
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Continuous Terrain Guarding with Two-Sided Guards
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Abstract

We consider the continuous two-sided guarding on a 1.5-
dimensional(1.5D) terrain T . To our knowledge, this is
the first work on this problem. Specificially, we aim at
selecting a minimum number of guards such that every
point on the terrain can be seen by a guard to its left,
and another guard to its right. A vertex v sees a point p
on T if the line segment connecting v to p is on or above
T . We demonstrate that the continuous 1.5D terrain
guarding problem can be transformed to the discrete
terrain guarding problem with a finite point set X and
that if X is two-sided guarded, then T is also two-sided
guarded. Through this transformation, we provide an
optimal algorithm determining a guard set with mini-
mum cardinality that completely two-sided guards the
terrain.

1 Introduction

A 1.5 dimensional(1.5D) terrain T is an x-monotone
polygonal chain in R2 specified by n vertices V (T ) =
{v1, ..., vi, ..., vn}, where vi = (xi, yi). The vertices in-
duce n− 1 edges E(T ) = {e1, ..., ei, ..., en−1} with ei =
vivi+1.

A point p sees or guards q if the line segment pq lies
above or on T , or more precisely, does not intersect the
open region bounded from above by T and from the left
and right by the downward vertical rays emanating from
v1 and vn.

There are two types of terrain guarding problems: (1)
continuous terrain guarding (CTG) problem, with ob-
jective of determining a subset of T with minimum car-
dinality that guards T , and (2) discrete terrain guarding
problem, with the objective of determining a subset of
U with minimum cardinality guarding X, given that the
two point sets U and X are on T .

Many studies have referred to applications of 1.5D
terrain guarding in real world [1, 2, 3]. The examples in-
clude guarding or covering a road with security cameras
or lights and using line-of-sight transmission networks
for radio broadcasting.
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1.1 Related Work

Ample research has focused on the 1.5D terrain guard-
ing problem, which can be divided into the general
terrain guarding problem and the orthogonal terrain
guarding problem.

In a 1.5D terrain, King and Krohn [4] proved that the
general terrain guarding problem is NP-hard through
planar 3-SAT.

Initial studies on the 1.5D terrain guarding problem
discussed the design of a constant-factor approximation
algorithm. Ben-Moshe et al. [5] gave the first constant-
factor approximation algorithm for the terrain guarding
problem and left the complexity of the problem open.
King [6] gave a simple 4-approximation, which was later
determined to actually be a 5-approximation. Recently,
Elbassioni et al. [7] gave a 4-approximation algorithm.

Finally, Gibson et al. [8] considered the discrete ter-
rain guarding problem by finding the minimal cardinal-
ity from candidate points that can see a target point
[8] and proved the presence of a planar graph that ap-
propriately relating the local and global optima; thus,
the discrete terrain guarding problem allows a polyno-
mial time approximation scheme (PTAS) based on local
search. Friedrichs et al. [9] revealed that for the con-
tinuous 1.5D terrain guarding problem, finite guard and
witness sets (G and X, respectively) can be constructed
such that an optimal guard cover G′′ ⊆ G that covers
terrain T is present and when these guards monitor all
points in X, the entire terrain is guarded. According to
[8], the continuous 1.5D terrain guarding problem can
apply PTAS by constructing a finite guard and witness
set with the former PTAS.

Some studies have considered orthogonal terrain T . T
is called an orthogonal terrain if each edge e ∈ E(T ) is
either horizontal or vertical. An orthogonal terrain has
four vertex types. If vi is a vertex of orthogonal terrain
and the angle ∠vi−1vivi+1 = π/2, then vi is a convex
vertex, otherwise it is a reflex vertex. A convex vertex
vi is left(right) convex if vi−1vi(vivi+1) is vertical. A
reflex vertex vi is left(right) reflex if vi−1vi(vivi+1) is
horizontal.

Katz and Roisman [10] gave a 2-approximation al-
gorithm for the problem of guarding the vertices of an
orthogonal terrain. The authors constructed a chordal
graph demonstrating the relationship of visibility be-
tween vertices. On the basis of [11], [10] gave a 2-
approximation algorithm and used the minimum clique
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Figure 1: Point p is two-sided guarded by v1 and vn.

cover of a chordal graph to solve the right(left) convex
vertex guarding problem.

Lyu and Üngör [12] gave a 2-approximation algorithm
for the orthogonal terrain guarding problem that runs
in O(n logm), where m is the output size. The au-
thors also gave an optimal algorithm for the right(left)
convex vertex guarding problem. On the basis of the
vertex type of the orthogonal terrain, the objective of
the subproblem is to determine a minimum cardinality
subset of V (T ) guarding all right(left) convex vertices
of V (T ); furthermore, the optimal algorithm uses stack
operations to reduce time complexity.

The O(n logm) time 2-approximation algorithm has
previously been considered the optimal algorithm for
the orthogonal terrain guarding problem. However,
some studies have used alternatives to the approxima-
tion algorithm.

Durocher et al. [13] gave a linear-time algorithm for
guarding the vertices of an orthogonal terrain under
a directed visibility model, where a directed visibility
mode considers the different visibility for types of ver-
tex. If u is a reflex vertex, then u sees a vertex v of T , if
and only if every point in the interior of the line segment
uv lies strictly above T . If u is a convex vertex, then u
sees a vertex v of T , if and only if uv is a nonhorizontal
line segment that lies on or above T . Khodakarami et
al. [14] considered the guard with guard range. They
presented a fixed-parameter algorithm that found the
minimum guarding set in time O(4k · k2 · n), where k is
the terrain guard range.

1.2 Result and Problem Definition

In this paper, we define the CTG problem with two-
sided guards and propose an optimal algorithm for the
1.5D CTG problem with two-sided guards. To the best
of our knowledge, the 1.5D CTG problem with two-
sided guards has never been examined.

Definition 1 (Two-Sided Guarding). A point p on
a 1.5D terrain is two-sided guarded if there exist two
distinct guards u, which is on or to the left of p, and v,
which is on or to the right of p, such that p can be seen
by both u and v. Furthermore, the guards u and v are

Figure 2: Schematic of Lemma 1.

called a left-guard and a right-guard of p.

Fig. 1 illustrates an example where vertex v1 left-
guards p and vn right-guards p. In this paper, we define
the following problem:

Definition 2(CTGTG: Continuous Terrain Guard-
ing with Two-Sided Guards) Given a 1.5D terrain T ,
find a vertex guard set S of minimum cardinality such
that every point of T can be two-sided guarded.

1.3 Paper Organization

Section 2 presents preliminaries, Section 3 demonstrates
how to create a finite point set for the CTGTG model,
Section 4 gives an algorithm for the CTGTG, along with
its proof, and Section 5 presents our conclusions.

2 Preliminaries

Let p and q be two points on a 1.5D terrain, we write
p ≺ q if p is on the left of q. We denote the visible region
of p by vis(p) = {v ∈ V (T )|v sees p}. For a vis(p), let
L(p) be the leftmost vertex in vis(p) and R(p) be the
rightmost vertex in vis(p).

Given a CTGTG instance, let OPT = {o1, o2, ..., om}
be an optimal guard set, where ok ≺ ok+1 for k =
1, ...,m − 1. For a point p on the terrain, let OR(p)
and OL(p) be the subsets of OPT such that p is right-
guarded by every guard in OR(p) and left-guarded by
every guard in OL(p). We also define NR

i as the right-
most point on the terrain that is not right-guarded by
{oi, oi+1, ..., om} and NL

i as the leftmost point on the
terrain that is not left-guarded by {o1, o2, ..., oi}.

An important visible property on 1.5D terrains is as
follows:

Lemma 1 (Order Claim[5]) Let a, b, c and d be four
points on a terrain T such that a ≺ b ≺ c ≺ d. If a sees
c and b sees d, then a sees d.

Fig. 2 is a schematic of Lemma 1. Because T is an
x-monotone chain, we use a straight line to demonstrate
the relation between x-coordinate of points and an arc
to show the visible relation among points on T . In this
paper, we use a straight line to simplify the explana-
tions.
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Figure 3: V (T ) is right-guarded and left-guarded by
{v1, v2, v4, v5}, but not T .

Observation 1 Let ej be an edge of the terrain and p
is on ej. If p is left-guarded by a guard v, then v also
completely guards pvj+1.

Observation 2 Let ej be an edge of the terrain and p
is on ej. If p is right-guarded by a guard v, then v also
completely guards vjp.

3 Discretization

Although V (T ) are right-guarded and left-guarded, T
is not necessarily right-guarded and left-guarded. In
Fig. 3, V (T ) is right-guarded and left-guarded by
{v1, v2, v4, v5} with minimal cardinality. The vertices
v1 and v2 are left-guarded by v1 and right-guarded by
v2. Vertices v4 and v5 are left-guarded by v4 and right-
guarded by v5. Vertex v3 is left-guarded and right-
guarded by v2 and v4, respectively. Only v3 can right-
guard p and left-guard q where p is on e2 and q is on
e3, but v3 /∈ {v1, v2, v4, v5}. In our example, we must
create a point set X such that if X is right-guarded and
left-guarded, then T is also.

Definition 3 (Boundary Point). If line vivj and ek
have an intersection point f /∈ {vk, vk+1}, and vi and vj
can see f then f is the boundary point.

In Fig. 4, we provide an example with four boundary
points: f1, f2, f3 and f4. Boundary point f1 is from v7,
f2 is from v5; and boundary points f3 and f4 are from
v1. We say e1 has two boundary points, f1 and f2; each
of e4 and e6 has a boundary point.

Lemma 2 For an edge ei on terrain T , there exist at
most two non-endpoints p and q such that ei is complete
two-sided guarded if p and q are two-sided guarded.

Proof. According to the number of boundary points on
ei, we may consider the proof under the following cases:
edge ei does not have boundary point or has one, two,
or k boundary points (where k ≥ 3).

In the first case, we assume ei does not have boundary
point. Let point p /∈ {vi, vi+1} be on edge ei. If p
is right-guarded and left-guarded, then edge ei is also
right-guarded and left-guarded.

Figure 4: Points f1, f2, f3 and f4 are boundary points
on T .

In the second case, we assume ei has a boundary point
f . We split the edge into two line segments vif and
fvi+1. Then, the first case can be applied to the line seg-
ments vif and fvi+1. Therefore, we create two points
p /∈ {vi, f} on line segment vif and q /∈ {f, vi+1} on line
segment fvi+1. If p and q are right-guarded and left-
guarded, then ei is also right-guarded and left-guarded.

In the third case, we assume ei has two boundary
points f1 and f2. We split the edge into three line seg-
ments vif1, f1f2 and f2vi+1. The line segments vif1
and f2vi+1 can be reduced to the first case. Therefore,
we create two points p /∈ {vi, f1} on line segment vif1
and q /∈ {f2, vi+1} on line segment f2vi+1. If p and q are
left-guarded and right-guarded, then line segment f1f2
is also left-guarded and right-guarded.

In the final case, we assume ei has k boundary points
f1, ..., fk. We split the edge into k + 1 line segments
L = {vif1, f1f2, ..., fkvi+1}. The line segments vif1 and
fkvi+1 can be reduced to the first case. Therefore, we
create two points: p /∈ {vi, f1} on line segment vif1 and
q /∈ {fk, vi+1} on line segment fkvi+1. If p and q are
left-guarded and right-guarded, then each line segment
fcfc+1 ∈ L is also left-guarded and right-guarded. �

From the construction of Lemma 2, in order to com-
pletely two-sided guard a terrain, it is sufficient to first
select a finite subset X of positions from the terrain to
be two-sided guarded, such that |X| ≤ 2(n− 1).

4 An Optimal Algorithm for CTGTG

In this section, we present an optimal algorithm for the
CTGTG. The idea of the algorithm follows from Obser-
vation 3. In each step of our algorithm, we add a vertex
vi to our result S such that if vi /∈ OPT then vi can
replace a vertex vj ∈ OPT and |S| = |OPT |.

Observation 3 The optimal solution of the CTGTG
includes v1 and vn.

This is because in the CTGTG for right-guarded and
left-guarded T , only v1 can left-guard v1 and only vn
can right-guard vn.
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Figure 5: Position of vj ∈ R(NR
i ) ∪OR(NR

i ).

Figure 6: If g ∈ OR(NR
i ) left-guard x′, then xk and NR

i

see each other.

Figure 7: If x′ and NR
i see each other, then oj right-

guards NR
i .

Lemma 3 R(NR
i ) and any guard in OR(NR

i ) do not
lie on the right side of oi.

Proof. Let x be a point on the edge ej−1 such that
NR

i ≺ x. We assume that vj ∈ R(NR
i ) ∪OR(NR

i ) is on
the right side of oi. We know that x is right-guarded by
ok and ok is on the right side of vj . According to Lemma
1, if ok right-guards x, then NR

i is right-guarded by ok.
This contradicts the definition of NR

i and ok sees NR
i .

The schematic of Lemma 3 is given in Fig 5. �

Lemma 4 If R(NR
i ) /∈ OR(NR

i ), then any guard in
OR(NR

i ) cannot left-guard x′ ∈ {x ∈ X|R(NR
i ) ≺ x}.

Proof. Let g be a guard in OR(NR
i ) \ R(NR

i ) and let
x′ be a point such that R(NR

i ) ≺ x′. Therefore, NR
i ≺

g ≺ R(NR
i ) ≺ x′. Consider x′ on the edge ek = vkvk+1,

there exists a guard oj that right-guards x′. According
to Lemma 1, if x′ and g see each other, then x′ and
NR

i also see each other. This is illustrated in Fig. 6.
Because oj right-guards x′ and sees vk, if x′ sees NR

i

then oj right-guard NR
i too, as illustrated in Fig. 7. �

Figure 8: If L(v) cannot see x and v sees x, then v =
L(x).

Lemma 5 If R(NR
i ) /∈ OR(NR

i ), x ∈ X is right-
guarded by oj and i ≤ j ≤ m, then x cannot lie between
g ∈ OR(NR

i ) and R(NR
i ).

Proof. We assume that the point x is on the ek =

vkR(NR
i ) and x is right-guarded by oj . We know

that oj right-guards vk by Observation 2. Accord-
ing to Lemma 1, if x is right-guarded by oj , then
NR(oi) is right-guarded by oj . Therefore, we know
that if R(NR

i ) /∈ OR(NR
i ), then x cannot lie between

g ∈ OR(NR
i ) and R(NR(oi)). �

By Lemma 3, Lemma 4 and Lemma 5, we have the
following theorem.

Theorem 6 If R(NR
i ) /∈ OR(NR

i ), then R(NR
i ) can

replace any guard in OR(NR
i ).

Proof. Based on Lemma 3, Lemma 4 and Lemma 5, if
R(NR

i ) /∈ OR(NR
i ), then g ∈ OR(NR

i ) cannot left-guard
xk ∈ {xj | NR

i ≺ xj}. Due to g ≺ R(NR
i )), we know

vis(R(NR
i )) ⊇ vis(g) by Lemma 1. �

Similarly, L(NL
i ) can replace any guard in OL(NL

i ).

Theorem 7 If OL(NL
i ) /∈ L(NL

i ), then L(NL
i ) can re-

place any guard in OL(NL
i ).

5 Complexity

Because our approach has two phases, we must first dis-
cuss the complexity of discretization. We obtain bound-
ary points for a vertex v on E(T ) in O(n) time by [15].
Therefore, we compute all boundary points for each ver-
tex of V (T ) on each edge e ∈ E(T ) in O(n2) time. We
obtain at most 2|V (T )| boundary points in O(n2) time.

Next, we demonstrate how to compute an optimal
solution for the CTGTG. In step 1, we add v1 and vn
to our solution. In step 2, we compute the vis(v1) and
vis(vn). In step 3, we add R(x) to our solution, where
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x ∈ X is the nonright-guarded rightmost point. If a
point x exists that is not right-guarded, then repeat step
3 until X is right-guarded. In step 4, we add L(x) to our
solution, where x is the nonleft-guarded leftmost point.
If there exists a point x that is not yet left-guarded, then
repeat Step 4 until it is left-guarded. Thus, all points
on the terrain are successfully guarded from both sides.

We show our algorithm for the CTGTG runs in O(n)
time using two steps. Before the algorithm begins, we
can compute R(x) and L(x) for each point of X in O(n)
time. After this computation, we proceed to the algo-
rithm in O(n) time. Therefore, our proposed algorithm
for the CTGTG runs in O(n) time.

Algorithm 1: Compute all L(x)

Input: T : terrain, X: point set
Output: { L(x)|x ∈ X }
Q← X ∪ V (T )
for qi ∈ Q processed from left to right do

qj = qi−1
while L(qi) = ∅ do

if qi sees L(qj) then
if L(qj) is not v1 then

qj = L(qj)
else

L(qi) = v1
else

L(qi) = qj
for x ∈ X processed from left to right do

Return L(x)

Lemma 8 Let v and x be two points on a terrain T
such that v ≺ x. If L(v) cannot see x and v sees x then
v = L(x).

Proof. Let p, v and x be three points on T such that
p ≺ L(v) ≺ v ≺ x. We assume that L(v) cannot see
x and v can see x. If p sees x and cannot see v, then
a vertex q exists and lie above line vL(v) and p ≺ q ≺
L(v), as illustrated in Fig. 8. However, the assumption
that L(v) 6= q is contradictory. �

We propose Algorithm 1 to compute L(x) for all
points x in X according to Lemma 8 and Lemma 1.
We prove that the running time of Algorithm 1 is O(n).

Theorem 9 Algorithm 1 runs in O(n) time.

Proof. We count the number of times qi sees L(qj) in
the algorithm. If qi sees L(qj), then the algorithm does
not visit the vetrices between qi and L(qj). Therefore,
the number of times qi sees L(qj) is at most once for
each point of Q. If qi does not see L(qj), then qi has
found L(qi). Therefore, the number of times qi does not
see L(qj) is at most once for each point Q. �

After computing L(xi) and R(xi) for X, we reach the
algorithm for the CTGTG in O(n) time. We divided
our algorithm into left-guarding and right-guarding, and
therefore we provide the algorithm for left-guarding that
can be implemented in O(n) time.

Algorithm 2: Left-guarding

Input: T : terrain, X: point set
Output: SL : left-guarding set
SL is null;
Add v1 to SL;
V (T ′)=V (T );
for xi ∈ X processed from left to right do

while g(xi) is null do
s is rightmost vertex in SL ∩ V (T ′);
if xi is guarded by s then

g(xi) is s;
Remove the vertices between xi and s
from V (T ′);

else if s ≺ L(xi) then
g(xi) be the vertex L(xi) ;
Add g(vi) to SL;
Remove the vertics between xi and
L(xi) from V (T ′);

else
Remove s from V (T ′);

return SL

Theorem 10 Algorithm 2 runs in O(n) time.

Proof. For each xi, we examine whether xi is guarded
by s ∈ SL from xi to g(xi). If g(xi) = vj , then Algo-
rithm 2 will not visit the point and vertex between xi
and vj . We count the number of times xi is not seen
by SL. We can check s from xi to L(xi). If s does not
see xi, then we will not check s for {xk | xi ≺ xk}. The
number of times X is not seen by SL is |V (T )|, and
the number of times X is seen by SL is |X|. There-
fore, the algorithm visits the point and vertex at most
2|X| + |V (T )| times. After computing all L(xi), Algo-
rithm 2 runs in O(n) time. �

6 Conclusion

In this paper, we considered the CTGTG problem and
devised an algorithm that can determine the minimal
cardinality vertex that guards T under two-sided guard-
ing. We showed that the CTGTG problem can be re-
duced to the discrete terrain guarding problem with at
most 2|V (T )| points in O(n2) time and solved the prob-
lem using our devised algorithm in O(n) time where n
is the number of vertices on T .
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[15] M. Löffler, M. Saumell, R. I. Silveira, A faster algo-
rithm to compute the visibility map of a 1.5d ter-
rain, in: Proc. 30th European Workshop on Com-
putational Geometry, 2014.


