
Ciphers with Arbitrary Finite Domains

John Black1 and Phillip Rogaway2

1 Dept. of Computer Science, University of Nevada, Reno NV 89557, USA,
jrb@cs.unr.edu, WWW home page: http://www.cs.unr.edu/~jrb

2 Dept. of Computer Science, University of California at Davis, Davis, CA 95616,
USA, rogaway@cs.ucdavis.edu, WWW home page:

http://www.cs.ucdavis.edu/~rogaway

Abstract. We explore the problem of enciphering members of a finite
set M where k = |M| is arbitrary (in particular, it need not be a power
of two). We want to achieve this goal starting from a block cipher (which
requires a message space of size N = 2n, for some n). We look at a few
solutions to this problem, focusing on the case when M = [0, k − 1]. We
see ciphers with arbitrary domains as a worthwhile primitive in its own
right, and as a potentially useful one for making higher-level protocols.

Keywords: Ciphers, Modes of Operation, Provable security, Symmetric
Encryption.

1 Introduction

A Motivating Example. Consider the following problem: a company wishes
to generate distinct and unpredictable ten-digit credit-card numbers. One way
to accomplish this involves keeping a history of all previously-issued numbers.
But the company wishes to avoid storing a large amount of sensitive information.
Another approach is to use some block cipher E under a randomly-selected key
K and then issue credit-card numbers EK(0), EK(1), · · ·. But the domains of
contemporary block ciphers are inconvenient for this problem: this company
needs distinct numbers in [0, 1010 − 1] but block cipher have a domain [0, 2n − 1]
for some n such as 64 or 128. Is there an elegant solution to this problem?

Enciphering with Arbitrary Domains. More generally now, we have good
tools—block ciphers—to encipher points when the message space M is strings
of some particular length, M = {0, 1}n. But what if you want to encipher a
number between one and a million? Or a point in ZN or Z∗

N , where N is a
1024-bit number? Or a point from some elliptic-curve group? This paper looks
at the question of how to construct ciphers whose domain is not {0, 1}n.

That is, we are interested in how to make a cipher which has some desired
but “weird” domain: F : K ×M → M where K is the key space and M is the
finite message space that we have in mind. A tool from which we may start our
construction is a block cipher: a map E : K′ ×{0, 1}n → {0, 1}n where K′ is the
key space and n is the block length. A solution to this problem immediately solves

the credit-card problem: for a block cipher F : K×[0, 1010−1] → [0, 1010−1], the
company chooses a random K ∈ K and issues the (distinct) credit-card numbers
FK(0), FK(1), FK(2), . . . , FK(i), and has only to remember the last i value used.

Measuring Success. We would like to make clear right away what is the
security goal that we are after. Let’s do this by way of an example. Suppose
that you want to encipher numbers between one and a million: M = [1, 106].
Following [2, 7], we imagine two games. In the first game one chooses a random
key K from K and hands to an adversary an oracle EK(·). In the second game one
chooses a random permutation π on [1, 106] and hands the adversary an oracle
for π(·). The adversary should be unable to distinguish these two types of oracles
without spending a huge amount of time. Note that the domain is so small that
the adversary might well ask for the value of the oracle f(·) ∈ {EK(·), π(·)}
at every point in the domain. This shouldn’t help the adversary win. So, for
example, if the adversary asks the value of EK(·) at all points except 1 and 2 (a
total of 106−2 points), then the adversary will know what are the two “missing”
numbers, c1 and c2, but the adversary won’t be able to ascertain if EK(1) = c1

and EK(2) = c2, or if EK(1) = c2 and EK(2) = c1, instead.

Our Contributions. Though the problem of enciphering on an arbitrary do-
main has been considered before [13], here we draw attention to this problem
and give the first rigorous treatment, providing a few solutions together with
their analyses. Our solutions focus on the case in which the message space is
M = [0, k − 1], though we sketch extensions to some other message spaces, like
Z∗

pq and common elliptic-curve groups.
Our first method assumes that we have a block cipher E that acts on N = 2n

points, where N ≥ k. To encipher M = [0, k− 1] one just enciphers these points
with block cipher E and uses the ordering of EK(0), EK(1), up to EK(k − 1)
to name the desired permutation on [0, k − 1]. This method is computationally
reasonable only for small k, such as k < 230.

A second method, similar to known techniques used in other settings, enci-
phers a message m ∈ M by repeatedly applying the block cipher, starting at m,
until one gets back to a point in M. (Assume once again that N ≥ k.) This
method is good if M is “dense” in the domain of the block cipher, {0, 1}n. So,
for example, one can use this method to encipher a string in ZN , where N is a
1024-bit number, using a block cipher with block length of 1024 bits. (A block
cipher with a long block length, like this, can be constructed from a “standard”
block cipher by following works like [3, 9, 11].) This construction has been sug-
gested before [13]; our main contribution here is the analysis of the construction.

A final method which we look at chooses an a, b where ab ≥ k and performs a
Feistel construction on the message m, but uses a left-hand side in Za and a right-
hand side in Zb. Our analysis of this is an adaptation of Luby and Rackoff’s [9].
This method can be quite efficient, though the proven bounds are weak when
the message space is small (eg, k < 2128).

With each of our ciphers we provide a deciphering algorithm, though this
may not be required in all domains (eg, in our credit-card example above).

Note that the three methods above solve our problem for small and large
domains, but there is a gap which remains: intermediate-sized values where our
first method requires too much space and time, and our second method requires
too many block-cipher invocations, and our third method may work but the
bound is too weak. This gap occurs roughly from k = 230 up to about k = 260,
depending on your point of view. Our credit-card example (k = 1010 ≈ 233.2)
falls into this gap. This problem remains open.

Why Ciphers on Non-Standard Sets? Popular books on cryptography
speak of enciphering the points in the message space M, whatever that mes-
sage space may be, but few seem to have thought much about how to actually
do this when the message space is something other than a set of bit strings,
often of one particular length. This omission is no doubt due to the fact that
it is usually fine to embed the desired message space into a larger one, using
some padding method, and then apply a standard construction to encipher in
the larger space. For example, suppose you want to encipher a random num-
ber m between one and a million. Your tool is a 128-bit block cipher E. You
could encode m as a 128-bit string M by writing m using 20 bits, prepending 108
zero-bits, and computing C = EK(M). Ignoring the fact that the ciphertext C
“wastes” 108 bits, this method is usually fine. But not always.

One problem with the method above is that it allows one to tell if a candidate
key K ′ might have been used to produce C. To illustrate the issue, suppose
that the key space is small, say |K| = 230. Suppose the adversary sees a point
C = EK(M). Then the adversary has everything she needs to decrypt ciphertext
C = EK(M): she just tries all keys K ′ ∈ K until she finds one for which E−1

K′ (C)
begins with 108 zeros. This is almost certainly the right key. The objection that
“we shouldn’t have used a small key space” is not a productive one if the point
of our efforts was to make due with a small key space.

If we had used a cipher with message space M = [1, 106] we would not
have had this problem. Every ciphertext C, under every possible key K, would
correspond to a valid message M . The ciphertext would reveal nothing about
which key had been used.

Of course there are several other solutions to the problem we have described,
but many of them have difficulties of their own. Suppose, for example, that
one pads with random bits instead of zero bits. This is better, but still not
perfect: in particular, an adversary can tell that a candidate key K ′ could not
have been used to encipher M if decrypting C under K ′ yields a final 20 bits
whose decimal value exceeds 1,000,000. If one had 1,000 ciphertexts of random
plaintexts enciphered in the manner we have described, the adversary could,
once again, usually determine the correct key.

As a more realistic example related to that above, consider the Bellovin-
Merritt “EKE” protocol [4]. This entity-authentication protocol is designed to
defeat password-guessing attacks. The protocol involves encrypting, under a pos-
sibly weak password K, a string gx mod p, where p is a large prime number and g
is a generator of Z∗

p . In this context it is crucial that from the resulting cipher-
text C one can not ascertain if a candidate password K ′ could possibly have

produced the ciphertext C. This can be easily and efficiently done by encipher-
ing with message space M = Z∗

p . Ordinary encryption methods won’t work.
Another problem with ciphertext-expansion occurs when we are constrained

by an existing record format: suppose we wish to encrypt a set of fields in a
database, but the cost of changing the record size is prohibitive. Using a cipher
whose domain is the set of values for the existing fields allows some measure of
added security without requiring a complete restructuring of the database. And
if the data have additional restrictions beyond size (eg, the fields must contain
printable characters), we can further restrict the domain as needed.

In addition to these (modest) applications, the question is interesting from a
theoretical standpoint: how can we construct new ciphers from existing ones? In
particular, can we construct ciphers with arbitrary domains without resorting
to creating new ciphers from scratch? It certainly “feels” like there should be a
good way to construct a block cipher on 32 bits given a block cipher on 64 bits,
but, even for this case, no one knows how to do this in a practical manner with
good security bounds.

Related Work. We assume that one has in hand a good block cipher for any
desired block length. Since “standard” block ciphers come only in “convenient”
block lengths, such as n = 128, here are some ways that one might create a
block cipher for some non-standard block length. First, one could construct
the block cipher from scratch. But it is probably better to start with a well-
studied primitive like SHA-1 or AES. These could then be used within a balanced
Feistel network [14], which creates a block cipher for any (even) block length 2n,
starting with something that behaves as a pseudorandom function (PRF) from
n bits to n bits. Luby and Rackoff [9] give quantitative bounds on the efficacy
of this construction (when using three and four rounds), and their work has
spawned much related analysis, too. Naor and Reingold [11] provide a different
construction which extends a block cipher on n bits to a block cipher on 2ni
bits, for any i ≥ 1. A variation on their construction due to Patel, Ramzan and
Sundaram [12] yields a cipher on ni bits for any i ≥ 1. Lucks [10] generalizes
Luby-Rackoff to consider a three-round unbalanced Feistel network, using hash
functions for round functions. This yields a block cipher for any given length
N starting with a PRF from r bits to � bits and another from � bits to r bits,
where � + r = N . Starting from an n-bit block cipher, Bellare and Rogaway [3]
construct and analyze a length-preserving cipher with domain {0, 1}≥n. This is
something more than making a block cipher on arbitrary N ≥ n bits. Anderson
and Biham [1] provide two constructions for a block cipher (BEAR and LION)
which use a hash function and a stream cipher. This again uses an unbalanced
Feistel network.

It is unclear how to make any of the constructions above apply to message
spaces which are not sets of strings. Probably several of the constructions can
modified, and in multiple ways, to deal with a message space M = [0, k − 1], or
with other message spaces.

The Hasty Pudding Cipher of Schroeppel and Orman [13] is a block cipher
which works on any domain [0, k − 1]. They use what is essentially “Method 2,”
internally iterating the cipher until a proper domain point is reached. Schroeppel
believes that the idea underlying this method dates back to the rotor machines
used in the early 1900’s.

Our notion of a pseudorandom function is due to Goldreich, Goldwasser and
Micali [6]. Pseudorandom permutations are defined and constructed by Luby and
Rackoff [9]. We use the adaptation of these notions to deal with finite objects,
which first appears in Bellare, Kilian and Rogaway [2].

2 Preliminaries

Notation. If A and B are sets then Rand(A,B) is the set of all functions from A
to B. If A or B is a positive number, n, then the corresponding set is [0, n − 1].
We write Perm(A) to denote the set of all permutations on the set A and if n is
a positive number then the set is assumed to be [0, n− 1]. By x

R← A we denote
the experiment of choosing a random element from A.

A function family is a multiset F = {f : A → B}, where A,B ⊆ {0, 1}∗.
Each element f ∈ F has a name K, where K ∈ Key. So, equivalently, a function
family F is a function F : Key×A → B. We call A the domain of F and B the
range of F . The first argument to F will be written as a subscript. A cipher is a
function family F : Key × A → A where FK(·) is always a permutation; a block
cipher is a function family F : Key × {0, 1}n → {0, 1}n where FK(·) is always a
permutation. An ideal block cipher is a block cipher in which each permutation
on {0, 1}n is realized by exactly one K ∈ Key.

An adversary is an algorithm with an oracle. The oracle computes some
function. We write Af(·) to indicate an adversary A with oracle f(·). Adversaries
are assumed to never ask a query outside the domain of the oracle, and to never
repeat a query.

Let F : Key × A → B be a function family and let A be an adversary. In
this paper, we measure security as the maximum advantage obtainable by some
adversary; we use the following statistical measures:

Advprf
F (A) def= Pr[f R← F : Af(·) = 1] − Pr[R R← Rand(A,B) : AR(·) = 1] ,

and when A = B

Advprp
F (A) def= Pr[f R← F : Af(·) = 1] − Pr[π R← Perm(A) : Aπ(·) = 1] .

Useful Facts. It is often convenient to replace random permutations with
random functions, or vice versa. The following proposition lets us easily do this.
For a proof see Proposition 2.5 in [2].

Lemma 1. [PRF/PRP Switching] Fix n ≥ 1. Let A be an adversary that
asks at most p queries. Then∣∣∣Pr[π R← Perm(n) : Aπ(·) = 1] − Pr[ρ R← Rand(n, n) : Aρ(·) = 1]

∣∣∣ ≤ p2/2n+1.

Algorithm Init PxK

for j ← 0 to k − 1 do Ij ← EK(j)
for j ← 0 to k − 1 do Jj ← Ord(Ij , {Ij}j∈[0,k−1])
for j ← 0 to k − 1 do LJj ← j

Algorithm PxK(m)
return Jm

Algorithm Px−1
K (m)

return Lm

Fig. 1. Algorithms for the Prefix Cipher. First the initialization algorithm Init PxK is
run. Then encipher with PxK(m) and decipher with Px−1

K (m).

3 Method 1: Prefix Cipher

Fix some integer k and let M be the set [0, k − 1]. Our goal is to build a cipher
with domain M.

Our first approach is a simple, practical method for small values of k. We
name this cipher Px. Our cipher will use some existing block cipher E with
keyspace K and whose domain is a superset of M. The key space for Px will
also be K. To compute PxK(m) for some m ∈ M and K ∈ K we first compute
the tuple

I = (EK(0) EK(1) · · · EK(k − 1)).

Since each element of I is a distinct string, we may replace each element in I
with its ordinal position (starting from zero) to produce tuple J . And now to
encipher any m ∈ M we compute PxK(m) as simply the m-th component of
J (again counting from zero). The enciphering and deciphering algorithms are
given in Figure 1.

Example. Suppose we wish to encipher M = {0, 1, 2, 3, 4}. We choose some
random key K for some block cipher E. Let’s assume E is an 8-bit ideal block
cipher; therefore EK is a uniformly chosen random permutation on [0, 255]. Next
we encipher each element of M. Let’s say EK(0) = 166, EK(1) = 6, EK(2) =
130, EK(3) = 201, and EK(4) = 78. So our tuple I is (166 6 130 201 78) and J
is (3 0 2 4 1). We are now ready to encipher any m ∈ M: we return the m-th
element from J , counting from zero. For example we encipher 0 as 3, and 1 as
0, etc..

Analysis. Under the assumption that our underlying block cipher E is ideal, I
is equally likely to be any of the permutations on M. The proof of this fact is
trivial and is omitted. The method remains good when E is secure in the sense
of a PRP. The argument is standard and is omitted.

Practical Considerations. Enciphering and deciphering are constant-time
operations. The cost here is O(k) time and space used in the initialization step.
This clearly means that this method is practical only for small values of k. A
further practical consideration is that, although this initialization is a one-time
cost, it results in a table of sensitive data which must be stored somewhere.

Algorithm CyK(m)
c ← EK(m)
if c ∈ M return c
else return CyK(c)

Algorithm Cy−1
K (m)

c ← E−1
K (m)

if c ∈ M return c
else return Cy−1

K (c)

Fig. 2. Algorithms for the Cycle-Walking Cipher. We encipher with CyK(·) and deci-
pher with Cy−1

K (·).

4 Method 2: Cycle-Walking Cipher

This next method uses a block cipher whose domain is larger than M, and then
handles those cases where a point is out of range. Again we fix an integer k, let
M be the set [0, k − 1], and devise a method to encipher M.

Let N be the smallest power of 2 larger or equal to k, let n be lg N , and
let EK(·) be an n-bit block cipher. We construct the block cipher CyK on the
set M by computing t = EK(m) and iterating if c �∈ M. The enciphering and
deciphering algorithms are shown in Figure 2.

Example. Let M = [0, 106]. Then N = 220 and so n = 20. We use some
known method to build a 20-bit block cipher EK(·) on the set T = [0, 220 − 1].
Now suppose we wish to encipher the point m = 314159; we compute c1 =
EK(314159) which yields some number in T , say 1040401. Since c1 �∈ M, we
iterate by computing c2 = EK(1040401) which is, say, 1729. Since c2 ∈ M,
we output 1729 as CyK(314159). Decipherment is simply the reverse of this
procedure.

Analysis. Let’s view the permutation EK(·) as a family of cycles: any point
m ∈ M lies on some cycle and repeated applications of EK(·) can be viewed as
a particle walking along the cycle, starting at m. In fact, we can now think of
our construction as follows: to encipher any point m ∈ M walk along the cycle
containing m until you encounter some point c ∈ M. Then c = CyK(m). Of
course this method assumes that one can efficiently test for membership in M.
This is trivial for our case when M = [0, k − 1], but might not be for other sets.

Now we may easily see that CyK(·) is well-defined: given any point m ∈ M
if we apply EK(·) enough times, we will arrive at a point in M. This is because
walking on m’s cycle must eventually arrive back at some point in M, even if
that point is m itself. We can also see that CyK(·) is invertible since inverting
CyK(m) is equivalent to walking backwards on m’s cycle until finding some
element in M. Therefore, we know CyK(·) is a permutation on M. However the
question arises, “how much security do we lose in deriving this permutation?”
The fortunate answer is, “nothing.”

Theorem 1. [Security of Cycle-Walking Cipher] Fix k ≥ 1 and let M =
[0, k− 1]. Let EK(·) be an ideal block cipher on the set T where M ⊆ T . Choose
a key K uniformly at random and then construct CyK(·) using EK(·). Then
CyK(·) is a uniform random permutation on M.

Proof. Fix some permutation π on the set M. We will show that an equal number
of keys K will give rise to π; this will imply the theorem.

We proceed by induction, showing that the number of permutations on
{0, . . . , k − 1, x} which give rise under our construction to π is constant. Since
M ⊆ T we can repeatedly add all elements x ∈ T −M while maintaining that
the number of permutations which give rise to π is constant.

Decompose π into r cycles of lengths l1, l2, · · · , lr. We count the number of
ways to insert the new element x. There are li ways to insert x into the ith orbit
corresponding to the ith cycle, and one way to insert x into a new orbit of its
own (ie, the permutation which fixes x). Therefore there are

∑r
i=1 li + 1 = k

ways to add element x to π yielding a permutation which will give rise to π by
repeated iterations. This holds no matter what π we choose.

Let |T | = t. Then by induction we see that there are exactly
∏t

i=k i keys K
under which our construction reduces EK(·) to π.

Similar to the Prefix Cipher, our construction has retained all of the security of
the underlying block cipher.

Theorem 1 is an information-theoretic result. Passing to the correspond-
ing complexity-theoretic result is standard. Because no security is lost in the
information-theoretic setting, and because we apply E an expected two times
(or fewer), an adversary’s maximal advantage to distinguish EK(·) from a ran-
dom permutation of Z2n in expected time 2t approximately upper bounds an
adversary’s maximal advantage to distinguish CyK(·) from a random permuta-
tion on M in time t.

5 Method 3: Generalized-Feistel Cipher

Our final method works as follows: we decompose all the numbers in M into pairs
of “similarly sized” numbers and then apply the well-known Feistel construction
[14] to produce a cipher. Again we fix an integer k, let M be the set [0, k − 1],
and devise a method to encipher M.

We call our cipher Fe[r, a, b] where r is the number of rounds we use in our
Feistel network and a and b are positive numbers such that ab ≥ k. We use a
and b to decompose any m ∈ M into two numbers for use as the inputs into
the network. Within the network we use r random functions F1, . . . , Fr whose
ranges contain M. The algorithms to encipher and decipher are given in Figure 3.
Notice that if using the Feistel construction results in a number not in M, we
iterate just as we did for the Cycle-Walking Cipher.

Example. In order to specify some particular Fe[r, a, b]K(·) we must specify the
numbers a and b, the number of Feistel rounds r, and the choice of underlying
functions F1, · · · , Fr we will use.

As a concrete example, let’s take k = 235, r = 3, and a = 185360 and
b = 185368 (methods for finding a and b will be discussed later). Note that
ab ≥ k as required. Since ab is 74112 larger than k, our Feistel construction
will be on the set M′ = [0, (235 − 1) + 74112], meaning there are 74112 values

Algorithm Fe[r, a, b]K(m)
c ← fe[r, a, b]K(m)
if c ∈ M return c
else return Fe[r, a, b]K(c)

Algorithm fe[r, a, b]K(m)
L ← m mod a; R ← �m/a�
for j ← 1 to r do

if (j is odd) then tmp ← (L + Fj(R)) mod a
else tmp ← (L + Fj(R)) mod b
L ← R; R ← tmp

if (r is odd) then return aL + R
else return aR + L

Algorithm Fe[r, a, b]−1
K (m)

c ← fe[r, a, b]−1
K (m)

if c ∈ M return c
else return Fe[r, a, b]−1

K (c)

Algorithm fe[r, a, b]−1
K (m)

if (r is odd) then R ← m mod a; L ← �m/a�
else L ← m mod a; R ← �m/a�
for j ← r to 1 do

if (j is odd) then tmp ← (R − Fj(L)) mod a
else tmp ← (R − Fj(L)) mod b
R ← L; L ← tmp

return aR + L

Fig. 3. Algorithms for the Generalized-Feistel Cipher. We encipher with Fe[r, a, b]K(·)
and decipher with Fe[r, a, b]−1

K (·). Here a and b are the numbers used to bijectively map
all m ∈ M into L, and R, and r is the number of rounds of Feistel we will apply. The
key K is implicitly used to select the r functions F1, . . . , Fr.

which are in M′ −M for which we will have to iterate (just as we did for the
Cycle-Walking Cipher). Let’s use DES with independent keys as our underlying
PRFs. DES is a 64-bit cipher which uses a 56-bit key; we will regard the 64-bit
strings on which DES operates as integers in the range [0, 264 − 1] in the natural
way. We need three PRFs so our key K = K1 ‖ K2 ‖ K3 will be 3 × 56 = 168
bits. Now to compute Fe[3, 185360, 185368](m) we compute L = m mod 185360,
and R =
m/185360�, and then perform three rounds of Feistel using DESK1(·),
DESK2(·), and DESK3(·) as our underlying PRFs. The first round results in L ←

m/185360� and R ← (m mod 185360+DESK1(
m/185360�)) mod 185360, and
so on.

Analysis. First we note that Fe[r, a, b](·) is a permutation: it is well-known that
the Feistel construction produces a permutation, and we showed previously that

iterating any permutation is a permutation. We now analyze the how good is
this Generalized-Feistel Cipher for the three-round case.

Assuming the underlying functions F1, F2, and F3 used in our construction
are truly random functions, we will compare how close Fe[3, a, b](·) is to a truly
random permutation. Passing to the complexity-theoretic setting is then stan-
dard, and therefore omitted.

Theorem 2. [Security of Generalized-Feistel Cipher] Fix k ≥ 1 and let
M = [0, k − 1]. Fix two numbers a, b > 0 such that ab ≥ k. Let ∆ = ab − k. Fix
an n such that 2n > a and 2n > b. Let D be an adversary which asks q queries
of her oracle. Then

Advprf
Fe (D) = Pr[F1, F2, F3

R← Rand(2n, 2n) : DFe[3,a,b](·) = 1]

− Pr[ρ R← Rand(k, k) : Dρ(·) = 1]

≤ (q + ∆)2

2n+1
(�2n/a
 + �2n/b
) .

The proof is an adaptation of Luby’s analysis from Lecture 13 of [8], which
is in-turn based on [9]. It can be found in Appendix A.

Finally, we must adjust this bound to account for the fact that we have com-
pared Fe[3, a, b]K(·) with a random function instead of a random permutation.
We can invoke Lemma 1 which gives us a final bound quantifying the quality of
our construction:

Advprp
Fe (D) = Pr[F1, F2, F3

R← Rand(2n, 2n) : DFe[3,a,b](·) = 1]

− Pr[π R← Perm(k) : Dπ(·) = 1]

≤ (q + ∆)2 + q2

2n+1
(�2n/a
 + �2n/b
) .

6 Discussion

Prefix Cipher. Our first method, the Prefix Cipher, is useful only for suitably
small k. Since enciphering one point requires enciphering all k points in [0, k−1],
many applications would find this prohibitively expensive for all but fairly small
values of k.

Cycle-Walking Cipher. Our second method, the Cycle-Walking Cipher, can
be quite practical. If k is just smaller than some power of 2, the number of points
we have to “walk through” during any given encipherment is correspondingly
small. In the worst case, however, k is one larger than a power of 2, and (with
extremely bad luck) might require k calls to the underlying block cipher to
encipher just one point. But if the underlying block cipher is good we require,
in the worst case, an expected two calls to it in order to encipher and decipher
any point.

Generalized-Feistel Cipher. To get the best bound we should select a and
b such that these numbers are somewhat close together and such that ∆ = ab−k
is small. One obvious technique is to try numbers near

√
k; for example, taking

a = b = �
√

k
 means that ab − k will never be more than 2
√

k + 1. But often
one can do better.

Another way to improve the bound is to ensure n is suitably large. The “tail
effects” spoken of in the proof are diminished as n grows (because as 2n gets
larger �2n/a
/2n gets closer to 1/a).

The One-Off Construction. Another method, not mentioned above, works
well for domains which are one element larger than a domain we can accommo-
date efficiently. Say we have a cipher E with domain [0, k − 1] and we wish to
construct a cipher E′ with domain [0, k]. We choose a key K ′ = {K, r} for E′

by choosing a key K for E and a random number r ∈ [0, k]. We then compute
E′

K′(X) as follows:

E′
K′(X) =




r if X = k
k if X = E−1

K (r)
EK(X) otherwise

The security of this construction is tightly related to the security of E and the
method for selecting r. The analysis is omitted.

Of course we can use this method to repeatedly extend the domain of any
cipher to the size of choice, but for most settings it is impractical to do this
more than a few times. A typical method for generating r would be to take
r = EK∗(0) mod (k + 1) where K∗ is a new randomly-selected key. The “tail
effect” here is not too bad, but will cause a rapid deterioration of the security
bound when used too often. Also, the scheme begins to become quite inefficient
when we extend the domain in this way too many times.

Other Domains. Though we have spoken in terms of the domain [0, k− 1] the
same methods work for other domains, too. For example, to encipher in Z∗

N ,
where N = pq is a 1024-bit product of two primes, one can use either cycle-
walking or the generalized-Feistel construction, iterating in the highly unlikely
event that a point is in ZN but not in Z∗

N .
We may also use our methods to encipher points from an elliptic curve group

(EC group). There are well-known “compact” representations of the points in
EC groups, and these representations form our starting point. For example, one
finds in [5] simple algorithms to compress the representation of a point in an EC
group. Consider the EC group G over the field Fq where q is either a power of
two or a prime. Then any point (x, y) ∈ G may be represented as a member of Fq

together with a single bit. Let’s consider first the case where q = 2m with m > 0.
The Hasse theorem (see [5], page 8) guarantees at least d(r) = r+1−2

√
r points

in G. Since it is possible to represent any point in G with m+1 bits and it is also
possible to efficiently test for membership in G, we could use the cycle-walking
construction over a 2m+1-bit cipher. The expected number of invocations of this
cipher to encipher a point in G is then 2m+1/d(2m) ≈ 2.

If q is instead a prime p, we can represent any point in G as a number
x ∈ [0, p − 1] and a single bit y. We may again use any of our methods to
encipher these 2p points. Here the Hasse theorem ([5], page 7) guarantees at
least d(p) points in G and once again an efficient test for membership in G
exists. Therefore we may use the cycle-walking construction over some �lg 2p
-
bit cipher. However if 2p is not close to a power of 2, we may wish to instead
use the generalized-Feistel construction.

Open Problems. As mentioned already, we have not provided any construc-
tion which works well (and provably so) for intermediate-sized values of k. For
example, suppose you are given an ideal block cipher Π on 128-bit strings, and
you want to approximate a random permutation π on, say, 40-bit strings. Prob-
ably enough rounds of Feistel work, but remember that our security goal is that
even if an adversary inquires about all 240 points, still she should be unable to
distinguish π from a random permutation on 40 bits. Known bounds are not
nearly so strong. Of course the prefix method works, but spending 240 time and
space to encipher the first point is not practical.

Acknowledgments

Special thanks to Richard Schroeppel who made many useful comments on an
earlier draft. Thanks also to Mihir Bellare, David McGrew, and Silvio Micali for
their helpful comments. This paper was written while Rogaway was on leave of
absence from UC Davis, visiting the Department of Computer Science, Faculty of
Science, Chiang Mai University. This work was supported under NSF CAREER
award CCR-9624560, and by a generous gift from Cisco Systems.

References

1. Anderson, R., and Biham, E. Two practical and provably secure block ciphers:
BEAR and LION. In Fast Software Encryption (1996), vol. 1039 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 114–120.

2. Bellare, M., Kilian, J., and Rogaway, P. The security of the cipher
block chaining message authentication code. Journal of Computer and Sys-
tem Sciences 61, 3 (2000), 362–399. Earlier version in CRYPTO ’94. See
www.cs.ucdavis.edu/˜rogaway.

3. Bellare, M., and Rogaway, P. On the construction of variable-input-length ci-
phers. In Fast Software Encryption (1999), vol. 1636 of Lecture Notes in Computer
Science, Springer-Verlag. See www.cs.ucdavis.edu/˜rogaway.

4. Bellovin, S., and Merritt, M. Encrypted key exchange: password-based pro-
tocols secure against dictionary attacks. In 1992 IEEE Computer Society Sympo-
sium on Research in Security and Privacy (1992), IEEE Computer Society Press,
pp. 72–84.

5. Certicom Research. Standards for efficient cryptography, SEC1: Elliptic curve
cryptography, version 1, Sept. 2000. Available on-line at www.secg.org.

6. Goldreich, O., Goldwasser, S., and Micali, S. How to construct random
functions. Journal of the ACM 33, 4 (1986), 210–217.

7. Goldwasser, S., Micali, S., and Rivest, R. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal of Computing 17, 2 (Apr.
1988), 281–308.

8. Luby, M. Pseudorandomness and cryptographic applications. Princeton University
Press, Princeton, New Jersey, 1996.

9. Luby, M., and Rackoff, C. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal of Computing 17, 2 (Apr. 1988).

10. Lucks, S. Faster Luby-Rackoff ciphers. In Fast Software Encryption (1996),
vol. 1039 of Lecture Notes in Computer Science, Springer-Verlag.

11. Naor, M., and Reingold, O. On the construction of pseudorandom permuta-
tions: Luby-Rackoff revisited. Journal of Cryptology 12, 1 (1999), 29–66.

12. Patel, S., Ramzan, Z., and Sundaram, G. Towards making Luby-Rackoff ci-
phers optimal and practical. In Fast Software Encryption (1999), vol. 1636 of
Lecture Notes in Computer Science, Springer-Verlag.

13. Schroeppel, R., and Orman, H. Introduction to the hasty pudding ci-
pher. In Proceedings from the First Advanced Encryption Standard Candidate
Conference, National Institute of Standards and Technology, Aug. 1998. See
http://www.cs.arizona.edu/~rcs/hpc/.

14. Smith, J. L. The design of Lucifer: A cryptographic device for data communi-
cations. Tech. Rep. IBM Research Report RC 3326, IBM T.J. Watson Research
Center, Yorktown Heights, N.Y., 10598, U.S.A., Apr. 1971.

A Proof of Theorem 2

Proof. To simplify the exposition, we will initially assume that k = ab. In other
words, that no iterating is required to compute Fe[3, a, b]K(·). Once we establish
the result in this setting, we can make some minor changes to get the general
result.

We begin by defining a couple of games. Let us call “Game Fe” the game
in which we choose three random functions F1, F2, F3 ← Rand(2n, 2n) and then
answer D’s queries according to Fe[3, a, b](·) using F1, F2, and F3 as our under-
lying functions. Let us call “Game Rn” the game in which we choose a random
function ρ ∈ Rand(k, k) and then answer D’s queries according to ρ(·). Let’s
denote by PFe the probability that D outputs 1 in Game Fe, and denote by PRn

the probability that D outputs 1 in Game Rn. We are trying to show that

PFe − PRn ≤ (q + ab − k)2

2n+1
(�2n/a
 + �2n/b
) .

Without loss of generality, assume D never repeats a query. We begin by
describing a new game called “Game B′”. Game B′ will look the same to adver-
sary D as Game Fe, but Game B′ will be played completely differently. Instead of
choosing three random functions F1, F2, F3, we’ll choose only some random num-
bers x1, . . . , xq, y1, . . . , yq, and z1, . . . , zq. Each of these numbers is in [0, 2n −1].
The only random choices we will make in playing game B′ is in the choice of
the xi, yi, and zi. We describe Game B′ in Figure 4. It is played as follows: first
choose random numbers x1, . . . , xq, y1, . . . , yq, and z1, . . . , zq. Now answer the
i-th query with aβi + γi, where βi and γi are described in the figure.

ε
ji

Let u = min{j {1,...,i} : R = R }
i

α i

α i β i

β i

L

R

R

x

z

ui

yvi

wi

+ (mod a)

+ (mod a)

+ (mod b)

ii j
ββεLet w = min{j {1,...,i} : = }

ε
ii α α j

Let v = min{j {1,...,i} : = }

 i i

i

γ
i

Fig. 4. Game B′. This game is identical, as far as the adversary can tell, to Game Fe.
Begin by choosing x1, . . . , xq, y1, . . . , yq, and z1, . . . , zq at random. Then answer the
i-th query, Li, Ri, by βi, γi, computed as in the figure.

It should be obvious that Game B′ is the same, as far as the adversary can
see, to Game Fe. Thus PFe = Pr[DB′

= 1].

We now modify Game B′ to a Game B which is identical, from the adversary’s
point of view, to Game B′ (and therefore to Game Fe). This modification is
unusual: we will subtract Rvi

from the second sum, and we will subtract αwi

from the final sum. The new game is shown in Figure 5.

The reason that these new addends do not change the adversary’s view of
the game stems from the fact that the ((yvi

−Rvi
) mod b, (zwi

−αwi
) mod a) in

Game B retain the same distribution as (yvi
, zwi

) had in game B′.

We now have that PFe = Pr[DB = 1]. The probability is taken over the
random q-vectors x, y, and z with coordinates in [0, 2n − 1].

We now consider one final game, Game C. This game is identical to B except
that we output ayi + zi (instead of aβi + γi). Obviously PRn = Pr[DC = 1].
Again the probability is over the random vectors x, y, z.

ε
ji

Let u = min{j {1,...,i} : R = R }
i

α i

α i β i

β i

v i

wi

v i

wi

L

R

R

x ui

y

+ (mod a)

+ (mod a)

+ (mod b)

ii j
ββεLet w = min{j {1,...,i} : = }

ε
ii α α j

Let v = min{j {1,...,i} : = }

 i i

i

γ
i

z

α-

 R-

Fig. 5. Game B. We modify B′ by adding the quantities indicated by the emboldened
arrows. This game is once again identical, from the adversary’s perspective, to Game Fe.

We will now make some observations and calculations about Games B and C
which will allow us to conclude with the theorem. The idea is that Games B and
C usually coincide. We will manage to bound adversarial advantage by looking
at the chance that games B and C do not coincide.

First we define some events. These events are defined in Game C. (It is
important that we do this in Game C, not Game B.) Define the event REPEATα

as true if αi = αj for some i < j–that is, some αi arises twice. Define the event
REPEATβ as true if βi = βj for some i < j–that is, some βi arises twice. Define
the event REPEAT as the disjunct of αi and βi–that is, either an αi repeats or
a βi repeats. Again, these events are defined in Game C.

Claim. Pr[REPEATα] ≤ q2�2n/a

2n+1

.

Look at query i. If Ri itself is a repetition of an earlier Rj , then we know for sure
that αi �= αj , since all queries are assumed to be distinct. It is possible, however,
that αi could coincide with some αj where Rj was different from Ri. But we

have provided the adversary no information about internal xi and αi values. If
the cardinality of [0, 2n − 1] were evenly divisible by a then we would know the
chance for any particular αj to coincide with αi would be 1/a. This is because
we are taking the sum of Li with a random member of [0, 2n−1] and then taking
this (mod a). But of course 2n may not be divisible by a and this modulus will
create an “tail effect” slightly biasing the probability. We can easily measure
this, however, as follows: the amount of probability mass on some points will be

2n/a�/2n and on the others it will be �2n/a
/2n. We will simply take the latter
as a bound. If Ri is a new, unrepeated value, then xui

will be a random number
in [0, 2n−1] and so the chance that αi will collide with any particular prior αj is
again bounded by �2n/a
/2n. Thus the chance that αi will collide with an earlier
query is at most (i − 1)�2n/a
/2n, and the chance that there will eventually be
a collision in αi-values is at most

∑q
i=1(i − 1)�2n/a
/2n ≤ q2

2 �2n/a
/2n. ♦

Claim. Pr[REPEATβ |REPEATα] ≤ q2�2n/b

2n+1

.

By assumption, the vi values are all distinct, so y is being evaluated on distinct
points. The chance that two βi values coincide is determined similar to the case
in the previous claim where the Ri values were distinct. So analogously we have∑q

i=1(i − 1)�2n/b
/2n ≤ q2

2 �2n/b
/2n. ♦

Putting this together we have that

Claim. Pr[REPEAT] ≤ q2

2n+1
(�2n/a
 + �2n/b
).

The reason is that

Pr[REPEAT] = Pr[REPEATα] + Pr[REPEATβ ∧ REPEATα]

= Pr[REPEATα] + Pr[REPEATβ | REPEATα] · Pr[REPEATα]

≤ Pr[REPEATα] + Pr[REPEATβ | REPEATα],

and we have just bounded each of the above addends. ♦

Now for the key observation:

Claim. Pr[DB = 1 | REPEAT] = Pr[DC = 1 | REPEAT].

Both probabilities are over random choices of x, y, z. On the right-hand we output
yi, zi in response to the ith query. On the left-hand side, assuming that REPEAT
does not hold in Game C, once again we output yi, zi. This would be clear if we
had said “assuming that REPEAT does not hold in Game B,” and we defined this
even in Game B in the obvious manner. But notice that as long as REPEAT does
not hold in Game C, Game C and Game B behave identically, always returning
yi, zi in response to query i. This is easily established by induction. ♦

We claim that, because of the last claim,

PFe − PRn = Pr[DB = 1] − Pr[DC] = 1

≤ Pr[REPEAT]

Let A,B,C be arbitrary events and assume Pr[A | C] = Pr[B | C]. Now

Pr[A] − Pr[B] = Pr[A | C] Pr[C] + Pr[A | C] Pr[C]

−Pr[B | C] Pr[C] − Pr[B | C] Pr[C]

and so Pr[A | C] = Pr[B | C] tells us that first and third addends cancel. Now
upperbound the second addend by dropping the Pr[A|C] (that is, upperbound
this by 1) and drop the final addend (which is negative) entirely, thereby getting
an upperbound of Pr[C], as desired.

We now address the case where we iterate the cipher. In other words, what hap-
pens when ab − k > 0? In this case we may invoke fe[3, a, b]K(·) multiple times
per encipherment, and we must account for this in the bound. The crucial point
in the proof affected by iterating is when we are calculating REPEATα. In the
worst case, the first encipherment could cause us to compute fe[3, a, b](m) for all
m ∈ [k, ab−1]. In this case up to ab−k values of αi may already have been com-
puted. We therefore include these points in the computation of Pr[REPEATα].
The new bound is therefore

∑q+(ab−k)
i=1 (i − 1)�2n/a
/2n ≤ (q+ab−k)2

2 �2n/a
/2n

for Pr[REPEATα] and similarly for Pr[REPEATβ | REPEATα]. So the overall
bound is now

Pr[REPEAT] ≤ (q + ab − k)2

2n+1
(�2n/a
 + �2n/b
) .

And setting ∆ = ab − k we obtain the bound of Theorem 2.

