

! instruction reordering (controllable via Fence)

! all operations act atomically

The CRF Model

Instructions can be reordered except for
! Data dependence
! StoreL a,v; Commit a;
! Reconcile a; LoadL a;

Fencewr (a1, a2);
Commit(a1);
StoreL(a1, v);

LoadL(a2);
Reconcile(a2);

Fencerr; Fencerw; Fenceww;

The Fence Operations

Important Properties of CRF

! Safe to add extra Commits & Reconciles

! Safe to add additional Fence operations

Extra operations reduce exhibited behaviors, but
preserve correctness

Can use coarse-grain operations, e.g:

Fencerr p.f, *V; Fencerr p.f, *VR;

Fenceww l, *VRL; Fenceww *, *VR;

StoreF p.f, x;

y = LoadF p.f;

StoreL p.f, x;

Commit p.f;

Freeze p.f;

Reconcile p.f;

y = LoadL p.f;

Freeze p.f;

_

Java to CRF: Final Memory

_

x = LoadV p.f;

StoreV p.f, y;

Fencerr *V, p.f;

Fencewr *V, p.f;

Reconcile p.f;

x = LoadL p.f;

Fencerr p.f, *VR;

Fencerw p.f, *VR;

Fencerw *VR, p.f;

Fenceww *VR, p.f;

StoreL p.f, y;

Commit p.f;

_

_

Java to CRF: Volatile Memory

Enter l;

Exit l;

EndCon;

Fenceww *L, l;
Lock l;
Fencewr l, *VR;

Fenceww l, *VRL;

Fenceww *VR, l;
Fencerw *VR, l;
Unlock l;

Fenceww *,*VR;

_

_

_

Java to CRF: Synchronization

Enter l;

Fenceww *L, l;
r = Lock l;
if (r!= currentThread) {

– Fencewr l, *VR;
– Fenceww l, *VRL;

}

_

Allowing Lock Elimination

! Operations move upward out of lock region

– Including into preceding lock regions

! Operations cannot move downward

Limits on Reordering

! Some reordering must be dynamic

– Potential aliasing

! Some reordering is probably purely static

– Based on analysis

! The boundary of static reordering is fuzzy

a[x*x*x + y*y*y] a[z*z*z]

! Solution: Flexible dynamic translation

Memory Model Issues Remaining

! Speculation

– Arbitrary value speculation is the limit point

– Reordering around control gives us a lot

– Points between difficult to formalize

– Biggest open area in memory models

! G-CRF allows non-atomic Commit

No change in translation needed

– Is it necessary?

– Can it be understood

Other Memory Models

! Data-Race-Free and Properly Labeled programs

[Adve & Gharachorloo, ...]

– Define a programming style

– Appearance of sequential consistency

! Location consistency

[Gao & Sarkar, ...]

– Order writes per-thread & per-location

– Set of possible values at each load

! Run-time system memory model issues

– New threads start with parent's state

– GC responsible for its own synchronization

– EndCon for object pre-initialization

! Thread-safe Library code

– Code libraries correctly

– Clarify finalization

– Fix native code mutating final fields

! Establishing thread-safe Patterns

– Lock-free caching (double-checking breaks)

– Freezing mutable objects (Java Beans)

Java Issues Remaining

! Precise and easy to understand

- Reason about reordering at instruction level

- Intuitive high-level semantics

! Flexible

- Easy to experiment with possible translations

! Makes optimizations obvious

- Reordering expressible in source

! Simple mapping to a variety of architectures

Java Memory Model in CRF

Acknowledgements

! Bill Pugh

! Guy Steele

! David Detlefs

! Jeremy Manson

! Vivek Sarkar & the Jalapeno group

! The readers of the JMM mailing list

Question Slides

Thread 1

List q = p.next;
if (q == p) {

List tmp = p.next;
system.out.print("y");
List r = tmp.next;
if (r == null) {
 system.out.print("es");
}

}

Thread 2

p.next = p;

Another Try

Thread 1

List r = p.next;
List q = p.next;
if (q == p) {

system.out.print("y");

if (r == null) {
 system.out.print("es");
}

}

Thread 2

p.next = p;

Another Try

CRF: LoadL and StoreL

! LoadL reads from the cache if the address is cached

! StoreL writes into the cache and sets the state to Dirty

thread

LoadL(a)

thread

StoreL(a,v)

shared memory

. . .
Cell(a,v,-) Cell(a,v,D)

CRF: Commit and Reconcile

! Commit completes if the address is not cached
in the Dirty state

proc

Commit(a)

proc

Reconcile(a)

shared memory

. . .

Cell(a,-,D)? Cell(a,-,C)?

+ Reconcile completes if the address is not cached in
Clean

Cell(a,-,C)

Commit(a) Reconcile(a)

CRF: Background Operations

proc proc

. . .
Cell(a,5,C) Cell(b,8,D)

Cache Writeback

proc

. . .
Cell(c,7,C)

Purge

! Cache (retrieve) a copy of an uncached
address from memory

Cell(b,8,C)

Cell(a,5) Cell(c,7)Cell(b,1)Cell(a,5) Cell(c,7)Cell(b,8)

+ Purge a Clean copy

+ Writeback a Dirty copy to memory and set its
state Clean

Unlock a

Cell(a,v,L)

← Unlock atomically decrements the monitor count

Lock a

Cell(a,v,L)

← Lock atomically increments the monitor count

CRF Extensions: Lock and
Unlock

thread thread

shared memory

. . .
Cell(a,v’,L)Cell(a,v’,L)

Cell(b,0,L)

Cell(b,0)

CRF: Background Locking

thread thread

. . .
Cell(a,0,L)

Locked Unlocked

! Locked: retrieve an exclusive copy of an
unheld monitor from memory

Cell(a,0)

+ Unlocked: return an unheld monitor to memory
for others to use

Cell(a,-,C)Cell(a,-,F)

CRF Extensions: Freeze

! Freeze changes cache state to Frozen

thread

Freeze a

thread

shared memory

. . .

+ Reconcile can ignore Frozen entries

Freeze a

