
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Width and Bounding Box of Imprecise Points

Vahideh Keikha∗ Maarten Löffler† Ali Mohades∗ Zahed Rahmati∗

Abstract

In this paper we study the following problem: we are
given a set L = {l1, ..., ln} of parallel line segments, and
we wish to find a set P = {p1, ..., pn}, where pi ∈ li such
that we maximize/minimize the width of P or the area
of the bounding box of P among all possible choices for
P . We design an O(n2ε−4.5) approximation algorithm
for computing the largest width. We also show that the
smallest width and the smallest bounding box can be
computed in O(n2) time. We then proceed to present an
O(n6) time dynamic programming algorithm for com-
puting the largest-area bounding box. We also present
an FPTAS for this problem which runs in O(n2ε−5)
time.

1 Introduction

Shape fitting is a fundamental problem in computational
geometry, computer vision, clustering, data mining and
many other areas, which asks the following question:
suppose we are given a set P of points in the plane, find
a shape that best fits P under some fitting criterion.
In computational geometry, many problems fit into the
class of shape fitting, e.g., computing the bounding box,
the width, the smallest enclosing circle, etc. However,
in the real-world, the input is subject to be imprecise.
Then the question is finding tight bounds on the size of
the objective shape.

Imprecise data. Let P = {p1, ..., pn} be a set of
fixed points in the plane. In many applications, each
element of P is subject to be computed with some errors,
such that we do not know e.g., the exact coordinates of
each pi, or even the existence of pi. In this situation we
call P a set of imprecise/uncertain points.

Many studies have focused on solving geometric prob-
lems in the presence of imprecise input. Depending on
the information we have about the input, different mod-
els of imprecision are introduced. Here we briefly men-
tion related models: the Epsilon-geometry model, the
Region-based model, the Locational and the Existential
model, where in these models, it is assumed that there
exists a set Pi of points instead of each pi, but the exact
location of pi in Pi is unknown. See e.g., [3, 5].

∗Department of Mathematic and Computer Science, Amirkabir
University, [va.keikha,mohades,zrahmati]@aut.ac.ir
†Department of Information and Computing Sciences, Utrecht

University, Utrecht, The Netherlands, m.loffler@uu.nl

a

a

b

c

b

c

(b) (c) (d) (e)(a)

Figure 1: An example. (a) A given set of parallel line
segments. (b) The Largest possible width determined
by 3 pairs simultaneously. If we move any of a, b or
c among their line segments, we reduce at least one of
the computed width. (c) The smallest possible width.
(d) The largest possible area bounding box. (e) The
smallest possible bounding box.

In this paper, we study our problems in the Region-
based model. Let R be a set of imprecise points. An
instance of R is a set P of points selected from distinct
regions of R. Then each instance P of R will have dif-
ferent convex hull, width, bounding box, etc. Löffler
and van Kreveld introduced a framework for computing
some tight lower and upper bounds on the size of such
measures, where they modeled the uncertainty of the
input by line segments, squares or disks [3].

Contribution. In this paper, we study the follow-
ing problems: given a set L = {l1, ..., ln} of parallel line
segments, choose a set P = {p1, ..., pn} of points, where
pi ∈ li, such that the size of width or the area of the
bounding box of P is as small/large as possible among
all possible choices for P (see Figure 1(b-e)). These
problems can be interpreted as finding the optimal fa-
cilities in the form of a box or a strip which intersects
each line-segment-customer.

Preliminaries. Löffler and van Kreveld firstly stud-
ied the problem of computing the largest/smallest axis-
aligned bounding box of a set of imprecise points mod-
eled as a set of disks or squares in the plane, where
their algorithms varied from O(n log n) to O(n2) [2]. In
the same paper, they proved that computing the largest
possible width of a set of imprecise points modeled as
a set of arbitrary line segments is NP-hard. The same
problem for parallel line segments, squares or disks was
posed as open question.

The axis-aligned bounding box of a set P of fixed
points in the plane is the minimum area bounding box
containing P , subject to the constraint that the edges

30th Canadian Conference on Computational Geometry, 2018

x

y

θ

d

θ∗

θ∗

0

Figure 2: An example. The A(θ, d) diagrams of the end-
points of three line segments and two determined widths
in direction θ∗. Both the smallest and largest possible
width occur in direction θ∗. When we select the lower
endpoints of the blue and green line segments, the loca-
tion of the point on the red line segment determines the
width: the lower endpoint of the red segment realizes
the smallest possible width, while the upper endpoint
realizes the maximum possible width.

of the bounding box are parallel to the x−y coordinate
axes. The smallest oriented bounding box of P is the
minimum area rectangle containing P . From now on,
we simply call it bounding box. The width of a set of
points is the narrowest strip containing P . These prob-
lems are extensively studied and efficient algorithms are
known for them. Once the convex hull of P is known,
all these problems can be solved in linear time based
on the rotating calipers method [6]. While the convex
hull of P is unknown there is an Ω(n log n) lower bound
for both problems of computing the bounding box and
width of P in 2-D.

Results. Let L = {l1, ..., ln} be a set of parallel line
segments. We obtain the following results.

• We show that the largest possible width of L can be
approximated within a factor (1−2ε) in O(n2ε−4.5)
time (Section 2.1).1

• We show that the smallest bounding box of L can
be computed in O(n2) time (Section 3.1).

• We present a more involved O(n6) time dynamic
programming algorithm for computing the largest
bounding box of L. We also present an FPTAS
for this problem which runs in O(n2ε−5) time (Sec-
tion 3.2).

We also note that all missing proofs are in Ap-
pendix A.1.

2 Width

We start with the width problem. Two problems can
be considered: finding an instance P on L, so that P
maximizes/minimizes the width of P . The minimum

1Our method solves the smallest width problem in O(n2) time,
however, there exists an O(n logn) time algorithm for this prob-
lem [4].

width of a set of imprecise points modeled as line seg-
ments (or any other convex regions), can be computed
in O(n log n) time [4], in which the problem is so-called
strip transversal, and the authors studied the problem of
computing the thinnest strip that intersects a given set
of convex objects. The maximum width problem looks
more difficult, because we should find an instance so
that our instance maximizes the width of the resulting
point set. Since width can be determined by multiple
triples of points, and each point can take part in differ-
ent triples, it looks difficult to find the optimal position
of the points (see Figure 1(b)).

Let L = {l1, ..., ln} be a set of parallel line segments
in the plane. Let l−i and l+i , respectively, denote the
lower and upper endpoints of li. Let E denote the set
of all the endpoints of segments in L. For a point p, let
lp denote the segment that includes p. For each point
p = (x, y), we define a A(θ, d) diagram to be the plot of
the function dθ = x sin θ + y cos θ (1). It is the (signed)
distance of p to a line through the origin perpendicular
to the ray with angle θ.

pθ =
[
xθ
yθ

]
=
[

cos θ − sin θ
sin θ cos θ

] [
x
y

]
=
[
x cos θ − y sin θ
x sin θ + y cos θ

]
In Figure 2, the A(θ, d) diagram of the endpoints of

a set of segments is depicted, the region between same
color diagrams denotes the A(θ, d) diagrams of the re-
maining points of the segment. From now on, we use
T (P) to address the set of A(θ, d) diagrams of a set P
of points. An example is depicted in Figure 2, where
each T ({l+i , l

−
i }) for i = 1, ..., n is assigned a unique

color. Note that the T ({l+i , l
−
i }) of a segment li in-

tersects any other T ({l+j , l
−
j }) for j 6= i, j = 1, ..., n in

a constant number of intersections. Thus there are a
quadratic number of intersection points. We call I the
set of intersection points, where each element of I is an
intersection point between two diagrams with distinct
colors.

Notice the smallest possible width of L equals the
vertical shortest distance between a point p ∈ I and a
point fp on another diagram with distinct color, so that
at least one color from each diagram is intersected by
vertical line segment pfp. Since we want to minimize
the length of segment |pfp| among all directions θ, it
will have one endpoint on an intersection point. Notice
that the instances determined in this way will introduce
a larger width among all other directions in A(θ, d) di-
agrams of L. Thus this gives a valid width, and further
the smallest possible width. But computing the smallest
width by this method will cost O(n2) time.

2.1 Largest width

Let s be a set of A(θ, d) diagrams of distinct colors. If
s includes exactly one instance of each color, we call s a
complete set. For a complete set s of diagrams, we define

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

a

b

c

optimal solution A(θ, d)

b

a

c

0 1 2 3-3 -2 -1

(a)

(b) (c)

diagram

0

00

Figure 3: (a) An example. The maximal width is deter-
mined by a, b and c. (b) The optimal solution. (c) The
A(θ, d) diagrams of the endpoints is denoted by solid
curves, and the optimal solution is shown in dashed-
dotted. The green dashed-dotted is not visible because
it is the same as a solid green curve. For better visibility
this figure is shown wider.

ws as the shortest vertical distance between the topmost
and bottommost diagrams in s among all values of θ.
Obviously ws determines the width of instances in s.

Observation 1 Let P be a set of n points from distinct
line segments, then wT (P) determines the width of P .

Proof. The correctness comes from the fact that wT (P)

is computed among all values of θ. �

Let P ∗ denote the set of points which maximizes the
width. In the A(θ, d) diagram of L, the solution to the
largest width problem is equivalent to a complete set
T (P ∗) of A(θ, d) diagrams, so that the value of wT (P∗)

is as large as possible among all possible choices of s. In
other words, for any other complete set s, wT (P∗) ≥ ws.
See Figure 3 as an example. As can be seen in Figure 3,
the problem probably has algebraic issues. We design
an approximation algorithm to solve it. We start stating
our results with some observations.

Lemma 1 Let L be a given set of parallel line segments
in the plane, and let E denote the set of all endpoints
of L. There exists a solution to the largest width prob-
lem so that one of the elements of E is involved in the
optimal solution.

Proof. It is easy to observe that we can translate the
set of points realizing the largest width in up or down
direction until one of the points determining the strip
of width (indeed, the point which has the smallest dis-
tance to one of the endpoints of its segment) reaches to

D

ε

Figure 4: The crosses
denote the points ap-
proximating the line
segments.

the closest endpoint of its segment, or the width misses
covering another segment l, which this happens at an
endpoint of l again, then the new set realizes the same
width, but one element of E is involved in the optimal
solution. �

Lemma 2 There exists an ε-kernel of size O(
√
ε−1) for

the maximum width problem.

Proof. Agarwal et al. [1] proved that for any point
set in d-dimensional space, there is an ε-kernel of size
O(1/εd−1/2) and it is also worst case optimal. Let
opt(L) denote the optimal solution to the maximum
width problem of L. Then there exists an ε-kernel
Qopt for opt(L), that is opt(L) < (1 + ε)widt(Qopt).
Let S(Qopt) denote the set of segments which share a
point on Qopt. Then obviously opt(S(Qopt)) ≤ opt(L).
Also we have width(Qopt) ≤ opt(S(Qopt)). Then
opt(S(Qopt)) ≤ opt(L) ≤ (1 + ε)opt(S(Qopt)). �

Although we do not know what is our ε-kernel, we
still can use its size to design a more efficient algorithm.

Let D denote the vertical distance between the high-
est and smallest y-coordinates of any two endpoints of
segments of L, as illustrated in Figure 4. Then we em-
anate a set ρ of horizontal parallel rays, where the verti-
cal distance between any two consecutive rays is ε. For
any li ∈ L, the intersection points ρ ∩ li approximate
li. We will compute the A(θ, d) diagrams of V = ρ∩L.
Obviously V ∈ O(nε−1). We postpone the discussions
of why this gives us the desired (1− ε) factor, and first
discuss the solution on the approximated points.2

From Lemma 2 and considering any triple of
points which are potentially involved in the maxi-
mum width, a naive approach solves the problem in

O(nε
−1/2

(ε−1/2ε−1)3) time.

Corollary 3 There exists a PTAS for the maximum

width problem which runs in O(nε
−1/2

ε−4.5) time.

Observation 2 If for each li ∈ L, T ({l+i , l
−
i }) is al-

ways entirely located between two other A(θ, d) diagrams
in T (E) among all values of θ (shown in yellow in Fig-
ure 3(c)), then li does not have a role in the constitution
of the optimal solution.

2We have supposedD = 1, since we are considering the relative
error.

30th Canadian Conference on Computational Geometry, 2018

The above observation does not necessarily reduce the
complexity of the algorithm, but still can reduce the
total running time.

2.2 Dynamic programming algorithm

As a consequence of Observation 1 and since we look
for the shortest vertical distance between a set of di-
agrams, the shortest vertical distance will at least use
one intersection point of two diagrams with distinct col-
ors. Suppose we have fixed one endpoint b of a segment,
and we have computed the A(θ, d) diagram of b, T ({b})
(for simplicity we denote it by T (b)). Now the ques-
tion is how to find a complete set s of diagrams, so that
T (b) ∈ s and other elements of s maximize their vertical
distances (ws) from T (b).

First notice that the number of points in V is in
O(nε−1). By considering any triple of points in V which
are potentially involved in the optimal solution, obvi-
ously the problem can be solved in O(n4ε−3). In the
extra O(n) we check whether the strip of triple includes
one instance from each segment or not. We will design
a DP algorithm which runs in O(n2ε−4.5) time.

For a fix endpoint b, let w(b) denote the length of the
shortest vertical segment which is intersected by all the
transformations of

√
ε−1 − 1 other instances (in the ε-

kernel) among all directions θ. Let w∗ denote the max-
imum possible width of L. We should maximize the
value w(b) for each b. Obviously w(b) in a direction θ
can be defined by

w(b) = Max∀pi,dθ(T (pi))≤dθ(T (b)) |dθ(T (b))− dθ(T (pi))|+

Max∀pj ,dθ(T (pj))≥dθ(T (b)) |dθ(T (b))− dθ(T (pj))|,

with i 6= j, in which T (pi) and T (pj) has the smallest
and largest vertical distances from T (b) in direction θ.

W (b) = Max
[
w(b)], w∗ = Maxb∈E W (b),

whereW (b) is the maximum over all possible ε-kernels

on b. There only exist O(
√
ε−1) candidates for each of

pi and pj , since they belong to an ε-kernel of this size.
Also we only need to consider the directions θ which
is determined by the intersection points of the A(θ, d)
diagrams of elements in the ε-kernel, since the minimum
value of w(b) that needs to be maximized happens there.
Thus there exist O((ε−1/2ε−1)2) directions θ in total.
Also there exist O(nε−1/2) different ε-kernels (of size
O(ε−1/2)) to be defined on b. Consequently the dynamic
program runs in (n2ε−4.5) time.

Theorem 4 Let L be a given set of parallel line seg-
ments in the plane. The largest possible width of L can
be approximated within factor (1 − 2ε) in O(n2ε−4.5)
time.

3 Bounding box

Similarly, for computing the bounding box of L two
problems can be considered, neither of these has been
studied yet: the smallest area bounding box and the
largest area bounding box. Let B∗ denote the optimal
solution to any of these problems.

3.1 Smallest bounding box

Now we extend our approach for the minimum width
problem to design an algorithm for the smallest-area
bounding box.

Lemma 5 Let L be a set of parallel line segments, and
let E be set of the endpoints of segments in L. There ex-
ists an optimal solution B to the smallest bounding box
of L, where each edge of B passes through at least one
point of E, and these points belong to distinct segments.

Proof. Suppose the lemma is false. Then the minimal
bounding box B still has an edge e which is determined
by a point pi somewhere on the middle of li. Consider a
line ` through pi and parallel to e. If we sweep ` toward
the opposite side of e on B, it will intersect li, until it
leaves it at an endpoint p′i (or B misses covering another
segment lj , which happens at an endpoint pj). Then p′i
(or pj) can be substituted for pi to give us a smaller
area bounding box. Contradiction. �

Now we have discretized the problem on the end-
points. For any set of fixed points, the smallest bound-
ing box can be determined by five points. Consequently,
there exists a naive O(n6) time algorithm for the small-
est bounding box problem, where in the extra O(n) time
we should check whether an instance of any segment is
included in the solution.3

Lemma 6 Let L be a set of n parallel line segments.
Only the directions determined by the intersection points
of the elements of T (E) in the A(θ, d) diagram of L can
be candidates to determine the direction of two parallel
edges of B∗.

Proof. Only the intersection points of T (E) in the
A(θ, d) diagram of L denote the directions in which
a minimum width may exist. Suppose the lemma is
false. Then there exists a solution B to the minimum
bounding box problem, so that none of the two direc-
tions determined by edges of B, are determined by a
direction in which a minimal width happens (in an in-
tersection point). Then we find the closest direction θl′

(to the directions of any of two edges of B) which is a
candidate for the smallest width (which happens at an
intersection point) (see Figure 5). Let θl denote the di-
rection of two parallel edges of B which is closer to θl′ .

3Notice that a rotating caliper technique does not look appli-
cable here, since we do not exactly know the convex hull.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

θl

θdiff

B′ B θ′l

Figure 5: The smallest-
area bounding box will be
constructed in a direction
in which a minimal width
exists; if not we still can
reduce its area.

Also first suppose the segments determined by direction
θl′ are distinct from the segments involved in the other
edges of B′. We define θdiff = |θl′ − θl|. We substi-
tute the determined width in direction θl′ for the one
in direction θl. We then rotate the two other edges of
B with θdiff through the previously determined points.
Obviously the achieved box B′ has a smaller area than
B. Contradiction.

Now suppose the determined segments by the width
in direction θl′ are not distinct from the segments in-
volved in the other edges of B′. Then the shared point
would be located at a corner of the new box B′, while
the area of the B′ is smaller than B. Contradiction. �

In each intersection point p ∈ I in direction θ, there
may exist a strip with minimal size which includes at
least one point from each line segment. The other sides
of the potential optimal solution can be determined in
direction θ+π/2. Since |I| ∈ O(n2), the minimum area
determined box among the intersection points realizes
B∗, and the algorithm works in O(n2) time.

Theorem 7 Let L be a set of n parallel line segments.
The optimal solution to the smallest bounding box prob-
lem of L can be computed in O(n2) time.

3.2 Largest bounding box

This problem looks difficult. Even a brute-force algo-
rithm is not straightforward, since we cannot simply
expand the edges of a possible box (by using the end-
points of the segments), since collinearity of the points
may reduce the size of the optimal box. See Figure 6(a).
Let θ∗ denote the direction of the largest bounding box.
Also notice that at least six points are involved in the
optimal solution, since the determined widths in both
direction θ∗ and θ∗ + π/2 have the smallest size among
all possible directions in which a width can be deter-
mined, if not we still can reduce its size, and it is not a
valid bounding box. Also as can be seen in Figure 1(d),
the largest area bounding box does not necessarily use
the orientation of the maximum width.

Lemma 8 Let L be a set of n parallel line segments,
and let E be the set of the endpoints of segments in L.
There exists a solution to the largest-area bounding box
that uses two points (from distinct segments) of E on
its two opposite sides, so that each edge includes one of
them.

et

eb

`

t

r

b2

l+t

b1

(a) (b)

Figure 6: (a) Expanding the edges of a box B to the
endpoints of the segments determining the edges of B
does not necessarily increase the area of B. (b) The
largest-area bounding box at least uses two elements of
E on its two parallel sides.

From the A(θ, d) diagram of L, the number of different
configurations of having two distinct endpoints on two op-
posite sides of a rectangle is bounded by O(n2), since in the
intersection points the vertical order of two A(θ, d) diagrams
changes, and there only exists a quadratic number of inter-
section points. Let t and b denote such endpoints. Also an
instance of any other line segment is included in the deter-
mined strip by these two endpoints. Notice that four sub-
problems need to be considered, since we do not know which
of the upper or lower endpoints of lt and lb are the right
ones. With the same argument we had in Lemma 2, there
exists an ε-kernel of size O(ε−1/2) for the largest bounding
box. By approximating the set of line segments with a set of
parallel rays with ε difference between consecutive rays, as
discusses in Section 2.1, for any pair of endpoints we need
to find a triple of other points to construct a bounding box,
where there are O(ε−1/2) candidates for each point of triple
and O(ε−3) possible directions for the optimal box. Thus a
DP similar to the one presented in Section 2.2 can solve the
problem in O(n2ε−5) time. In the following we try to solve
it exactly.

Corollary 9 Let L be a set of n parallel line segments.
There exists an FPTAS for the largest bounding box of L
that runs in O(n2ε−5) time.

Algorithm. Let L be a given set of n parallel line seg-
ments. Recall that from A(θ, d) diagrams of L we can com-
pute all possible directions which there is a strip S = d(L, θ),
such that S includes at least one instance from each element
of L in direction θ. From Lemma 8 we know two distinct
segments determine two opposite sides of B∗. As said before,
from the A(θ, d) diagram of L we understand at most O(n2)
candidates can determine two opposite sides of B∗, since
there are O(n2) intersection points and thus the number
of configurations in which all other diagrams are resides be-
tween two different diagrams is bounded by O(n2). Then we
should find a valid width with these two points. Let θ denote
a direction of such valid width. Notice that there may exist
O(n) possible directions for θ. We will consider computing a
valid solution from a specific θ, and of course we will repeat it
for the remaining possible directions. Then a bounding box
B in direction θ can be defined by B = d(L, θ). d(L, θ + π

2
)

(2), where B is the smallest box which bounds S in θ + π
2

direction, so that B is a rectangle. With a bit abusing of the

30th Canadian Conference on Computational Geometry, 2018

a3

a4

a6

a5

a1

a2

a′3

a1

a′3

a1vbl

li

e′l

et

er

eb

el

(a) (b) (c)

a′2

Figure 7: (a) A non-valid bounding box, where it is
determined by a1 and a5. (b) The maximum inner angle
at vbl is determined at a′3. (c) The corrected edge el is
denoted by e′l. a1a

′
2a
′
3a5a6 denote the computed valid

box after one step of the DP, which is not completely
valid yet. Notice that the hidden set of er need to be
updated for the next step.

notation, let S and B also denote size of the width and area
of the bounding box, respectively.

The above definition of a bounding box B does not nec-
essarily give us a valid box, since some segments may share
more than one vertex on the boundary of B, or B may not
be the smallest possible box with these instances, so that we
still can reduce its area. But correcting this should be done
in such away that the removed area from B is minimized.
This procedure is called correcting B. Also we should do
such correction for all possible sub-problems in which a non-
valid bounding box is determined by any pair of endpoints.
Finally, the largest-area bounding box among all determines
the largest-area bounding box of L. Obviously correcting
a bounding box B (first computed in direction θ) may also
change the direction of B. In the following we show that we
still can compute the exact possible rotation of B.

When looking for the largest smallest possible box B, we
consider all sets of six points which may define a bounding
box in Equation(2), where two of them already determine
a valid width and also the first direction of box B, but not
necessarily a valid bounding box in that direction. And the
other four points are computed accordingly. In other words,
for two fixed points, we first determine a valid width through
them in a direction θ, and then we compute a valid width in
direction θ+π/2. Notice that the computed box is a superset
for the optimal solution with these instances. Finally in the
DP algorithm we try to make the biggest valid box which
is determined by these instances. See Figure 7(a) for an
example. Let A denote a set consisting of six such points
on the boundary of box B. Let eb, el, et and er denote the
edges of B in clockwise direction, and let ai for i = 1, ..., 6
denote such a set A. Also let a1 be located on edge eb, a2, a3

be located on edge el, a4, a5 be located on edge et, etc. Also
let vbl denote the common endpoint of edges eb and el, as
can be seen in Figure 7. W.l.o.g suppose B is defined on two
endpoints a1 and a5.

For each non-distinct element of A, e.g., a3, a distinct line
segment li (which is already intersected by B) will share a
vertex a′3 on el, so that a′3 can be substituted for a3 to give
us a smaller (but a bit more valid) bounding box B′. We

call a′3 the hidden line segment by el. Let H(A) denote all
the line segments hidden by the elements of A. In the worst
case, correction of B needs to find five hidden vertices by
the elements of A, but such substitution should be done in
such a way that removed area from B is as small as possi-
ble, and the resulting valid B has the largest possible area.
(Notice that since H(A) has constant complexity, comput-
ing the best configuration can be done in constant time.)
Also a hidden line segment li might simultaneously be hid-
den by the points on two edges of B, e.g., in Figure 7, li
is hidden by both el and et. We will check both cases in
different sub-problems, of which there are constantly many.
First suppose li should share a vertex on el. To do so, we
should select a′3 such that the inner angle a1vbla

′
3 has the

maximum possible value among all possible choices for a′3.
Further the hidden elements H(A) determine the exact value
of the possible rotation of B.

Let Θ denote all possible directions in which a valid possi-
ble box B is determined by two points a1 and a5, as discussed
before, and let α(A) denote the maximum angle of rotation
for correcting elements of A. Let A′ denote set A, where one
distinct element is substituted for one non-distinct element
of A. Then we can write our DP as follows:

d(L, θ) = width of L in direction of θ

b(L, θ) = d(L, θ).d(L, θ +
π

2
), b(L,Θ) = Min ∀θ∈Θ b(L, θ)

Then we have:

V (A) = Max (Min b(A ∪A′, [α(A), α(A′)]), V (A′))

where V (A) denotes the largest bounding box on a possible
set A in direction θ. Then the maximum value among all
possible V (A) denotes the optimal solution.

The correctness of the algorithm comes from the fact that
we consider all possible pairs that can define a bounding
box, and then we find the largest possible bounding box on
this pair by our dynamic program. Finally, the largest-area
corrected box determines the optimal solution. Notice that
we may need to rework on a corrected set A′, since several
elements may need to be corrected. We will correct them
clockwise. They only increase a constant number of sub-
problems, which at most equals 4 × 5. Notice that there
are constant possible directions in Θ to make a valid box,
and it is needed to consider O(n2) pairs, and for each pair
we need to consider O(n) directions, and for each direction
θ we should find the width in direction θ + π/2. Then we
compute the hidden elements of the edges in O(n) time, and
we repeat it for any pairs between any two intersection points
in A(θ, d) of L. Thus the algorithm runs in O(n6) time and
space.

Theorem 10 Let L be a given set of parallel line segments.
The largest bounding box of L can be computed in O(n6) time
and space.

4 Concluding remarks and open questions

In this paper we present several algorithms for computing
an instance P on a set of line segments, so that P maxi-
mizes/minimizes the width or the area of the bounding box
of P . Solving maximum width problem on a set of squares
remained open. We wish to extend our presented algorithms
to solve these problems on a set of squares.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating extent measures of points. Journal of
the ACM (JACM), 51(4):606–635, 2004.

[2] M. Löffler and M. van Kreveld. Largest bounding box,
smallest diameter, and related problems on imprecise
points. Computational Geometry, 43(4):419 – 433, 2010.

[3] M. Löffler. Data imprecision in computational geometry.
PhD thesis, Utrecht Univesity, 2009.

[4] J.-M. Robert and G. Toussaint. Computational geome-
try and facility location. In Proc. International Confer-
ence on Operations Research and Management Science,
pages B1–B19, 1990.

[5] D. Salesin, J. Stolfi, and L. Guibas. Epsilon geome-
try: Building robust algorithms from imprecise computa-
tions. In Proc. 5th Annual Symposium on Computational
Geometry, pages 208–217, 1989.

[6] G. T. Toussaint. Solving geometric problems with the
rotating calipers. In IEEE Melecon, volume 83, page
A10, 1983.

A Appendix

A.1 Omitted proofs

Theorem 4 Let L be a given set of parallel line segments
in the plane. The largest possible width of L can be approx-
imated within factor (1− 2ε) in O(n2ε−4.5) time.

Proof. The only remaining unproved part is the (1 − 2ε)
ratio of approximation. Let T (Papp) denote a complete set
of diagrams which maximizes size of width. Let θapp de-
note the direction in which T (Papp) gives the optimal so-
lution. Then on the A(θ, d) diagrams, using Equation (1)
we have |w∗| ≤ wT (Papp) + 2ε cos θapp, since wT (Papp) has
the largest value among other complete sets. Obviously
|w∗| ≥ sin θapp. But then if θapp ≥ π/4, sin θapp ≥ cosθapp
and then, |w∗|(1 − 2ε) ≤ wT (Papp). In the case where
θapp < π/4 we obviously have the same width in direction
θapp + π. The lemma follows. �

Lemma 8 Let L be a set of n parallel line segments, and
let E be the set of the endpoints of segments in L. There
exists a solution to the largest-area bounding box that uses
two points (from distinct segments) of E on its two opposite
sides, so that each edge includes one of them.

Proof. Like in the case of Lemma 1, there always exists
an optimal solution B so that at least one element of E is
involved on determining some edge of B. Let eb denote such
edge. In the following, we discuss the existence of another
element of E on the opposite side of eb. Let b1 denote the
endpoint which has determined the edge eb. W.l.o.g suppose
b1 is located on the bottom side of B.

Suppose the lemma is false. Then there exists a maxi-
mal bounding box B for L which is passing through some
points `, t, r, b1 and b2, so that B has maximal area and B
only uses one element of E. Let et and eb denote the top
and bottom edges of B. And let t and b1, b2, respectively,

denote the points that et and eb are passing through them,
as illustrated in Figure 6(b). Consider a line l through t and
parallel to et. If we sweep l away from et, it will intersect the
segment lt, so that it leaves it at an endpoint l+t . Then obvi-
ously the pentagon `l+t rb1b2 includes the pentagon `trb1b2.
Since with a fixed length, the new bounding box should now
include some new point which previously where located out-
side the bounding box, it must be expanded from the width.
But then the changes of the area of four boxes should be
considered, if we substitute l+t for t, the box with an edge
through b1, b2 will increase its size, and the same argument
holds for the boxes with an edge through b1, r and b2, l. Thus
the collinearity of l+t with existing vertices cannot make a
smaller area box. All together, we do not reduce the size of
any other possible bounding box of L, and thus any bound-
ing box which is passing through `l+t rb1 and b2 will have a
larger area than B. Thus B could not be the largest area
bounding box. Contradiction. �

	Introduction
	Width
	Largest width
	Dynamic programming algorithm

	Bounding box
	Smallest bounding box
	Largest bounding box

	Concluding remarks and open questions
	Appendix
	Omitted proofs

