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Abstract

Document analysis systems often begin with bina-
rization as a first processing stage. Although numer-
ous techniques for binarization have been proposed,
the results produced can vary in quality and often
prove sensitive to the settings of one or more control
parameters. This paper examines a promising ap-
proach to binarization based upon simple principles,
and shows that its success depends most significantly
upon the values of two key parameters. It further de-
scribes an automatic technique for setting these pa-
rameters in a manner that tunes them to the individ-
ual image, yielding a final binarization algorithm that
can cut total error by one-third with respect to the
baseline version. The results of this method advance
the state of the art on recent benchmarks.

1 Introduction

Physical documents in the real world exhibit a mul-
titude of colors and shadings, and the appearance
of even a single document may vary widely depend-
ing upon factors such as lighting, viewing angle, etc.
Digital reproductions of physical documents usually
make use of a 24-bit color representation, or perhaps
8-bit grayscale. Such formats omit some of the infor-
mation present in the original, but retain more than
enough for most applications. Certain document pro-
cessing schemes go much further: they retain only
a single bit per document pixel. Binary document
representations are very useful despite their low fi-
delity because the information lost in binarization
is more or less unrelated to the symbolic content of
the document. Most documents are produced using

monochromatic ink on paper, and their meaning is
embodied solely in the distribution of the ink, a pat-
tern that the binary document explicitly represents.
Of course, inferring the correct binarization of a
document from its color or grayscale representation
can prove challenging. Physical degradation of the
document, adverse lighting or imaging conditions,
and limitations on resolution can all conspire to ob-
scure the original pattern.! To meet this challenge,
researchers have proposed many algorithms to bina-
rize document images. Indeed, intense activity in
this field has made the Document Image Binariza-
tion Contest (DIBCO) series one of the most popular
competitions within the document analysis research
community, attracting seventeen entries in its most
recent iteration [19]. Nevertheless, the results from
these contests reveal that there remains room for im-
provement in the quality of automatic binarization.
This paper makes two related contributions to the
study of automatic document binarization. First, it
describes a method that can achieve excellent results
on a wide variety of challenging document images.
Second, as a means to these results it investigates a
method to automatically determine the best parame-
ter values suited to each particular image. Automatic
parameter estimation has received little research at-
tention to date but offers two advantages when done
well: it makes the method easier to employ since the

1Some ambiguity remains over how to define the ground
truth binarization. For instance, should an unintended ink spill
made by a scribe be included? For the record, stipulate that
the ground truth should identify the set of all pixels at least
50% covered with ink during the production of the document.
In practice, the ground truth used on most benchmark datasets
probably does not correspond perfectly with this ideal, but
represents the imperfect judgment of a human expert [4].



user doesn’t need to worry about finding the best
parameter settings, and it also improves the average
result because each image can use its own ideal value
instead of a single compromise setting that works ad-
equately but suboptimally for all images.

1.1 Prior Work

Before considering new approaches, it is worth sur-
veying the history and development of binarization
algorithms. Because most documents are printed in
dark ink on light paper, many classic methods rely on
thresholding the image intensity. Under ideal circum-
stances, as noted by Otsu [17] a simple global thresh-
old suffices to distinguish markings from the back-
ground. In more difficult cases the overall intensity
may vary over the document, so that a single global
threshold may simultaneously prove too high in some
areas and too low in others. Thus both Niblack [16]
and Sauvola and Pietikainen [21] have proposed lo-
cally adaptive techniques that adjust the threshold
used according to the mean and variance in some
local region around each pixel. Although generally
more accurate than Otsu for document images with
varying intensities, locally adaptive thresholding can
sometimes fail catastrophically in areas of low vari-
ance, motivating hierarchical approaches such as the
Decompose algorithm [7]. Adaptive thresholding also
presents the user with additional parameters to set,
relating to the size of the local region and to the rel-
ative importance of the local mean vs. its deviation
as the local threshold is determined.

The winners of recent DIBCO events go beyond
locally adaptive thresholding. They achieve their re-
sults partially by using thresholds, but most also per-
form modeling of the ink and background classes to
enable more accurate individual pixel classification.
Lu et al. [14] model the document background via
an iterative polynomial smoothing, and then choose
local thresholds based on detected text stroke edges.
This method won DIBCO 2009, and a revised ver-
sion tied as a winner of H-DIBCO 2010 (handwritten
documents only). The second winner in 2010 was a
method described by Bar-Yosef et al. [3] that grows
foreground regions iteratively based upon local mod-
eling of the foreground and background within a 7x7

pixel window. Lelore and Bouchara [13] won DIBCO
2011 with a technique that first uses coarse threshold-
ing to partition pixels into three groups: ink, back-
ground, and unknown. Models describe the ink and
background clusters, and guide decisions on the un-
known pixels. The method also employs a higher
resolution grid generated from the original image via
linear interpolation.

Several other ideas proposed in recent years pro-
vide motivation for the base algorithm employed in
this paper. A number of projects have explored the
use of Markov random fields (MRF) for binarization
[12, 18, 15, 11]. Inspired by the human visual sys-
tem, some work has employed center-surround filters
to identify areas that are darker than their local envi-
ronment, and thus likely to be ink [23]. These play a
role similar to that of the Laplacian filter used herein.
Finally, various approaches have used edge detection
to improve binarization results [10, 20]. Although
these ideas have been explored separately, the spe-
cific combination used in this work appears particu-
larly effective.

Automatic estimation of appropriate parameter
settings for document binarization has received lim-
ited attention to date. Gatos et. al. describe a
parameter-free method that relies on detailed mod-
eling of the document background [9]. Dawoud de-
scribes a method based upon cross section sequence
that combines results at multiple threshold levels into
a single binarization [8]. Badekas and Papamarkos
[2] describe a method inspired by work on edge de-
tection. Their technique first produces binarizations
over a range of parameter settings, and estimates a
ground truth via chi-square analysis on the cumula-
tive votes of the multiple binarizations at each pixel.
It then iteratively narrows the parameter range un-
til unable to do so further, giving the final estimated
best setting. Although the method described herein
also begins by computing binarizations over a range
of parameter values, it differs by not attempting to
estimate a ground truth, and requires no further it-
eration to choose the ideal parameter value.



2 Approach

The base approach to binarization used in this pa-
per was introduced recently [11] and rests on three
mutually supporting strategies. First, it defines the
target binarization as a labeling on pixels that mini-
mizes a global energy function inspired by a Markov
random field model. Second, in formulating the data-
fidelity term of this energy it relies on the Laplacian
of the image intensity to distinguish ink from back-
ground. This grants a crucial invariance to differences
in contrast and overall intensity. Third, it incorpo-
rates edge discontinuities into the smoothness term of
the global energy function, biasing ink boundaries to
align with edges and allowing a stronger smoothness
incentive over the rest of the image. The paragraphs
below explain each of these points in greater detail.

The global energy function operates on binariza-
tions B, which label each pixel indexed by (7,j) as
either ink or background, B;; € {0,1}. The energy
takes on a typical additive form, with terms rep-
resenting the fidelity of a particular labeling when
compared to the intensity data, and other terms rep-
resenting the smoothness or regularity of the solu-
tion. In particular, the energy includes a cost L?j
or L}j capturing how well the label B;; chosen for
each pixel matches its appearance, and irregularity
costs Cf; and C}; for each pixel whose label differs
respectively from those of its horizontal or vertical
neighbor.

&r(B) = ii[L?j(l—Bz‘j)+L3jBij]

+ CZ(Bz‘j # Bi+1,j)

Ci;(Bij # Bij+1) (1)

i=0 j=0

Assume that the Boolean expressions above evalu-
ate to either 0 or 1 in the usual manner according
to their truth value. With this energy the optimal
binarization will tend to conform to the intensity
contours while smoothing over small irregularities re-
sulting from noise sources. The degree of smoothing

relative to data fidelity will depend on the relative
magnitudes of Li-’j to CZ'; and C};.

The label costs L?j and L}j should be invariant to
the local image illumination, and thus are taken from
the Laplacian of the image intensity:

LY, = VI (2)

Li; = -V’I; (3)

Intuitively this will tend to separate ink from back-
ground because the Laplacian measures the diver-
gence of the gradient. It will thus be positive at in-
tensity valleys (ink) and negative at intensity peaks
or plateaus (background). The data terms of the en-
ergy function become a summation of the label-signed
Laplacian over all pixels in the image. For a particu-
lar component of ink or background, Green’s theorem
tells us that the summed Laplacian over all its pix-
els is mathematically equivalent to the gradient flux
across its boundary. In other words, the energy con-
tribution of each component is determined solely by
what happens at its boundary. This makes intuitive
sense but can cause trouble for components that in-
tersect the image edges: such regions can occasionally
be mislabeled because their entire natural boundary
is not visible, and thus their true energy contribution
can only be estimated. In practice, this causes trou-
ble occasionally for noisy background areas that are
largely isolated from the rest of the document back-
ground by ink markings. Several potential solutions
exist. For example, one could simply fix L}j to a
large negative value for all pixels (4,7) on the image
border, under the assumption that all ink is framed
by background regions. Rather than committing to
such a strong assumption, this work adopts a more
conservative strategy, looking for bright outlier pix-
els and applying a fixed constant L}j to them. This
still ensures that large background regions will receive
the proper label, while not preventing identification
of ink pixels on the image boundary. To be precise,
modify L;; for any pixels more than two standard
deviations o7; brighter than the local mean p;, as
computed over nearby pixels weighted by a Gaussian
of radius r. This may be viewed as an extremely con-
servative application of locally adaptive thresholding,
where only pixels most certain to be background are



labeled as such. In the equation below, ¢ will take
on a large negative value.

—V23I,,
[1 7,
ij —{ b !

The neighbor mismatch penalties Cz'; and Cj; offer
the opportunity to employ the third strategy men-
tioned above, incorporating the Canny edge map.
(Recall that Canny [6] first smooths the image with a
Gaussian filter of small radius o, then finds edges at
local directed maxima of the image gradient, choosing
to retain only those edges selected using a hysteresis
procedure with two thresholds ¢y; and ¢;,.) The algo-
rithm sets the mismatch penalties to a uniform value
¢ everywhere except between pixels where a Canny
edge has identified a likely discontinuity. To be more
specific, Canny identifies pixels as edges, while Equa-
tion 1 requires locating discontinuities in the connec-
tions between pairs of pixels. To address this discrep-
ancy, the formulation below zeros out the disconti-
nuity penalty between Canny edge pixels and their
brighter neighbors, effectively choosing to include the
Canny edge pixels within the inked area. The oppo-
site choice would also be self-consistent, but would
inhibit detection of single pixel width strokes.

Lij < piy + 207,
Iij > ,Uz:] +2O',T;j

(4)

. 0 %f Eij AN (Lij < Lita,5)
Cij = 0 if Ejpa 5 A (Lij > L)
¢ otherwise

(5)

0 Ei]’ A Iij < Iz‘,j+1
0 Ei7j+1 A\ Iij > Ii7j+1 (6)
¢ otherwise

v

The choice of constant discontinuity penalties ev-
erywhere except at edges deserves a note. One
might imagine using a penalty that varies continu-
ously according to the similarity in intensity between
the neighbors. Empirically this approach seems less
successful, perhaps because it actually gives little
guidance about the best precise location of the ink-
background transition: the intensity differences tend
to be fairly large everywhere within a few pixels of
the actual boundary, and thus it becomes too easy to
choose the wrong location.

2.1 Parameters

The algorithm described above includes six free pa-
rameters, of which only two strongly influence the bi-
narization outcome and require varying settings for
different images. The four less important parame-
ters can be set to a constant with negligible conse-
quences for all images tested, either because they do
not strongly influence the result or because the best
value appears not to fluctuate much for different im-
ages. Thus finding automatic values for the two im-
portant parameters suffices to create a method that
can be applied as a “black box” with little or no pa-
rameter testing required.

Two of the less important parameters appear in
Equation 4: r and ¢. Of these, r must be large
enough to encompass at least a few background pix-
els, and thus should be set to some value larger than
the expected stroke width. ¢ can be any sufficiently
negative value. No attempt is made to optimize these
parameters, and the experiments all use r = 20 and
¢ = —500, for images with grayscale intensity in
the range from 0 to 255. The remaining less impor-
tant parameters are two of the three that control the
Canny edge detection algorithm, namely the lower of
the two edge detection thresholds t;, and the radius
of smoothing applied prior to edge detection . Bad
values for these parameters can certainly hurt bina-
rization quality, but fortunately the experiments will
show that there exists a uniform setting that works
on all test images with near-optimal results.

The two important parameters that remain inter-
act with each other to determine the final binariza-
tion result. Most crucial is ¢, whose magnitude de-
termines the relative balance between data fidelity
and regularization. The high Canny edge detection
threshold tj; matters most when c¢ is large because
the detection or nondetection of an edge can deter-
mine whether an entire ink component appears or
disappears in the minimal energy solution. The high
Canny threshold plays a particularly important role
in images that exhibit ink bleeding through from the
opposite side of the paper: since the bled ink tends to
have weaker edges, fortuitous thresholding can elim-
inate most of the false ink components.

Early experiments with this binarization scheme,



and indeed for most approaches to binarization, have
relied on choosing parameter values that work rea-
sonably well across a wide range of images. This
can be achieved by searching for the best values on a
training set of images similar to the ones that will be
used for testing, and yields good results [11]. How-
ever, even globally optimal parameter values embody
some compromise on individual images, and tuning
the settings to the image can offer significant gains.
The next section explains how to do this.

2.2 Automatic Parameter Tuning

To understand how the crucial ¢ parameter can be set
automatically, it is worthwhile to examine the behav-
ior of the base binarization algorithm under a range
of different settings. Figure 1 shows the binarization
results on a small image patch for a logarithmically
increasing set of values. When c is very low, the bi-
narization looks like a simple sign operator on the
Laplacian, with many small noisy components. As
c increases the noise components become more con-
solidated and many disappear. For a range of mid-
dle values of ¢, the binarization stays fairly stable,
with only small changes as ¢ increases. At the high-
est values, the result becomes unstable again as large
ink components disappear, and occasionally join or
have voids filled in. As ¢ goes to infinity, the bina-
rization will tend toward the majority label in each
edge-isolated component.

The region of stable results at middle levels of ¢
is significant, and turns out to show up consistently
on ink-and-paper documents with reasons subject to
explanation. To visualize the phenomenon, define the
normalized binarization instability £, (c) in terms of
A(B¢, B¥¢) the fraction of pixels that change labels
between two values of ¢ differing by a factor v.

=> > (B # By (7)

=0 j=0
_ A(Bc’ Buc)
Svle) = mn (In(ve) — In(c)) ®)

In the equation above, Bj; is the binarization label at
pixel (i, 7) using mlbmatch penalty ¢, and the Boolean

operator # converts to 0 or 1 in the customary fash-
ion. As Figure 2 shows, the general shape of the
instability curve is an intrinsic property of the im-
age that does not depend on the exact value of v
chosen; thus in most cases & can drop its subscript.
Histograms provide a useful analogy: although the
details vary slightly, a histogram made using a suffi-
cient number of samples from the same distribution
always takes on the general appearance of that dis-
tribution for any reasonable choice of bin size. In-
deed, the instability plots may be seen as histograms
of pixel label transition events in respect to ¢, with
logarithmically increasing bin sizes.

Figure 3 shows as solid lines the instability plots for
several document images. Although the stable zone
differs somewhat in appearance and location in each
case, its nearly universal presence is striking. Yet in
hindsight, the observation of such a stable zone at
middling ¢ values should not offer such a surprise.
The twin peaks on either side arise from understand-
able mechanisms that apply for all document images,
and thus the absence of a stable zone for any particu-
lar image would arise from exceptional circumstances.

The ¢ parameter controls the incentive for neigh-
boring patches to share the same label despite a data
fidelity term indicating otherwise. The left peak in
the instability curve appears at low levels of ¢, as it
becomes large enough to overcome small noise fluctu-
ations and label most large homogeneous foreground
and background regions correctly. On the other hand,
the right peak appears when ¢ becomes large enough
to force a uniform label even across regions of differ-
ent underlying ground truth. Unless the noise am-
plitude exceeds the contrast between foreground and
background, a zone of stability will normally separate
the two. Furthermore, this stability zone coincides
with binarizations that adhere to the underlying im-
age structure while ignoring noise. Figure 3 shows
as dotted lines the binarization error (based on the
F-measure, as defined in Equation 14 below), which
tends to reach a minimum at or near the lowest point
in the instability curve. Computing the instability
curve does not require access to the ground truth, yet
observing the low point of the stable region reveals
a value of ¢ that typically achieves low ground-truth
binarization error.
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Figure 2: Binarization instability measured with

varying step factor in ¢ and normalized by the log
of the step factor. The shape (and thus the loca-
tion of the minimum) depends very little on the step
factor chosen.

The link between the instability minimum and the
binarization error minimum is at heart merely an em-
pirical observation, but the philosophical consider-
ations just given provide justification for the belief
that it will apply to most document images. The al-
gorithms developed below rest upon two related hy-
potheses, which the experiments in Section 3 largely
bear out: First, the two instability peaks described
above will reliably appear and can be consistently
identified. Second, the point of maximum stability
between the identified peaks will yield near-minimal
binarization error. The truth of these hypotheses will
depend upon the circumstances which produced a
given document image. For example some documents
include multiple types of markings at different con-
trast levels, such as those where ink bleeds through
from the reverse side. These may muddy the situa-
tion by generating additional instability peaks, but
in most cases the extra peaks don’t alter the result
greatly because they tend to be more diffuse and thus
less prominent. Figure 5 below describes a few more
difficult cases, including unusual images where the
optimal ¢ varies widely across the page. Nevertheless
the experiments indicate that such problems remain
mostly limited to unusual situations.

The parameter-setting technique for ¢ summarized
as Algorithm 1 computes curves like those in Figure 3
and chooses ¢ at the minimum point between the two
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Figure 3: Binarization instability and error vs. ¢ for the DIBCO 2009 and H-DIBCO 2010 images. The solid
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from 1.0) of the the F-measure of the binarization. The horizontal axis shows ¢ on a log scale. Images are

given left to right in the order of Table 1.



peaks on either side. Minor parameter choices intro-
duced here are the logarithmic separation between c
values, the range of values to scan, and the amount of
smoothing applied to the instability curve. Choosing
the logarithmic separation is somewhat equivalent to
choosing a histogram bin size; as Figure 2 demon-
strates, the exact step factor chosen does not matter
so long as it is not so large as to obscure the im-
portant minima and maxima, nor so small that there
will often be no change observed from one value to
the next. The experiments herein use 4 points per
octave, or approximately v = 1.19. The other two
choices may also be made in ways that affect the
outcome minimally if at all. The range of ¢ values
scanned should be large enough to include any likely
optimum, and the smoothing should even out small
fluctuations in the curve without altering the over-
all shape significantly. The experiments in Section 3
use a unit Gaussian for smoothing, and values of ¢
ranging from 20 to 5120.

Algorithm 1 Tune c¢ to image I given ty;, t;,, and
Og
for : = 0 to 28 do
ci < 40-21/4
B; « Binarize(l,ci,thi, tio, o)
end for
for i =0 to 27 do
D; + A(Bi, Bi-i—l)
end for
Go,G1,...,G5 <+ 0.02,0.13,0.35,0.35,0.13,0.02
{Gaussian of radius 1}
D_3.D_5.D_; +0,0,0
Dog, Dag, D3g < 0,0,0
for : = 0 to 28 do
D; 4= 325 Di+j-3G;
end for{D’ is now a smoothed version of D}
q,7r, s+ arg min,, Dy — 2D, + D :q<r<s
C 4 cr

q,7,8

Picking ¢ only partially solves the parameter-
setting problem, since the high Canny threshold re-
mains to be chosen. This upper threshold on edge
detection rewards careful tuning, because properly
chosen it can weed out the more diffuse edges of ink

bleeding through from the back side of the document,
while retaining the sharper edges of ink shapes on
the front side. Fortunately, the same stability crite-
rion that guided the choice for ¢ also serves to pick
a good value within the likely range for t;. Algo-
rithm 2 details the exact technique used in the ex-
periments. Note that ¢ and ¢5; are set sequentially,
rather than at the same time. The algorithm com-
putes the best value of ¢ for each possible t;;, and
then chooses the (c,tp;) pair with greatest stability
with respect to changes in tp;. This simplifies each
step in the process and makes it easier to find a near-
optimum solution.

Algorithm 2 Tune tp; to image I given t;,, and o
for : =0 to 10 do
7; < 0.15 + 0.052
¢i < TuneC(I,7;,t1,,0,) {Algorithm 1}
B; «+ Binarize(l,c;, thi, tio, o)
end for
for i =0to 9 do
D; + A(BZ, Bi+1)
end for
Go,G1,....,G5 <« 0.02,0.13,0.35,0.35,0.13,0.02
{Gaussian of radius 1}
D,3, D,Q, D_q + DQ, .Dl7 Dy
D1o, D11, D12 < Dy, Dg, D7
for i =0 to 10 do
Dj 435 Dirj-3G;
end for{D’ is now a smoothed version of D}
k « arg min}2, D’
thi < Tk
C < Ci

Arguments given previously in this section sug-
gested reasons why a stability criterion might work
well for choosing c. It is less clear why the same ap-
proach works for choosing an edge intensity thresh-
old. Nevertheless a zone of stability with respect to
both ¢ and tp; does seem to distinguish the best bi-
narizations, as illustrated in Figure 4 for several rep-
resentative images. Although the location of the best
parameter setting varies widely between the images,
each case displays a striking qualitative correlation
between the binarization error and the two-way sta-
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Figure 4: Binarization instability (left in pair) and
error (right in pair) visualized with respect to vary-
ing values of ¢ (vertical axis; logarithmic range from
20 to 5120) and tp; (horizontal axis; linear range from
0.15 to 0.65) for four representative images. Despite
the very different patterns on display, the parameter
neighborhoods with lower error coincide in each in-
stance with higher stability (both indicated by lighter
shades). The converse does not always hold: the sec-
ond image shows two areas of stability, with only the
more central one corresponding to low error. The
second, more peripheral stability zone is rejected by
Algorithm 1.

bility, measured using the simple unnormalized for-
mula below.

1 i vc ;
CV,T(C7th,i) = Z[A(Bc’t'”,B ,tm)

+A(B5’th,i’ BC/V,th,i)
_,'_A(Bc,thi’Bc,th,-—-r)

+A(Bc7t;Li ) Bc,tm—i-r)] (9)
Other DIBCO images not shown behave similarly.
Full explanation of this phenomenon lies beyond the
scope of this paper, which merely observes and seeks
to exploit the pattern.

2.3 Computational Efficiency

Completing Algorithm 2 requires 363 trial binariza-
tion computations (33 candidates for ¢ times 11 can-
didates for ¢5,;) and thus runs much more slowly than
a single binarization with static parameter settings.
However, two modifications to the algorithm can sub-
stantially mitigate the speed difference.

The first takes advantage of the fact that the bina-
rization result does not usually change substantially
between successive values of ¢. Data structures built
to minimize Equation 1 for one value of ¢ can be
modified and reused with a similar ¢ value, achieving
noticeable economies. This strategy, introduced by
Boykov and Kolmogorov [5], minimizes Equation 1
by finding the minimum cut on a graph derived from
the image. The method grows search trees from both
the source and the sink of the image graph to help
find augmenting paths, and it turns out that the trees
grown for one value of ¢ can be largely reused at
nearby values to realize significant time savings. Em-
pirical tests of this implementation show that it can
speed computation by a factor of fifteen or more. In
other words, it computes all 33 trial binarizations re-
quired for one iteration of Algorithm 1 in little more
than the time that it would normally take to compute
just two or three.

The second modification relies on a heuristic trick,
and stems from the observation that the presence
or absence of ink bleed-through significantly influ-
ences the optimal value of ¢5;. Images showing bleed-
through typically require a larger t; to avoid identi-
fying the spurious bled ink components as real. By
contrast, in images without bleed-through the algo-
rithm achieves its best results with a lower tj;, be-
cause this allows it to detect fainter edges. Thus it
appears that an explicitly bimodal algorithm allowing
only two possible values {71, T2} for t;; might still
perform well as compared with Algorithm 2, which
tests eleven. The experimental results below confirm
this hypothesis.

Detecting the presence or absence of bleed-through
in a document is a nontrivial task in the general case,
so it might seem impossible to determine which of
even two candidate tj; values to use. Fortunately, an
extension of the stability criterion provides a simple
heuristic that does fairly well empirically. In addition
to the two candidate values, Algorithm 3 computes
the binarization using their mean value 79 = (11 +
79)/2. This midpoint binarization can be compared
to the other two, and the closer is judged the more
stable and thus selected for the final result.

Algorithm 3 computes results for only three t;; val-
ues and thus runs more than three times as fast as



Algorithm 2. The metaparameters 71 and 75 are cho-
sen for best performance on a training set; analysis
of the DIBCO 2009 and H-DIBCO 2010 image sets
indicates that values of 0.25 and 0.50 respectively
achieve the best results across the full set. (Using
only 23 of the 24 images in cross-fold training occa-
sionally yields other values.) Employing a training
set to choose 7 and 75 diminishes the automatic na-
ture of the full algorithm, but represents a tradeoff
made in this particular algorithm for the sake of com-
putation speed.

Algorithm 3 Pick ty; from {7, 72} for image I given
T1, T2, tlm and Ogp
T0 < (Tl +T2)/2
co  TuneC(I,79,t10,05)
c1 < TuneC(I,7,t15,05)
co + TuneC(I, 72, t10,05)
By < Binarize(l,co, 0, t10,05)
By < Binarize(I,c1,71,t10,05)
By < Binarize(I,ca, T, t10,05)
D1 — A(Bo, Bl)
Doy A(Bo, B2)
if D1 < D5 then
thi < T1
else
thi < T2
end if

These two innovations in combination mean that
a result originally requiring 363 trial binarizations to
compute may be reached in the time required for just
eight or nine. This is still slower than using static
parameter values, but investing the extra time may
be worthwhile for more accurate results. Alternately,
in situations where a number of similar documents
must be binarized, the parameter tuning may be run
for a few trial pages to find appropriate values, which
are then set statically for the remainder of the set.

All the algorithms display more or less linear de-
pendance of computation time on the number of pix-
els in the image. Executing Algorithm 2 takes an av-
erage of 892 seconds per megapixel on a 2.4 GHz Xeon
processor running as a single thread (without paral-
lelism). By contrast, Algorithm 3 runs in 18.1 sec-
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onds per megapixel under the same conditions, while
a single execution of the base algorithm under static
parameters takes 2.12 seconds per megapixel.

2.4 Further Algorithmic Variants

For best results, many binarization methods compute
an initial labeling using some base technique and then
apply one or more postprocessing algorithms to im-
prove it. For example, Su et al [22] remove com-
ponents of three pixels or less. More complicated
modeling and classification algorithms can identify
and remove noise components while retaining real ink
[1]. The unknown pixel classification of Lelore and
Bouchara [13] may also be viewed as post-processing
of a sort.

Similar techniques can be applied to the results
from the method described herein. Indeed, both
the three-pixel component filter and a more complex
classification-based approach reminiscent of Agrawal
& Doermann have been tested informally and found
to reduce binarization error for the DIBCO test im-
ages, relative to ground truth. Unfortunately gains
in training can come at the potential cost of a loss
of generality, in practice. This suspicion is borne out
by the DIBCO 2011 contest results. The two algo-
rithms that ranked in first and second place according
to the contest scoring methodology perform very well
on most of the test images, but fail severely on one or
two examples (PR6 and PR7). One might view this
as a form of overfitting the problem: these algorithms
are specialized to do very well on images that match
the expectations of the designers, but cannot handle
the full range of images that might be encountered “in
the wild”. This paper aims to develop binarization
techniques that work automatically and reliably on as
wide a range of images as possible. Thus the exper-
iments eschew post-processing heuristics of the type
described above because they might decrease error on
a given test set at the cost of generality. Such tricks
are nevertheless worth mentioning because they may
prove useful in whenever the images to be binarized
are amenable.



3 Experimental Results

The DIBCO events have provided a platform for side-
by-side comparison of different binarization results to
a ground truth created by a team of human referees.
Three contests have been held to date: two included
both handwritten and printed document images, and
one consisted of just handwritten documents. Images
from the first two contests were used to develop the
algorithms described in this paper, with the third set
held out for post-hoc testing.

A comprehensive survey of the parameter space has
been prepared for this paper, providing the context
necessary to evaluate the effectiveness of the auto-
matic parameter tuning algorithms. It samples the
4-dimensional parameter space on a regular grid, sur-
rounding and including the region found to produce
the best binarizations in prior work [11]. The specific
values tested for each parameter are:

thi € Thi = {0.15,0.20,0.25,0.30, 0.35, 0.40,
0.45,0.50,0.55,0.60,0.65}  (10)
t1o € Tio = {0,0.05,0.10,0.15,0.20}  (11)
os € Sp = {0.3,0.4,0.5,0.6,0.7,0.8,0.9}  (12)
)

ceC={40-2"*|i = 0..28}

Results from the parameter survey can answer sev-
eral interesting questions. They reveal both the best
possible performance with a fixed set of parameters
over all images (static parameters), and the best pos-
sible performance in hindsight using the optimal pa-
rameter settings for each individual image (ideal pa-
rameters). The difference between these two values
is the space where parameter-tuning algorithms op-
erate: they cannot aspire to do better than the ideal,
although they may certainly do worse than the best
static setting. If the difference between the static and
ideal numbers is small, then parameter tuning may
not be worthwhile because any possible gains are lim-
ited.

A number of different statistics can measure and
compare the effectiveness of binarization algorithms.
The DIBCO events compute some half-dozen num-
bers, with four used to determine the winners. The
initial experiments herein focus on the F-measure,

11

defined in Equation 14, because its interpretation is
simple and it serves as a proxy for the other measures
of binarization quality. An F-measure of 100% repre-
sents perfection. In this paper the term error refers
to the difference between the observed F-measure and
a perfect 100% score.

2-R-P
R+ P
where the recall R and precision P are defined in
terms of the number of true positive pixels Nrp, the
number of false positive pixels Ngp, and the number
of false negative pixels Fpy in the binarization B as

compared to ground truth G.

F = (14)

Nrp
R=——""— 15
Nrp + Npn (15)

Nrp
P=——"""79°- 16
Nrp + Npp (16)

Table 1 summarizes binarization results on the
DIBCO 2009 and H-DIBCO 2010 images for various
parameter-tuning algorithms. The static parameters
for the experiments represented in this table are de-
termined in leave-one-out style. In other words, for
the ith image, the computation uses whatever static
parameter setting would have given the best mean re-
sult on the other 23 images. Table 1 shows the range
of parameter values chosen via this technique for the
various algorithms. (Note that even algorithms with
static parameter settings may show a range in Ta-
ble 1 if the static values computed differ for various
leave-one-out training folds.)

The second column of the table gives the F-
measure when all parameters are static; this is the
baseline algorithm [11]. The third column gives the
result achieved with an oracle that knows the ideal
values of ¢ and tp; for each image; this represents the
best possible outcome achievable by tuning the two
parameters, but is not realizable in practice without
prior access to ground truth. The ideal parameter
settings reduce the overall error by more than one-
third compared to static parameters, showing that
tuning methods have significant potential if they can
come close to this ideal. The table does not show
results from an oracle that optimizes all four param-
eters. If available, such an oracle could achieve a



mean F-measure of 95.3% across all 24 images, hardly
more than the two-parameter oracle. This confirms
the conjecture that tuning all four parameters offers
little reward in exchange for the risk.

The remaining columns show results for the various
parameter-tuning strategies described in Section 2.
Column four tunes ¢ using Algorithm 1 and employs
static settings for tp;, t;,, and ox. It does somewhat
better than the all-static settings, but still shows
room for improvement. Column five tunes both ¢ and
tpi using Algorithm 2 and employs static settings for
tio, and 0. This method achieves 83% of the level
of improvement made by the oracle. The final col-
umn show the results of the two-state tuning for ¢;
described in Algorithm 3. This method does nearly
as well as the fully tuned ¢,;, despite its much faster
computation time.

Table 3 shows the results for the DIBCO 2011 im-
ages, used as a hands-off test set. Unlike the previous
table, these are not trained leave-one-out style. To
ensure an unbiased test, the algorithms were fixed
before any results were examined, and static param-
eter values are set using the first two sets of contest
images. The numbers here look more diverse because
some of the new images are more extreme and there-
fore more challenging than the training images. How-
ever, the general picture remains the same: tuning c
gives better results than static parameter settings,
and tuning both ¢ and t¢,; improves the binarization
quality still further for most images. A few excep-
tions lower the overall average, particularly H2011-6.
Close inspection of this case reveals that the stabil-
ity curve for t; on this image contains two basins of
stability, and the minimization criterion chooses the
wrong one by a slight margin. The two-state tuning
does not suffer from this problem, because it selects
tn: from a more constrained set of choices. In hind-
sight this may be an unforeseen practical advantage
of Algorithm 3.

Despite the success of the tuning methods de-
scribed, the best F-measure achieved by tuning still
lies farther from the oracular best for the DIBCO
2011 images than in the experiments with earlier im-
ages. This reflects the diversity of the test set. Some
of the images represent adverse examples for the sta-
bility criterion advocated in this paper; the two worst
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Table 1: F-Measure for DIBCO 2009 and H-DIBCO
2010 Images

Image Static Oracle Alg. 1 Alg. 2 Alg. 3
H2009-T1 96.4 96.6 96.6 96.1 96.6
H2009-T2 933 934 92.5 93.1 93.1
H2009-1 92.7 959 954  95.8 95.8
H2009-2 90.1 96.4 88.8 96.2 95.7
H2009-3 94.7  95.6 92.0 94.8 95.1
H2009-4 92.1 94.7 93.9 94.6 94.5
H2009-5 86.5 92.7 91.9 92.3 92.6
H2010-1 93.7  96.2 95.0 954  96.0
H2010-2 89.0 96.1 954  95.7 954
H2010-3 94.4 94.7 93.3 94.7 94.7
H2010-4 92.9 944 93.5 93.8 93.9
H2010-5 929  96.5 96.1 96.5 96.4
H2010-6 90.9 91.2 90.4  90.9 90.9
H2010-7 95.0 95.2 94.8 95.0 95.1
H2010-8 92.6  93.7 92.2 93.5 93.4
H2010-9 92.6  93.8 92.9 92.1 93.5
H2010-10 88.8  92.7 90.8 92.5 87.2
P2009-T1 885 974 96.7  97.3 97.2
P2009-T2 98.0 98.5 98.1 98.4 985
P2009-1 93.9 943 90.4  94.0 94.2
P2009-2 96.8  96.9 96.8 96.8 96.9
P2009-3 97.6  98.4 98.2 98.2 98.3
P2009-4 93.5  93.8 92.8 92.9 92.8
P2009-5 88.6 915 84.7  91.2 84.3
Hand 92.3 94.7 93.3 94.3 94.1
Print 93.9 958 93.9 95.6 94.6
All 92.7  95.0 93.5 94.7 943

Table 2: Parameter Ranges for Table 1

Static  Oracle Tune ¢  Tune tp; Dual
160 47.6—-1280 56.6-3044 80-1076 67.3-3044

C

thi 04 0.15-0.65 0.2-0.3 0.15-0.6 0.25 or 0.5
tio 0.1 0-0.2 0.1-0.15 0.1 0.1-0.15
ocp 06 03-08 0.5-0.6 0.6 0.5-0.6




Table 3: F-Measure for DIBCO 2011 Images

Image Static Oracle Tune ¢ Tune t;; Dual
H2011-1 77.3 93.9 88.2 90.2 90.0
H2011-2 974 97.5 96.6 97.3 97.4
H2011-3 93.2 95.2 94.9 94.5 93.5
H2011-4 92.5 92.7 92.5 92.0 92.0
H2011-5 92.4 97.1 96.2 97.1 96.2
H2011-6 88.2 94.4 91.1 60.6 92.1
H2011-7 87.6 92.5 92.3 89.6 89.8
H2011-8 95.3 95.7 94.9 95.3 95.4
P2011-1  93.0 95.3 94.3 95.1 94.7
P2011-2 77.6 90.8 73.5 71.5 72.3
P2011-3  95.6 96.6 96.3 96.4 96.4
P2011-4 95.0 95.2 94.5 95.2 95.1
P2011-5 94.8 94.9 93.7 94.2 94.6
P2011-6 66.7 93.1 89.9 86.0 86.3
P2011-7 90.2 93.3 89.7 93.1 93.1
P2011-8 90.3 92.2 88.5 91.3 91.5
Hand 90.5 94.9 93.3 89.6 93.3
Print 87.9 93.9 90.0 90.3 90.5
All 89.2 94.4 91.7 90.0 91.9

appear in Figure 5.

3.1 Comparison with Other Algo-
rithms

Results available for the DIBCO 2011 image set make
possible a quantitative comparison between the the
algorithms developed herein and other recent work.
The DIBCO 2011 contest used three additional pri-
mary criteria in addition to the F-measure. Of
these, the peak signal-to-noise ratio (PSNR) corre-
lates fairly strongly with the F-measure. If B is the
binarization and G the ground truth binary image,

PSNR = —10log (A(B,G)) (17)

Misclassification penalty metric (MPM) penalizes er-
rors according to their distance from the ink bound-
ary. Define D;; as the distance of pixel (4,j) from
this boundary in the ground truth.

Divo 2o Dij(Bij # Gij)
2300 25— Dij(1 = Gyj)

MPM = (18)
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Figure 5: The DIBCO 2011 test images contain sev-
eral challenging examples. Both these images have
unusual stability curves. At left, the high-amplitude
noise on the right side generates instability at values
of ¢ that are optimal for the rest of the page. At right,
the stability criterion chooses a ¢ value that preserves
the bleed-through ink.



Distance reciprocal distortion metric (DRD) at-
tempts to account for human perceptual salience by
weighting errors according to pixel values in a local
5x 5 neighborhood, using weight matrix W computed
as the normalized inverse distance.

1 m n
DRD = o Z Zrij(Bij # Gij) (19)
i=0 j=0

2

2
L= Z Z Whi(Bij # Gith,j+k)

h=—2k=-2

(20)

Ng divides GG into 8 x 8 blocks and counts the num-
ber that are non-uniform. Note that better bina-
rizations will have higher F-measure and PSNR, but
lower MPM and DRD. For further details on these
metrics, please read the DIBCO 2011 contest report
[19].

Algorithm 3 is similar to entry #11 that was ac-
tually submitted to the DIBCO 2011 contest. That
entry was based on a less comprehensive survey of
the parameter space and thus differs in the setting
of the static parameter values and in the range of ¢
values tested. Entry #11 nevertheless had the high-
est mean F-measure across all the images, the lowest
mean peak signal-to-noise ratio, the best mean mis-
classification penalty metric, and the fifth-best dis-
tance reciprocal distortion metric. Strangely, despite
these successes, entry #11 ranked only third in the of-
ficial DIBCO 2011 contest results, and the two other
entries that placed first and second had mean scores
over the full image set that were uniformly worse
on all four measures. The scoring methodology of
the contest chose the winner based upon summed
ranks over all images on various quality measures,
rather than directly on the mean metric scores. The
two higher-rated methods ranked well on most im-
ages, and while they conversely showed extremely
poor performance on a few of the printed documents
this ultimately had limited effect on the final score
[19]. With rank-based scoring the comparison of one
method relative to another is affected by the per-
formance (and presence or absence) of all the other
methods in the contest.

Table 4 compares the results of the algorithms de-
veloped in this paper with other recent methods on
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the DIBCO 2011 image set. The first section shows
selected entries from the contest (those that beat En-
try #11 on at least one measure), the second section
shows other recent algorithms?, and the third section
shows the algorithms described in this paper, trained
using the DIBCO 2009 and H-DIBCO 2010 images
for a fair comparison. The table gives the mean re-
sult for each of the four metrics averaged across all
the test images, and also the rank score total used to
determine the DIBCO 2011 winner. For algorithms
not entered in the contest, the rank score is simulated
by treating the algorithm in question as an additional
entrant, indicated with an asterisk in the table. Of
course, adding a contestant changes the rank scores
of the actual entrants, making them worse whenever
the new entry does better on an image. The modified
scores of existing entries are not shown in the table,
but the information is accounted for in the parenthet-
ical overall rank shown in the rightmost column. As
the table reveals, either of Algorithms 2 or 3 would
have won the contest on rank scoring, and also easily
place first in mean score on each of the four quality
measures as compared with all previous algorithms.

4 Conclusion

Tuning parameters offers both risks and potential re-
wards. Choosing the parameter values that perform
best for a given image can lower binarization error by
substantial amounts as compared with a static set-
ting suitable for generic images. On the other hand,
poorly chosen parameter values can sabotage the re-
sult: the potential losses in binarization quality gen-
erally dwarf the potential gains. Thus one must be
careful to tune only where there is reasonable confi-
dence of success.

This paper has introduced a stability heuristic cri-
terion that helps to choose suitable parameter val-
ues for individual images. The approach hypothe-
sizes that good parameter values are marked by low
variability in the binarization solution with respect
to changes in the parameter values. This criterion
leads to an algorithm that successfully picks good c

2The numbers for Lelore & Bouchara exclude image PR6
because its results were not available.



Table 4: Algorithms compared by scores on the
DIBCO 2011 image set.

MPM DRD
Method F PSNR %10-2 x10-3 Ranks
Entry 11 887 178 536 867 429 (3)
Entry 10 80.9 16.1 104.48 64.42 309 (1)
Entry 8 85.2 17.2 15.66 9.07 346 (2)
Entry 3 85.1 164 5.88 8.09 649 (12)
Entry 4 85.2 16.6 6.28 4.43 489 (5)
Entry 6 83.6 16.7 8.08 4.57 470 (4)
Entry 14 78.0 149 7.62 7.35 835 (17)
Gatos [9] 84.3 163 6.39 6.08 663 (11)*
Lelore [12] 56.2 125 2.97 13.30 811 (17)*
Lu [14] 79.7 155 39.67 21.47 579 (8)*
Su [22] 87.8 17.7 538 4.65 435 (3)*
Static 89.2 18.2 9.05 5.76 438 (3)*
Alg. 1 91.7 19.2 443 340 322 (2)*
Alg. 2 90.0 19.1 3.80 378 323 (1)*
Alg. 3 91.7 19.3 387 348 317 (1)*

values on all the images tested. A similar heuristic
applied to the choice of t;; also chooses good param-
eter values in most cases, although serious failures
were observed with this technique for a handful of
cases. The most successful method tested uses the
stability criterion to choose ¢, and selects tp,; from a
constrained set of two possible values. This approach
delivers a substantial fraction of the maximum gain
possible from tuning both parameters, and can be
computed at about one eighth the speed of a simple
binarization with static parameters. Reference code
for the technique will be available on the author’s web
site.

The parameter survey results make it clear that
for many images the tuning algorithms given herein
come close to maximizing the potential of the base
binarization algorithm. Further improvements in re-
sult quality will likely have to come through devel-
opment of new base algorithms. Some of these new
algorithms may be application-specific, whereas this
work has striven for broad applicability. Whether
the stability criterion that has proven so useful here
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will apply to other approaches remains to be seen,
and is a topic for future work. In any case, tun-
ing parameters with the algorithms described herein
substantially advances the current state of the art in
document binarization, as evidenced by comparative
results on the DIBCO 2011 test images.
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