
1

Revising the Java
Thread/Memory Model

See

http://www.cs.umd.edu/~pugh/java/memoryModel
for more information

2

Audience

• This will be an advanced talk

• Helpful if
– you’ve been aware of the discussion,

– have implemented a JVM,

– know what sequential consistency is, and that
most processors don’t support it, or

– have read Doug Lea’s book

• The easy version of this talk is Thursday,
1:30, Hall C.

3

Java Thread Specification

• Chapter 17 of the Java Language Spec
– Chapter 8 of the Virtual Machine Spec

• Very, very hard to understand
– not even the authors understood it

– doubtful that anyone entirely understands it

– has subtle implications
• that forbid standard compiler optimizations

– all existing JVMs violate the specification
• some parts should be violated

4

Revising the Thread Spec

• Work is underway to consider revising the
Java Thread Spec
– http://www.cs.umd.edu/~pugh/java/memoryModel

• Goals
– Clear and easy to understand

– Foster reliable multithreaded code

– Allow for high performance JVMs

• Will effect JVMs
– and badly written existing code

• including parts of Sun’s JDK

5

When’s the JSR?

• Very hard and technical problems need to
be solved
– formal specification is difficult

– not appropriate for JSR process

• Once we get technically solid proposals
– we will start JSR process

– aiming to start this fall

• Will miss Merlin cutoff

• Workshop at OOPSLA

6

Proposed Changes

• Make it clear

• Allow standard compiler optimizations

• Remove corner cases of synchronization
– enable additional compiler optimizations

• Strengthen volatile
– make easier to use

• Strengthen final
– Enable compiler optimizations

– Fix security concerns

7

VM Safety

• Type safety

• Not-out-of-thin-air safety
– (except for longs and doubles)

• No new VM exceptions

• Only thing lack of synchronization can do is
produce surprising values for
getfields/getstatics/array loads

8

VM Safety implications

• Problems on SMPs with weak memory
models

• Could see uninitialized objects created by
another thread
– need to initialize memory during GC

– worry about seeing null vptr

– worry about seeing zero array length

• Class loading and initialization issues

9

Weird Behavior of Improperly
Synchronized Code

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads

10

Answer: Yes!

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

How can i = 0 and j = 0?

start threads

11

How Can This Happen?

• Compiler can reorder statements
– or keep values in registers

• Processor can reorder them

• On multi-processor, values not
synchronized in global memory

• Must use synchronization to enforce
visibility and ordering
– as well as mutual exclusion

12

Synchronization

• Synchronization on thread local objects
– e.g., synchronized(new Object()) {}

– is not a no-op under current semantics

– but it isn’t a memory barrier

• Proposal: make it a no-op
– and allow other compiler optimizations

• Programming model is release consistency

13

When Are Actions Visible to
Other Threads?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

14

New Optimizations Allowed

• Turning synchronizations into no-ops
– locks on objects that aren’t ever locked by any

other threads

– reentrant locks

– enclosed locks

• Lock coarsening
– merging two calls to synchronized methods on

same object
• need to be careful about starvation issues

15

Double-check - DO NOT USE

Doesn’t work under either existing or proposed semantics
class Service { // DO NOT USE
 Parser parser = null;
 Parser getParser() {
 if (parser == null)
 synchronized(this) {

 if (parser == null)
 parser = new Parser();
 }
 return parser;
 }}

16

Existing Semantics of Volatile

• No compiler optimizations
– Can’t hoist read out of loop

– reads/writes go directly to memory

• Reads/writes of volatile are sequentially
consistent
– can not be reordered

– but access to volatile and non-volatile variables
can be reordered

• Reads/writes of long/doubles are atomic

17

Existing Volatile Compliance

• Very poor
– some JVMs completely ignore volatile

• No one enforces sequential consistency

• Atomic longs/doubles isn’t enforced on
most

• New compliance tests will likely be rolled
out soon

18

Volatile Compliance

No Compiler
Optimizations

Sequential
Consistency

Atomic
Longs/Doubles

Solaris
JDK 1.2.2 EVM

Pass Fail Pass

Solaris
JDK 1.3.0 beta
Hotspot Client

Fail Fail Fail

Windows
JDK 1.3.0

 Hotspot Client
Fail Fail Fail

Solaris
JDK 1.3.0 beta
Hotspot Server

Pass Fail Fail

Windows
JDK 1.3.0

 Hotspot Server
Pass Fail Fail

Windows IBM
JDK 1.1.8

Pass Fail Fail

19

Need for volatile

int answer = 0;

boolean ready = false;

answer = 42;

ready = true;
if (ready)
 System.out.println(answer);

start threads

Can print 0

20

Need for volatile

volatile int answer = 0;

volatile boolean ready = false;

answer = 42;

ready = true;
if (ready)
 System.out.println(answer);

start threads

Must not print 0

21

Proposed New
Semantics for Volatile

• Write to a volatile acts as a release

• Read of a volatile acts as an acquire

• If a thread reads a volatile
– all writes done by any other thread,

– before earlier writes to the same volatile,

– are guaranteed to be visible

22

New semantics for volatile

int answer = 0;

volatile boolean ready = false;

answer = 42;

ready = true;
if (ready)
 System.out.println(answer);

start threads

Existing semantics: can print 0
Proposed semantics: must not print 0

23

When Are Actions Visible to
Other Threads?

answer = 42

ready = true

Thread 1

if (ready)

println(answer)

Thread 2

anything done by thread 1,
before before writing ready

must be visible to any
operations in thread 2 that
occur after readying ready

24

Naïve Implementation of Volatile

• On SMP with weak memory model (Alpha)
– Membar before & after each volatile write

– Membar after each volatile read

• On SMP with TSO (e.g. Sparc)
– Membar after each volatile write

• On IA-64
– use ld.acq and st.rel for volatile fields

– also, memory barrier after each volatile write

25

Implementation Cost of Proposed
Change in Semantics

• Naïve implementation handles new
semantics
– unclear if only enforcing only existing

semantics would incur fewer memory barriers

• New semantics will prohibit some compiler
optimizations
– reading a volatile will force all values cached in

registers to be reloaded

26

Volatile Summary

• These semantics make volatile rather
heavy weight
– may not be cheaper than synchronization

• Few programmers will use all these features
– Do we really need sequential consistency, on

top of acquire/release semantics?

• But it is simple and easy to understand
– more likely to be used correctly

27

Immutable Objects

• Many Java classes represent immutable
objects
– e.g., String

• Creates many serious security holes if
Strings are not truly immutable
– probably other classes as well

– should do this in String implementation, rather
than in all uses of String

28

Strings aren’t immutable

String foo
 = new String(sb)

Global.s = foo

String t = Global.s

ok = t.equals(“/tmp”)

just because thread 2 sees new value for Global.s
doesn’t mean it sees all writes done by thread 1
before store to Global.s

Compiler, processor or memory system
can reorder these writes
Symantic JIT will do it

thread 1

thread 2

29

Why aren’t Strings immutable?

• A String object is initialized to have default
values for its fields

• then the fields are set in the constructor

• Thread 1 could create a String object

• pass it to Thread 2

• which calls a sensitive routine

• which sees the fields change from their
default values to their final values

30

Making String immutable

• Could make String methods synchronized
– most programmers don’t think methods for

immutable objects need to be synchronized

– synchronization would slow down String
methods on all platforms

• only needs to be synchronized on SMP’s with weak
memory models

• doesn’t need synchronization on SPARC or
MAJC(?) SMP’s

31

Final = Immutable?

• Existing Java memory model doesn’t
mention final
– no special semantics

• Would be nice if compiler could treat final
fields as constant
– Don’t have to reload at memory barrier

– Don’t have to reload over unknown function
call

32

Existing semantics require that final
fields need to be reloaded at

synchronization points

class A extends Thread
{
 final int x;
 A() {

synchronized(this) {
 start();
 sleep(10);
 }
 x = 42;
 };

public void run() {
int i,j;
i = x;
synchronized(this) {
 j = x;
 }
System.out.println(i+j);
}

}

Must not print 0

33

Proposed Semantics for Final

• Read of a final field always sees the value
set in constructor
– If,

• a final field is read before set
– (by the constructing thread)

• or, a reference to the object becomes visible to
another thread before object is constructed

• semantics are ugly

• Can assume final fields never change

• Makes string immutable?

34

Problems

• JNI code can change final fields
– setIn, setOut, setErr

– Propose to remove this ability
– (reflection appears to be safe)

• Objects that escape their constructor before
final fields are set
– Base class “registers” object, derived class has

final fields

• Doesn’t suffice to make strings immutable

35

Doesn’t make Strings immutable

• No way for elements of an array to be final

• For Strings, have to see final values for
elements of character array

• So…
– Read of final field is treated as a weak acquire

• matching a release done when object is constructed

– weak in that it only effects things dependent on
value read

• no compiler impact

36

data
dependence

Visibility enforced by final field a

this.a = new int[5]

end constructor int[] tmp = t.a

… = tmp[0]

Foo.x++

this.a[0] = 42

… = Foo.x

Foo.b = this

Foo t = Foo.b

All actions done before
completion of constructor

must be visible to any action
that is data dependent on the read
of a final field set in that constructor

37

Contrast with volatile

this.a = new int[5]

end constructor

int[] tmp = t.a

… = tmp[0]

Foo.x++

this.a[0] = 42

… = Foo.xFoo.b = this

Foo t = Foo.b

Actions done before assignment
to volatile field

must be visible to any action
after the read

38

data
dependence

Data dependence is transitive

this.a = new int[5][5]

end constructor

int[][] tmp = t.a

int[] tmp2 = tmp[0]

Foo.x++

this.a[0][0] = 42
… = Foo.x

Foo.b = this

Foo t = Foo.b

… = tmp2[0]

39

Thread Communication

• All forms of inter-thread communication
force writes to be visible
– interrupt

– start/join

– isAlive

• Sleep and yield have no effect on visibility
– will cause problems for broken programs

– but difficult/impossible to specify semantics of
visibility for sleep

40

finalization

• Loosing the last reference to an object is an
asynchronous signal to another thread to run
the finalizer
– which writes, done before loosing the last ref

– are visible to the finalizer?

• Proposal: only writes to the object being
finalized
– need synchronization to see other writes

• Unsynchronized finalizers are dubious

