
JPaxos: State machine replication based on the Paxos protocol

Jan Kończak2, Nuno Santos1, Tomasz Żurkowski2,
Paweł T. Wojciechowski2, and André Schiper1

1EPFL, Switzerland∗

2Poznań University of Technology, Poland†

July 31, 2011

Abstract

State machine replication is a technique for making services fault-tolerant by replicating them
over a group of machines. Although the theory of state machine replication has been studied ex-
tensively, the engineering challenges of converting a theoretical description into a fully functional
system is less understood. This creates difficulties to implementors, because in designing such a
system they face many engineering challenges which are crucial to ensure good performance and
stability of a replicated system. In this report, we address this problem by describing the design and
implementation of JPaxos, a fully-functional implementation of state machine replication based on
the MultiPaxos protocol. Our description includes the basic modules of a state machine replication
implementation, like snapshotting of service state, state-transfer and keeping up-to-date all replicas,
but focus mainly on three aspects: recovery mechanisms, batching and pipelining optimizations, and
a scalable threading architecture. We present several recovery algorithms that vary in the usage of
stable storage and on the system assumptions, including some that use stable storage only once per
recovery. Batching and pipelining are well-known optimizations commonly used in state machine
replication. With JPaxos we have studied their interaction in detail, and provide guidelines to tune
these mechanisms for a variety of systems. Finally, the threading architecture of JPaxos was designed
to scale with the number of cores, while at the same time minimizing complexity to reduce the risk
of concurrency bugs.

1 Introduction

As the reliance on Internet services in everyday life increases, so does the need of ensuring their reliability
and availability in the presence of faults. Software replication is a widely used techniques to ensure fault
tolerance. It works by replicating the service and its data among several nodes, so that the system is
able to continue operating correctly even if some of the nodes fail.

Among the software replication techniques, state machine replication is the one that has received the
most attention in the recent years. This technique can be applied to services that can be implemented as
a deterministic state machine, i.e., where the next state of the service is a function solely of the current
state and the command executed. The service is then replicated on several nodes, all of them running a
state machine replication middleware. This layer is responsible for receiving the requests from the clients,
establishing a total order among the requests, and executing the sequence of requests independently at
all replicas. As the service is deterministic and every replica executes the same sequence of requests, the
state of the different replicas is kept consistent. Therefore, if some replica fails, the others can continue
operating the service.

In spite of its conceptual simplicity, state machine replication is remarkably hard to design and
implement, requiring both a solid theoretical background and careful engineering. On the theoretical
side, the difficulties are ensuring the correctness of the replication algorithms, which tend to be complex

∗{firstname.secondname}@epfl.ch
†jan.konczak@student.put.poznan.pl, tomasz.zurkowski@gmail.com, Pawel.T.Wojciechowski@cs.put.poznan.pl

1

and subtle, and to design efficient algorithms for a wide range of systems and workloads. Fortunately,
there has been a lot of work on the topic during the last 30 years, which can be used as a starting point
to build practical systems. In particular, the Paxos family of algorithms [1] has received much attention
in the literature, which includes several variations of the basic algorithm exploring different parts of the
design space (and therefore, different tradeoffs) [2, 3, 4, 5, 6], and detailed performance analsysis [7, 8].
Paxos is particularly interesting due to being optimal in the number of message delays [9] (3 message
delays, starting from client sending request until decision) and in having optimal resilience (2f + 1 with
crash faults and 3f + 1 with byzantine faults, given the corresponding variations of Paxos, with f being
the maximum number of faulty nodes). Thus, in the following we will focus on the Paxos algorithm. We
consider only non-byzantine faults, that is, replicas can only fail by crashing, never performing actions
that are not specified by the algorithm.

Contrary to the theoretical aspects, the engineering challenges of implementing Paxos have received a
lot less attention. This is unfortunate, as the theoretical work on Paxos leaves unspecified many important
practical details that are essential to achieve high-performance and stable operation in demanding real-
world environments. This includes, among others, details like managing a finite replication log (in
theoretical work Paxos is often described using an infinite log), recovering the state of replicas that
crashed, ensuring that replicas stay “close together” in the sequence of executed commands in spite of
message loss and of varying execution speeds between replicas, and maximizing utilization of system
resources like network and CPU cores. This lack of relevant literature has become more of a problem
recently with the large growth in the use of Internet services, which in order to decrease costs and improve
time-to-market use software fault-tolerance on top of inexpensive commodity hardware. It is therefore
necessary to complement the theoretical work on Paxos with a detailed analysis of the engineering
challenges. There is some recent work in this direction [10, 11], but there is still much left to be done.

In the work presented in this report, we discuss, propose and evaluate solutions to the major engi-
neering challenges of creating a Paxos implementation, with the goal of helping bridging the gap between
theory and practice. As part of our work, we have implemented JPaxos, a full-fledged, high-performance
Java implementation of state machine replication based on Paxos. In order to allow others to extend
our work or use it either for research or to build fault-tolerant services, we have released JPaxos as
open-source.

In our work, we focused on the following main aspects: 1) batching and parallel instances as a
mechanism to maximize performance in a wide range of operating conditions, 2) recovery mechanisms
for the crash-recovery model, with or without stable storage, 3) and scalability of the middleware with
multi-core CPUs.

Batching multiple client requests in a single consensus instance is a well-known technique to improve
the throughput of state machine replication, by amortizing the fixed-costs of a consensus instance over
several client requests. The parallel instances optimization takes advantage of the ability of the Paxos
coordinator to execute multiple instances of the ordering protocol concurrently, which in some conditions,
especially high-latency networks, can greatly increase performance. Although both techniques are well-
known and are part of most Paxos implementations, they had not been studied in detail in the context
of Paxos. We have done so, by implementing both optimizations in JPaxos and evaluating them in a
variety of situations, both analytically and experimentally [12].

The second major contribution of our work is the exploration of recovery techniques for the crash-
recovery model. Any Paxos system intended to operate for long periods of time must reintegrate replicas
that crashed, otherwise the system will eventually stop as replicas crash without being replaced. As
mentioned in the original Paxos paper, by using stable storage Paxos can be easily extended to tolerate
catastrophic failures, i.e., simultaneous failure of an arbitrary number of replicas. However, this requires
one stable storage access at every replica for each consensus instance, which usually decreases the per-
formance by an order of magnitude as compared to the crash-stop version of Paxos. For services that do
not need to tolerate catastrophic failures, it is possible to retain a performance very close to the one in
the crash-stop model while still tolerating an arbitrary number of faults over the lifetime of the system.
This works by having replicas that recovered from a crash rebuild their state using the state of the other
replicas that are are fully operational, at which point they can re-join the system as a full member,
thereby restoring the resilience level. This approach has a lower resilience, because it stops if the number
of replicas with full state drops below a majority at any point, but on the other hand it uses stable
storage less frequently, in particular, it does not require a stable storage access per consensus instance,
making it an attractive alternative. Below we study two algorithms for this restricted crash-recovery

2

model, one that was previously proposed in the literature and another that is novel. We have imple-
mented both algorithms in JPaxos, together with the traditional algorithm for the crash-recovery model
with catastrophic failures (in addition to the version of Paxos for the crash-stop model), and evaluated
them experimentally.

On the engineering side, we put special attention in parallelizing JPaxos so that its performance scales
with the number of cores. Parallelizing programs is a challenging problem in general, for which there is no
general solution. Indeed, although general principles do exist, parallelism must still be addressed mostly
on a case-by-case basis, as each class of applications has its own potential for parallelism and, therefore,
requires a tailored threading design to maximize its scalability with the number of cores. We have done
such analysis for JPaxos, and we believe that our results can be generalized to other implementations
of state machine replication. In an application like JPaxos, where a large amount of shared state (the
replicated log) is accessed by a variety of logical modules, it is tempting to implement the system as
a single-thread event-driven architecture, as this sidesteps all the concurrency issues. However, this
architecture clearly does not scale. On the other side of the design spectrum, we find the fully threaded
architectures. But these require careful locking, which is remarkably hard to get right, as it must ensure
safety while at the same time avoiding excessive lock contention that can easily limit scalability. The
architecture of JPaxos is a compromise between the two extremes, with some modules implemented as
a sequence of event-driven stages (with one or more threads) communicating by queues (inspired by
SEDA[13]) and others using traditional threads with blocking operations. This hybrid architecture is
motivated by the observation that while some tasks have much to gain in terms of simplified concurrency
or parallelism by being implemented as event-driven stages, others have little to gain while at the same
time having much simpler single threaded implementations (for instance, retransmission and failure
detection). The resulting architecture balances scalability with implementation complexity.

This report is organized as follows. Section 2 briefly presents our model and defines the relevant
terms, Section 3 presents the Paxos algorithm. In Section 4 we present the architecture of JPaxos;
describing the internal structure, how the clients and replicas interact, and how a request is handled.
Section 5 describes the implementation of the main modules of JPaxos, including the details of our
MultiPaxos implementation, the mechanisms for stale replicas to catch-up with the up-to-date replicas,
and the snapshotting system. Section 6 studies the optimizations of batching and pipelining, with an
analytical analysis that provides the optimal configuration parameters for a given system and workload.
In Section 7 we present the recovery algorithms of JPaxos. Section 8 explains the threading architecture
of JPaxos. Section 9 shows a summary of experimental performance results of JPaxos, with a focus on
the tradeoffs between batching and pipelining. Finally, Section 10 discusses related work and Section 11
concludes the report.

2 Definitions and Model

We consider the partially synchronous model with benign faults, consisting of a set of n processes that
communicate by message passing. The system alternates between periods of synchrony and asynchrony.
During periods of asynchrony, messages may be lost or delayed, and processes execute at arbitrary speeds.
During synchronous periods, there is no message loss, and the relative execution speed of processes and
the message transmission time are bounded.

JPaxos implements variants of Paxos for both crash-stop and crash-recovery faults, so in the following
we describe both.

2.1 Crash-stop model

In the crash-stop model processes can fail by crashing and crashes are permanent, i.e., a faulty process
eventually stops executing the algorithm permanently. Thus, a correct process is one that never crashes
and executes the algorithm forever. The Consensus problem is defined by two primitives: propose(v)
and decide(v). A process initiates consensus by proposing its initial value by calling propose(v) and
eventually executes decide(v) to decide on a value. In the crash-stop model, these primitives must satisfy
the following properties:

• Termination - Every correct process eventually decides some value.

3

• Uniform Integrity - Every process decides at most once.

• Uniform Agreement - No two processes (correct or not) decide a different value,

• Uniform Validity - If a process decides v, then v was proposed by some process.

2.2 Crash-recovery model

In the crash-recovery model a process can resume execution of the algorithm after crashing. In this
model, we distinguish between volatile and stable storage. Any state stored in volatile storage is lost
upon a crash, while the state in stable storage is preserved.

In the crash-recovery model processes may be faulty in more ways than just crashing permanently,
i.e., they may alternate between being up (executing the algorithm) and down (crashed). Using the
terminology of [14], we say that a process is always-up if it never crashes, eventually-up if it crashes a
finite number of times, eventually-down if it eventually crashes permanently, and unstable if it crashes
(and recovers) an infinite number of times.

For practical purposes, a process needs only to be up for long enough to participate in one or more
instances of the protocol in order to be useful. Therefore, in the rest of this report, we implicitly assume
that during a period of synchrony (a good period), there are enough processes up to advance the protocol
(f + 1 for MultiPaxos), regardless of whether they crash or not after the good period.

2.3 State-machine replication

In state-machine replication, the service is modeled as a deterministic state machine and executed simul-
taneously at several processes (replicas). The replication protocol is responsible for receiving commands
from the clients and executing them at every replica in the same order. As the service is deterministic,
i.e., the next state of the service depends only on the current state and the command executed, the
replicas’ state remain consistent.

State machine replication is closely related to the atomic broadcast problem, as both share the
same core problem of ordering a sequence of values. In fact, MultiPaxos can be seen as a sequencer-based
atomic broadcast protocol [15], where the sequencer orders requests received from the clients. We present
next the formal definition of atomic broadcast, because it contains the core elements of state machine
replication while being simpler to express.

Atomic broadcast in the crash-stop model is defined in terms of two primitives: abcast(m) and
adeliver(m), that satisfy the following properties:

• Validity - If a correct process abcasts a message m, then it eventually adelivers m.

• Uniform agreement - If a process adelivers a message m, then all correct processes eventually
adeliver m.

• Uniform integrity - For any message m, every process adelivers m at most once, and only if m

was previously abcasted.

• Total order - If some process, correct or faulty, adelivers m before m′, then every process adelivers
m′ only after it has adelivered m.

The atomic broadcast problem is equivalent to consensus [16], i.e., if in a given system model one
can be solved, then the other can also be solved.

3 The MultiPaxos state machine replication algorithm

MultiPaxos is an algorithm for a group of processes to agree on a sequence of values in the presence of
faults. It works in the partially synchronous model with benign faults, with variants for the crash-stop
and crash-recovery model. It requires 2f + 1 processes to tolerate f faults. We start our description
of MultiPaxos by describing the single instance Paxos consensus algorithm that lies at the heart of
MultiPaxos. Both algorithms were first described in [1].

4

(leader) p1

p2

p3

1a 1b

Phase 1

2a 2b

Phase 2

Figure 1: A Paxos ballot

p1

p2

p3

1a 1b

Phase 1

Req.1

2a 2b

Ans.1

Phase 2

Req.2

2a 2b

Ans.2

Phase 2

Figure 2: Message pattern of MultiPaxos

3.1 The Paxos algorithm

Paxos is traditionally described as the interaction of processes in three different roles: proposer, acceptor
and learner. For logical clarity, we use these roles in our description of Paxos, but in our implementation
each process assumes all three roles.

In Paxos, processes execute a series of one or more ballots (Fig 1). In each ballot one of the proposers,
called the leader of the ballot, tries to get the others to agree on a value proposed by it. The ballot may
succeed, in which case the value proposed is decided, or it may fail, in which case some other process
(or the same) starts a new ballot. Ballots are numbered with increasing numbers, with higher-numbered
ballots superseding lower-numbered ballots. Proposers chose ballot numbers among non-overlapping
sequences, that is, each ballot number can only be assigned to a single proposer. This is necessary to
ensure that there is a single leader for each ballot number.

Each ballot consists of two phases, as shown in Figure 1. In the first, the Proposer sends a Prepare

message to the acceptors (Phase 1a message) asking them to abandon all lower numbered ballots and to
reply with the last value they accepted and the ballot number where they accepted it, or null if they did
not accept any value (Phase 1b message). The acceptors answer to this message only if they have not
participated in any higher numbered ballot. Once the proposer receives a majority of replies, it enters
the second phase. It choses a value to propose based on the messages received from the acceptors. If
some Phase 1b messages contain a value, then it takes the value associated to the highest ballot number,
otherwise the proposer is free to chose any value. Once the value is chosen, the proposer proposes this
value with a Phase 2a message sent to all acceptors. The acceptors will once again answer only if they
have not participated in an higher numbered ballot, in which case they send a Phase 2b message to
all learners informing them that they have accepted the proposal. A learner decides the value once it
receives a majority of Phase 2b messages for the same ballot number.

3.2 MultiPaxos

MultiPaxos is an extension of Paxos for state machine replication, where processes agree on a sequence
of values instead of a single value. It would be possible, but inefficient, to use a sequence of independent
Paxos instances. Instead, MultiPaxos provides a substantially lower message complexity by “merging”
the execution of several instances.

MultiPaxos is based on the observation that when executing a series of consensus instances, a proposer

5

Initialisation

view← 0 used to recognize voting rounds

{viewv, value} ← {0,⊥} last accepted value and the view when the accept took place

procId← ID of the process
accepted← {⊥} set of processes which accepted the value in current view

let leader(view) be function that for a view returns the leader process ID

Prepare phase

view← v such that v > view and leader(v) = procId

send Prepare< viewm > where viewm ← view to all
wait for majority of PrepareOK< viewm, {viewp, valuep} > where viewm = view

{viewv, value} ← {viewp, valuep} from PrepareOK with highest viewp

begin Propose phase

Propose phase

if value = ⊥ then value← the value the process wants to propose

viewv ← view

send Propose< viewm, valuem > where viewm ← view; valuem ← value to all

Upon Prepare< viewm > where viewm ≥ view from p

view← viewm

send PrepareOK< viewm, {viewp, valuep} >

where viewm ← view; {viewp, valuep} ← {viewv, value} to p

accepted← ⊥
leave Propose or Prepare phase if process is in any of these

Upon Message< viewp, . . . > where viewp 6= view

if viewp > view then

view← viewp

accepted← {⊥}
leave Propose or Prepare phase if process is in any of these
react according to message type

else drop the message

Upon Propose< viewp, valuep > where viewp = view from p

{viewv, value} ← {viewp, valuep}
send Accept< viewm, valuem > where viewm ← viewp; valuem ← valuep to all
accepted← accepted ∪ {p, procId}
if accepted contains majority of processes then

decided on value

Upon Accept< viewp, valuep > where viewp = view from p

if viewv 6= viewp then

execute Upon Propose< viewp, valuep >

accepted← accepted ∪ {p}
if accepted contains majority of processes then

decided on value

Upon Value for voting received
begin Prepare phase

Upon no decision taken and the leader crashed
begin Prepare phase

Table 1: Pseudocode of the Paxos algorithm

6

can execute Phase 1 for an arbitrary number of instances using a single prepare phase. Afterwards, it
only needs to execute Phase 2 of each instance, therefore reducing the number of communication delays
for an instance from 4 to 2. Figure 2 illustrates the message pattern of MultiPaxos.

Instead of describing MultiPaxos in its most abstract form, we will instead present it as imple-
mented by JPaxos (Table 1), which matches the way it is commonly described in more practical oriented
works [17, 11]. This description specifies some design decisions that are left open by the original descrip-
tion in [1].

In MultiPaxos the system advances through a series of views, which play a similar role as ballots in
single instance Paxos. The leader of each view is determined by a rotating coordinator scheme, that is,
the leader of view v is process v mod n. Once a process p is elected leader (by an external leader oracle
module), it advances to the next view number v such that p coordinates this view (i.e., v mod n = p)
and v is higher than any view previously observed by p. Process p then executes Phase 1 for all instances
that, according to the local knowledge of p, were not yet decided. It does this by sending to the acceptors
a message 〈Prepare, v, i〉, where v is the view number and i the first instance for which it does not know
the decision. The acceptors answer with a message containing the Phase 1b message for every instance of
consensus higher than i, i.e., for every instance i′ ≥ i, the acceptors send the last value they accepted and
the corresponding view number, or null if they have not accepted any value for this instance. Although
this message covers an infinite number of instances, only a bounded number of them will have non-null
values, so this information can be represented as a message with finite size (proportional to the number
of non-null instances higher than i). After completing the Phase 1, the proposer can then execute Phase
2 for every instance equal or higher than i.

In state machine replication, when the leader receives new requests from the clients, it executes the
Phase 2 of a new instance, which requires a single round of communication from leader to acceptors and
then from acceptors to learners.

4 Architecture

4.1 Main modules

JPaxos consists of two main modules: Replica and Client. The Replica module executes the service as
a replicated state machine, while the Client module is a library that is used by client applications to
access the service. JPaxos also defines a Service interface that must be implemented by the service being
replicated. Figure 3 shows a typical deployment of JPaxos.

������

��	
��

��	�

��	
��

������

��	
��

��	�

��	
��

������

��	
��

��	�

��	
��

����������������������������

��	�

������

�
��	��

��	�

������

�
��	��

��	�

������

�
��	��

Figure 3: A service replicated in three replicas accessed by several clients.
Arrows indicate communication flows.

Below we describe each of these modules.

4.1.1 Client

The Client module is a light-weight module that mediates the interaction between the application and
the replicated service. This component hides from the client application much of the complexity of
involved in sending requests to a replicated service. As requests must be sent directly to the leader, the
client library discovers and connects to the leader using a persistent TCP connection. It then sends the
request and waits for an answer. If the connection to the leader fails or the answer does not arrive within

7

Replica

Network

TcpNetwork GenericNetwork

MultiPaxos

Proposer

Acceptor

Learner

ClientManager

Snapshot

Catch-up

Storage Service

FailureDetector

Other replicas Clients

Recovery

UdpNetwork

ServiceProxy

Figure 4: Block diagram of JPaxos modules

a certain time, the client library assumes that the leader failed, discovers the new leader, connects to it
and retransmits the request. The client is also responsible for ensuring that every request is assigned a
unique global id, which is required to detect duplicate requests.

4.1.2 Service

The service implementation is provided by the user of JPaxos and is the module that is replicated. As
mentioned before, it must be deterministic. The service must implement several lifetime management
methods including request execution, creating a snapshot of the state and recovering the state from a
snapshot.

4.1.3 Replica

The Replica module replicates the service using the MultiPaxos protocol. Additionally, it implements
many other modules responsible for managing the state and lifetime of the service, and interacts with
the clients. Figure 4 shows the sub-modules of the Replica module.

We now briefly describe each module.

ClientManager This module manages the communication between clients and the replica. In partic-
ular, it listens for new TCP connections from the clients, receives the client requests, forwards them to
the other modules for execution, and finally sends the answers back to the client. Client connections are
persistent, which amortizes the cost of connection establishment over several requests.

MultiPaxos This module is responsible for establishing a total order among the client requests using
the MultiPaxos algorithm. It is organized in three sub-modules, the Proposer, Acceptor and Learner,
matching the traditional roles used to describe Paxos.

Storage Manages the state of the MultiPaxos protocol, including the replicated log with the state of
all instances started and auxiliary variables, like view number. The state is centralized in this module
in order to simplify its management.

CatchUp During execution some replicas might miss the decision of some ballots, due to message loss
or a crash, in which case they need to fill up the resulting gaps in the command sequence in order to
continue executing requests. The CatchUp module is responsible for discovering the decisions of missing
ballots, by retrieving them from other replicas. This service is also used for recovery after a crash; after

8

Variable Description
log the Paxos Log (see section 4.2.1)
view current view
firstUncommitted first instance not decided yet
snapshot the most recent snapshot (see section 5.4)
epoch the current epoch vector (see section 7.5)

Table 2: State kept by Storage module

Variable Description
view a view of the last received message related with this instance.
value the value which is held by this instance.
state one of UNKNOWN, KNOWN or DECIDED.
accepts set of known replicas which accepted the (view, value) pair.

Table 3: State of a consensus instance

the service state is reinitialized from a snapshot, the CatchUp service brings up to date the state of the
replica with any new commands that may have been decided since the snapshot was taken.

Snapshot This module performs periodic snapshots of the state of the service to stable storage.

Recovery Responsible for implementing recovery after a crash. This module supports several recovery
algorithms, with different trade offs between resilience and performance. During normal execution, and
depending on the algorithm chosen, this module logs to stable storage some information about the
progress of the algorithm and adds some additional fields to the messages sent between replicas. During
recovery, this module restores the state of the service from a snapshot or from the state of other replicas.
We provide more details in Section 7.

Service Proxy Interposes between the Replica and the Service provided by the user, and performs
bookkeeping work that is required to manage snapshotting. Section 5.4 describes it in more detail.

4.2 Storage and data structures

The protocol state kept by JPaxos consists mainly of the replicated log and a few auxiliary variables
describing the current state of the process. These data structures are accessed by almost all modules of
JPaxos, including the ordering protocol, snapshotting and catchup. In order to simplify management of
the state, we aggregated all the state that is shared between modules in the Storage module. Table 2
shows the state kept in the Storage module.

Depending on the recovery algorithm used, the Storage module decides which elements to keep only
in volatile memory and which to write also in the stable storage.

4.2.1 The Paxos Log

The Paxos log is the data structure that is actually replicated among the replicas. Each replica contains
its own copy of the log, with the replication algorithm being responsible to update the log consistently
in all replicas. The log contains a series of entries, each describing what the replica knows about the
state of a particular consensus instance. Table 3 shows the information that is kept on the log for each
consensus instance.

An instance is in the Unknown state if the replica did not start this instance yet, in the Known

state if the instance was started but not yet decided and finally it changes to the Decided state when
the final decision is known.

Paxos is often presented using an infinite log, which simplifies its description considerably. But in
practice the log must be bounded. JPaxos achieves this by performing periodic snapshots of the service
state and keeping in the log only the instances that had not been executed at the time of the snapshot.

9

This hybrid representation of the state affects the catch-up and recovery mechanisms, as they must
be ready to restore the state from a combination of a snapshot and replaying log instances instead of
replaying only log instances. We discuss these details below: the catchup mechanism is described in
Section 5.3, snapshotting in Section 5.4, and recovery in Section 7.

4.2.2 Auxiliary Storage state

The other variables kept by the Storage module are used to track the current state of the protocol
execution: view is the current view of the process, firstUncommitted is the id of the lowest instance that
was not yet decided, snapshot is the last snapshot taken by the local replica, and epoch is a vector with
the epoch number of the replica (used by the recovery algorithms).

4.3 Communication

4.3.1 Client-Replica communication

JPaxos uses TCP to communicate between the clients and the replicas. Compared to UDP, TCP provides
high-quality implementations of important functionality that is required in this scenario, like flow control
and support for messages of arbitrary size, thereby simplifying our implementation. It also provides
reliable retransmission within a TCP connection, although if a connection fails, it does not provide any
guarantees for data sent but now acknowledged. JPaxos client library handles this case by retransmitting
the last request sent but unanswered when recovering from a broken connection.

The client library hides from the application most of the complexity of accessing a replicated service.
The first time the client tries to execute a request, the client library selects a random replica and tries
to establish a connection. If this fails, the client library tries to connect to the next replica, looping
back to replica 0 after trying n − 1, until it connects successfully to a replica. After connecting to a
replica, it sends the request and waits for the answer. If JPaxos is configured to require the replicas to
connect directly to the leader (See Section 4.3.3), then non-leader replicas answer with a REDIRECT
reply containing the id of their current leader. The client then reconnects to the replica with the id given
in the reply, and resends the request. This process is repeated until the client obtains the answer to the
request.

4.3.2 Communication between replicas

JPaxos supports TCP and UDP for inter-replica communication. This flexibility is necessary because of
the tradeoffs between the different communication protocols in the context of state machine replication;
there is no single protocol that will perform optimally in all deployment scenarios. For instance, UDP
may have lower overhead and latency but are more susceptible to network congestion, while TCP offers
more stability but may limit the maximum throughput. Additionally, depending on the network and on
the application, some protocols may behave better than others. Since JPaxos is also a research project,
supporting multiple protocols opens the door to conducting research into this topic.

TCP network Connections between the replicas are persistent. If a connection fails, the replicas will
try to reestablish periodically, as the other replica may recover or it may have been only a connectivity
problem. JPaxos retransmits the last message sent to a replica if the previous connection failed and the
message must still be delivered (i.e., if the corresponding consensus instances was not yet decided).

UDP network When using UDP, JPaxos retransmits the messages that must be delivered for the
protocol to proceed until they expire. This is the case of the Phase 1a and 2a messages, which are
retransmitted to the replicas that have not yet answered with the corresponding Phase 1b or 2b message.
Retransmission stops when the leader does not need any more answers, which happens when it receives
a majority of messages in the corresponding Phase.

4.3.3 Request forwarding or client redirection

In order to execute a request, the leader must first receive the request. This can be done in two ways in
JPaxos: directly or with request forwarding. In the first option, clients connect directly to the leader,

10

Replica (Leader)

5

Client Client Manager

Replica

Batcher

Paxos

1

2 3a
4

NetworkManager

6

Service

7a8

9

10

3b7b

ReplicasReplicas
Replicas

Figure 5: Request handling, when client is connected directly to the leader. 1) Client sends request,
2) request read and forwarded to Replica module, 3a) request added to batch queue (new request) or
3b) send cached answer (repeated request), 4) propose request as part of a batch, 5) order batch using
MultiPaxos, 6) after being ordered, batch is given to Replica for execution, 7a) Replica executes request
in service if the request is new, or 7b) answers with cached reply if request is repeated, 8), 9) and 10)
answer is sent back to client.

which is then responsible to receive the requests and send the answers back to the clients. As the leader
can change dynamically, the clients must discover the leader, which is done by having non-leader replicas
redirect clients to the current leader. In the second option, the clients are allowed to connect to any
replica. When a replica receives a request, it assumes ownership of the request: it will keep trying order
and execute the request. It does so by forwarding the request to the current leader, retransmitting if
necessary, either to the same leader to recover from message loss, or to a new leader when the view
changes. The replica that received the request will also send the answer back to the client when it finally
executes the request.

4.4 Request Handling

Figure 5 shows how a request is handled by JPaxos in the case of a client connected directly to the
leader. The only difference in the case where the client is connected to a non-leader replica, is that the
non-leader replica acts as a client with the leader, using the same mechanisms as a client would use.
Clients send requests sequentially, waiting for the answer of the previous request before transmitting
the next (1). When a replica receives a request (2), it first checks if the request was already executed,
in which case it answers with the cached reply (3b and 10). In Section 5.1.2 we discuss in more detail
how duplicate and lost requests are handled. If the request is new, it is dispatched for ordering and
execution. For performance reasons, JPaxos executes the ordering protocol on groups of one or more
requests, batches, instead of on individual requests. Therefore, before being proposed, the request is
added to the Batcher module queue (3a), where it waits until it is included in a batch (as explained in
Section 6). The batch is then passed to the Paxos module (4), which proposes and eventually decides
on a order for the batch (5). Once ordered, the batch is given back to the Replica (6), which extracts
the requests contained within. The individual requests in a batch are ordered in relation to each using
their request id. The replica must once again check if the request has been executed previously and, if
so, either ignore it or answer with the cached reply (7b) (Section 6 describes how this can happen). If
the request was not executed previously, it is executed in the service (7a) and the answer is sent back to
the client (9 and 10).

11

5 Implementation

This section describes the implementation of the main modules of JPaxos.

5.1 Replica

The replica module is central in JPaxos, coordinating the work of all other modules. It handles the
interaction with the clients and with the service: receives requests from the clients, passes them to the
Paxos core for ordering and once they are ordered, executes the requests and sends back the answers
to the client. Although the fault-tolerance properties of state machine replication come primarily from
the MultiPaxos algorithm, the replica module plays also an important role in ensuring consistency and
liveness of the system. In particular, it is responsible to redirect clients to the leader, to retransmit
answers to duplicate requests sent by the clients, to ensure that every request is executed only once and
to manage the lifecycle of a service, including keeping enough information to perform regular snapshots,
and restoring the service from a snapshot.

Next we describe in more detail the main tasks performed by the Replica module.

5.1.1 Generate unique request identifiers

To cope with message loss, clients may retransmit a request multiple times. This may result in a request
being received multiple times by the same replica or by different replicas (if the leader changes between
retransmissions). Although the safety properties of the replicated state machine would not be violated
by executing the same request multiple times, this is usually not the semantic that applications are
expecting. Therefore, JPaxos enforces once-and-only-once execution.

Each request must have a unique identifier in order to be distinguished from the others. A common
method of doing so is by using the pair 〈clientID, seqNumber〉, where clientID is a unique identifier for
the client that sent the request and seqNumber a sequence number private to the client. The main
difficulty is ensuring that uniqueness of the clientID.

Using the IP address of the machine or even the MAC address is not a good solution, as this prevents
multiple clients from operating in the same machine. Additionally, configuration errors or the use of
DHCP may result in the same IP address being assigned to different machines, violating uniqueness.
Using statically assigned IDs would also be possible, but requires some administrative work and is
susceptible to human error.

In JPaxos we opted for making the replicas responsible for granting IDs to clients: when the client
first establishes a connection to a replica, it will ask for a unique id. JPaxos supports two policies to
generate unique client IDs, as described below.

Based on the number of replicas Each replica grant numbers incremented by a number of replicas,
starting from ID of a local replica. For example, if we have three replicas, replica with ID 0 can grant
numbers 0, 3, 6, 9, . . . and replica with ID 2 can grant 2, 5, 8, It guarantees that two different
replicas will not grant the same ID. This solution works with the crash-stop and crash-recovery with
stable storage. This will not work when replica can recover from crash without stable storage, because
it does not know what was the last granted ID.

Time based This policy uses the system time as the source of unique numbers. To each client ID
we also add information when the replica was started (in milliseconds). For example, if a replica has
been started at time t, it will grant to the new clients the following IDs: (t+localId), (t+localId+n),
(t+localId+2n) . . . This method assumes that the local system timer is not set back into past and also
that the replica will not recover in less time than what it takes for the clock to advance once. If these
assumptions are fulfilled, then unique IDs are guaranteed also in the crash-recovery model without stable
storage.

5.1.2 Ensuring once-and-only-once execution

To handle retransmission of requests, the replica module keeps a cache of the last answer sent to each
client. When a request is received, it first checks this cache and, if the request is present, sends the

12

answer back to the client immediately. This cache is checked again before executing an ordered request
because as explained in Section 6, the same request may be ordered twice.

It is enough to keep the last request executed from each client because the client library sends request
synchronously, that is, it must receive the answer to request r before sending request r + 1. Therefore,
if a replica receives request r + 1 from a client, it knows that this client already has the answers to all
requests lower than r + 1.

5.1.3 Service lifecycle

A final task of the Replica module is in assisting the service in performing snapshots.
Every checkpoint must be tagged with some additional information that indicates what was the last

request executed before the checkpoint, so that on recovery the replica knows from where to continue
executing requests. Instance numbers seem like a natural candidate for this, but this solution has a
significant drawback. The problem is that JPaxos assigns instance numbers to batches of requests,
instead of to individual requests. Therefore, if using instance numbers alone, the service can only make
a snapshot at the boundaries of batches. Although this may not be an issue for most services, some may
only be able to take snapshots at particular points in their execution.

In order to allow the service to perform checkpoints after any request, the Replica module assigns a
sequence number to every request, therefore mapping the sequence of batches into a continuous sequence
of requests. This information is stored together with the snapshots.

The Replica module also stores with the snapshot the cache with the last request executed from each
client. This is necessary to ensure once-and-only-once execution even between crashes and recoveries.

5.2 Multi-Paxos

Our implementation of MultiPaxos is based on the description in [1], following closely the structure of
Proposer, Acceptor and Learner, that later became the standard way of presenting Paxos. Here we
discuss only the details that are left unspecified in the original document and present some additional
optimizations.

5.2.1 Leader Election and Proposal Numbers based on views

MultiPaxos requires both a leader election oracle and a mechanism to assign to each process an infinite
number of exclusive proposal numbers. Both details are left unspecified in [1], as their implementation
details are not relevant for the correctness of the core protocol.

JPaxos uses view numbers to implement both leader election and to generate proposal numbers. The
ordering protocol is organized as a sequence of views with increasing numbers; processes keep track of
their current view v and tag all their messages with the view number where they were sent. Any message
from a lower view is ignored, and receiving a message from a higher view forces the process to advance
to the higher view immediately.

For each view v, the process v mod n is pre-assigned as the leader of that view. Proposal numbers
are generated using the view number and adding a sequence number internal to that view, i.e., the leader
of view v uses the numbers 〈v, i〉, where i is the sequence number generated by the leader. The order
among proposal numbers is defined first by the view number then, in the case of a tie, by the sequence
number, that is, if v1 < v2 then all proposals 〈v1,−〉 are lower than proposals 〈v2,−〉.

Leader election is implemented by advancing view whenever the leader of the current view is suspected
to have failed. When a process suspects the leader, it tries to become the leader, by advancing to the
next view v that is assigned to it and sending a Prepare message to all. It may happen that several
processes suspect the leader at approximately the same time and try to become leaders themselves. In
this case, the process that chooses the highest view number will be the one that succeeds in becoming
leader, as higher views take precedence over lower views.

To detect the failure of the leader, JPaxos uses a simple failure detector based on heartbeats. The
leader sends an Alive message every τ time to all processes using UDP. When a replica does not receive
an heartbeat from the leader for more than η time, it suspects the leader and tries to become the new
leader. Both τ and η are configuration parameters. In a typical configuration, η is at least 2 times larger
than τ , in order to be immune to delays and single message losses.

13

5.2.2 Optimizations

JPaxos uses several optimizations to reduce the number of messages sent. Many of these optimizations
are possible because in JPaxos every process is at once Proposer, Acceptor and Learner, so the different
actors running in a process share the same replicated log. By compromising modularity somewhat and
exposing the state of each actor to the other actors, it is possible to suppress many messages and improve
performance significantly.

Sending to self The Proposer has to send the Phase 1a and Phase 2a message to all Acceptors. In
JPaxos, as the leader plays the role of both Proposer and Acceptor, the leader can suppress the message
to itself, instead updating directly its state. A similar optimization can be applied when the Acceptor
sends the Phase 2b message to all Learners. These optimizations reduce from n to n− 1 the number of
Phase 1a, Phase 2a and 2b messages sent, which is a significant reduction when n is small.

Merging the Phase 2a and 2b messages of the leader In Phase 2, the leader has to send, as
the Proposer a Phase 2a message to all, and immediately after, as an Acceptor, a Phase 2b message
also to all. Since inside the leader the Acceptor role will always accept the message sent by its Proposer
role, these two messages can be merged in one. Therefore, in JPaxos the leader sends only a Phase 2a
message to all other processes, which is understood as an implicit Phase 2b message. Notice, that if the
system consists of three nodes, every process decides on the value by receiving a single Phase 2a message,
because it knows that the leader and itself accept the message. This optimization reduces in half the
messages sent by the leader during Phase 2.

Minimizing the count of messages carrying the value For simplicity, most descriptions of Paxos
state that both the Propose and the Accept messages carry the value being agreed upon, which in
our case are client requests. The size of the requests is arbitrary, as it depends only on the service. If
the size of the request is large, then including the consensus value in all Phase 2 messages is likely to
be inefficient as the value is sent two times to each process: the leader sends it to all in the Propose

message, and each acceptor resends it to all in the Accept message. In these situations, it is possible
to perform consensus on value identifiers and use some sort of reliable broadcast to propagate the value
to all replicas only once[18]. However, this approach introduces additional complexity in the protocol.

JPaxos ensures that the value is sent only once to each process by omitting it from the Accept

messages and relying on the Propose message of the leader to distribute the value to all replicas. To
preserve correctness, the protocol of the Acceptor has to be modified slightly: if the Acceptor receives
an Accept message before the corresponding Propose message, it must wait until receiving the cor-
responding Propose message before sending its own Accept. This is necessary because in Paxos, a
process must know the value of a proposal before accepting it.

In the good case, this optimization will reduce in half the amount of data sent over the network
without any additional delay. Even if the Accept message is delivered before the Propose message,
the delay will be minimal. The only drawback is that if the Propose message is lost, the Acceptor
has to wait until the leader retransmits this message while without this optimization the Acceptor could
proceed immediately. This may delay decision with message loss1. But since message loss is usually the
result of congestion and this optimization reduces the amount of data sent over the network, overall it
should improve performance in all cases.

Best-case messages Figure 6 shows the message pattern and of a Phase 2 instance in the good case.
For each Phase 2 instance, the replicas exchange a total of (n − 1) + (n − 1)2 messages, but out of

those only n− 1 contain the value. The other (n− 1)2 messages should not be a problem in the common
case, as they are small (less than 20 bytes) and most Paxos deployments use a small number of replicas
(3 or 5).

It is possible to decrease the number of messages in Phase 2 to 2(n − 1) by using the leader as a
distinguished learner, in which case the Acceptors send a single Accept message to the leader. The
leader then has the responsibility to inform the other processes of the decision, usually by piggybacking
the decision on the Propose message for the next consensus. We have not implemented this optimization,

1Only if a majority of Propose messages are lost

14

C1

R1

R2

R3 propose

request
response

accept

(a) Best-case scenario

Message type Count Size of each msg
Propose n − 1 |value|
Accept (n − 1)2 c(< 20bytes)

(b) Message count

Figure 6: Messages sent in Phase 2 instance

as it adds additional complexity to the protocol and the potential gains did not seem to be sufficient to
justify it.

Suppressing heartbeat JPaxos uses the protocol messages (Phase 1 and 2) received from the leader
as implicit heartbeats. Consequently, the leader sends explicit heartbeats only if it has been idle for more
than τ time (recall the τ is the heartbeat send interval). Although this optimization reduces slightly the
network load, its main advantage is preventing false suspicions during periods of heavy load. Recall that
heartbeats are sent using UDP, so they are susceptible of being lost when the load is high. But by using
the protocol messages as implicit heartbeats, the leader will not be suspected as long as at least a few
protocol messages arrive to the other replicas, which is likely even when the load is very high.

5.3 Catch-up

MultiPaxos must guarantee that all learners eventually learn the decision of every instance. This is
particularly important because requests must be executed sequentially, so a gap in the sequence at one
process will block that process from executing further requests. This can lead to instability, because
until the gap is closed, the process must either cache all the subsequent decisions which can lead to
unbounded memory usage, or it has to stop participating in the protocol.

In the good case, the learners decide an instance when they receive the Propose message and a
majority of Accept messages, and therefore any gap that may happen due to out-of-order decisions 2

is only temporary as the required messages will arrive in at most one message delay. But in networks
with message loss, some of these messages might be lost. Although the leader will keep retransmitting
the Propose message until it receives a majority of Accept messages, this does not guarantee that all
processes will receive enough messages to decide.

For these situations JPaxos includes a catch-up mechanism. The catch-up mechanism is based on the
following observation: if the leader is correct (as indicated by its heartbeats) and a process knows of an
instance that is started some time ago but was not yet decided, then the value is likely already decided
and the process should contact some other process to learn the decision.

5.3.1 Log-based vs state-based catchup

A replica can catch-up either by copying the missing decisions or by a combination of transferring the
state plus the most recent decisions. In the rest of this report log-based catchup refers to the first option
while state-based catchup refers to the second option.

Log-based catchup is done by transferring the missing commands and executing them at the replica.
Transferring and executing the requests can be done concurrently, so the total duration can be approxi-
mated by the maximum time required to transfer all the updates or to execute them.

State-based recovery is performed in four steps:

• Serialization - Create a snapshot with the current state of the service.

• Transfer state - Transfer the snapshot to the other replica.

• Deserialization - Restore the state of the destination replica using the snapshot.

2Executing instances in parallel can lead to out-of-order decisions, see Section 6

15

• Residual log-based catchup - Execute commands already ordered that are not included in the
snapshot.

The first three tasks may be done concurrently.
Which method is faster depends on the several factors, like the size of the state, size of the requests,

the execution time of requests, and the bandwidth available. Log-based catchup transfers only the
commands that are missing, therefore avoiding transferring the full state. The time it takes to transfer
the commands depends on the number of commands to be transfered and on the size of each command.
With state-based recovery, the time to transfer the state depends only on the size of the state. Another
factor to consider is that in log-based recovery the commands must be executed at the destination replica,
which takes time, while in state-based recovery it is only necessary to replace the state, which is typically
fast. The above discussion suggests that the strategy must be chosen according to the characteristics of
the service. As described below, JPaxos implements both strategies, choosing dynamically the one that
is likely to perform better based on the current conditions.

5.3.2 Starting and stopping catch-up

Starting Catch-up Activating the mechanism should not happen too early, that is when the process
might still able to decide by receiving enough Propose and Accept messages. On the other hand late
initiating leads to delaying command execution, and thus significant performance loss.

JPaxos uses a combination of the following triggers to initiate catch-up:

• periodical Activate periodically the mechanism.

• higher instance decided An instance with higher ID (i.e. newer instance) has already been
decided

• window Instance with ID higher than α has been started, and the implementation ensures that
only instances up to α are started as α− ws stays undecided.

• timeout No traffic for the ballot during a particular period of time

The simplest strategy is to activate catchup periodically, regardless of the state of the system, thereby
guaranteeing that from time to time the replica will bring itself up-to-date. However this method may
trigger unnecessary catchups and may take too long to catchup, leaving the replica with stale state for
too long.

A better strategy is to start catchup when the replica detects a gap on the sequence of commands,
that is, instance i is undecided while there are instances higher than i already decided. We may assume
the previous voting took similar amount of time – that is, it should be already finished. This trigger
is susceptible to false positives, because varying network latency may cause the situation that a newer
consensus is decided as the older is still in progress. The false positives may be minimized by waiting
until at least a certain number of instances higher than the missing instance are decided before initiating
catchup.

The window method relies on the fact that JPaxos executes in parallel at most WND instances,
where WND is the maximum window size (See Section 6). Therefore, if a replica receives a message for
instance i + WND or higher, then it can infer that instances i and lower were already decided at least
by the leader. Like in the previous strategies, the missing messages might be delayed and arrive in the
future, so the replica waits some time before initiating catch-up.

The timeout trigger handles the case where some messages from the last instance were lost and no
further instances were started. In this case, the previous two triggers would never occur and the replica
would remain without knowing the last decision.

A different problem is when a replica does not know that the instance already exists (for example,
a burst of message loss caused all messages for the replica to be dropped). In this case, the catch-up
should be started as well. JPaxos addresses this case by including in the Alive message from the leader
the highest instance ID started, which guarantees that every replica learns what instances already exist
within the failure detector timeout, and therefore can start catch-up if they have gaps on their command
log.

16

Stopping catch-up As the algorithm runs, the state of Paxos may not be stable, i.e., new ballots
may start. Therefore selecting the moment when catch-up should be deactivated requires some thought.

One method is to calculate conditions a priori (for example the IDs of missing instances), and continue
the process as long as needed. However, this can easily lead to constant switching on and off the catch-up
– voting for new instances may be faster than catching up, so as the predefined conditions are met, new
event already caused catch-up activation.

A better solution is to determine dynamically if catch-up is still needed. The method used by JPaxos
consists of checking if all instances outside the window are already decided. This ensures that all instances
outside the window as is currently known by the recovering replica will be discovered by the catchup
mechanism. The instances that are inside the window might not be decided yet, and in this case it is
preferable if the replica learns them by participating in the voting than by relying on the catchup.

5.3.3 Transport protocol

The catch-up may use a different transport protocol than the consensus algorithm. Choice of the trans-
port layer must take into account the characteristics of this mechanism as well.

Both TCP and UDP may be used – both having their pros and cons, presented in the table below:

TCP UDP

automatic retransmission guaranteed by protocol retransmission must be implemented manually
flow control provided by protocol no flow control, it is easy to congest network
big messages automatically fragmented, merged
and managed

splitting and handling big messages must be self
implemented

request cannot be changed at retransmission request can be changed each retransmission
default retransmission time custom retransmission time
another message may be sent once the previous
was delivered

new datagram may be sent anytime, no matter if
the previous reached the target

When catch-up is needed, our network must have (probably high) message loss. That means the
catch-up messages may also get easily lost.

We have noticed, that it is more efficient to use UDP for all smaller messages – if the package
gets lost, we are retransmitting it with updated query. Sometimes a UDP message retransmitted even
twice reaches its target faster then the same message sent with TCP. In TCP, the timeout for the ACK
message grows automatically – and that may cause big delays. During experiments, with 30% message
loss, transmitting a message using TCP that is smaller than the UDP-datagram size took even more
than 4 seconds to reach the other side.

In UDP, a single message delay or loss does not block the communication to the replica – but in TCP,
it does. In this case, no new catch-up query may be sent to this replica, as long as the previous will be
processed. The request cannot of course be changed. It means that once we got the response, the core
protocol may have already missed another instances to catch-up.

5.3.4 Requirements

The speed and the resource consumption must be correctly balanced.
In theory, catching-up can be delayed any finite time. On the other hand, it is important for the

view changes and for bounding the size of the log. A view change will take longer if the new leader is
missing many requests. Since during a view change no new requests are being satisfied, we need to keep
its length as short as possible. Additionally, if a replica does not know the instance i, it cannot execute
any request higher than i− 1. This also means that it cannot remove entries from the log.

Catch-up must perform well while at the same time consuming few resources, so that it does not slow
down significantly the core protocol. Good performance demand has one main reason: the arrival time of
the tasks for the state machine is dependent on being up to date. If catch-up would get the information
too late, the state machine would get long list of, possibly high CPU-consuming, tasks at once, instead
of doing them in spare time before.

Therefore, it is desirable to run the catch-up mechanism as often as possible, but without slowing
down the service significantly.

17

It should be noticed, that only the followers would have to catch-up, since the primary learns all
previous decisions on a view change and then it is the one proposing new values and leading the protocol.

5.3.5 Catch-up algorithm

The catch-up algorithm should contact other replicas and copy the decisions that are not known. The
question when this should be done is discussed in Section 5.3.2. Here the main idea of JPaxos catch-up
algorithm is presented.

To activate the catch-up, we use window and periodical methods (see Section 5.3.2). The leader
also sends in each Alive message the information about highest started instance. This ensures that the
replica will catch-up eventually, even if there are no new requests, and that a replica never stays too
much behind the others, at most WND.

There are three messages that may be sent during the algorithm: CatchUpQuery, CatchUp-

Response and CatchUpSnapshot.

• CatchUpQuery - a request for missing instances. It carries a list of missing IDs and may have
one of two flags set: the first flag indicates if this was a periodical catch-up, second one – if we
want to get the last snapshot, not the missing instances.

• CatchUpResponse - response sent for every received request. It has a list of decided instances
for requested numbers. The list may be empty. This message may have two flags: periodical flag
and snapshot only flag. The periodical flag is set if this is response to the periodical query. The
snapshot only flag is set if the replica does not have an old enough instances, and transferring a
snapshot is the only possibility.

• CatchUpSnapshot - if another replica asked for snapshot, this message is sent with most recent
snapshot.

The list describing missing instances is constructed by replica in straightforward way: it contains all
undecided instance numbers plus the (highestID+1) as the first instance, the replica has no knowledge
about. The responder sends therefore all decided instances from the list and all decided instances that
are higher or equal the additional number.

In order to make the messages smaller, a trick has been used: the list contains two sublists. One,
called a range list and the other, an instance list. The range list contains intervals we miss, while the
instance list – single numbers. For example, if we would miss instances 1, 2, 4, 6, 7, 8, 9, 11, and the
highest instance we know is 12 (state decided) our lists would look like:

[〈1, 2〉; 〈6, 9〉]; [4, 11, 13]

Notice the number 13 – it is the first we have no idea of existing, as mentioned above.
Algorithm 1 presents the catch-up algorithm used in JPaxos.
In line 2 a best replica is chosen. We have implemented it as follows: a rating for each replica is kept.

When sending a message, the rating decreases; when receiving response it rises. If an empty response is
received (except for the periodic mode), we request asking the leader next time. The best replica for
us is a follower with the highest positive rating, or the leader if all followers have negative rating. The
line 6 executes a predicate checking if the catch-up shall finish (see Section 5.3.2).

5.4 Snapshotting

As presented before, the support of storing and transmitting state of replicated machine is a very useful
and important part of a replica. In practical systems, it is necessary – it allows log truncating, faster
recovery and catch-up.

5.4.1 When to snapshot

Snapshots are needed to enable catch-up and recovery, and to truncate the log. For both uses there is a
different best moment for making snapshot.

18

Algorithm 1 Catch-up Algorithm
1: repeat

2: Choosing target replica
3: Creating list of missing instances
4: Send a CatchUpQuery

5: Wait for timeout or for response
6: until catch-up succeeds

7: upon receiving CatchUpQuery query
8: if query has snapshot flag set then

9: Get last snapshot
10: Prepare CatchUpSnapshot message
11: Send the message
12: else if requested instances already not in log then

13: Send CatchUpResponse with snapshot flag
14: else

15: Gather all decided instances
16: Send CatchUpResponse

17: upon receiving CatchUpResponse response
18: if response has snapshot flag set then

19: Prepare CatchUpQuery with snapshot flag
20: Send the query
21: else

22: Merge received log (if any)
23: Wake up the catch-up loop (line 5)

24: upon receiving CatchUpSnapshot snapshot
25: Check if snapshot is newer than current one
26: Replace the current snapshot with snapshot
27: Truncate logs (to stop catch-up)
28: Wake up the catch-up loop (line 5)

For recovery, frequent snapshots improve the recovery time, as this would improve the chances of a
replica obtaining a recent snapshot of the system, thereby reducing the duration of the second part of
recovery, e.g., executing missing commands.

For catch-up, the moment when another replica requests snapshot is the best for creating one. How-
ever some services cannot create snapshot anytime. So demanding a snapshot from the service is not
acceptable. The snapshot should be created periodically to truncate the log without any additional
requirements. Therefore, we assume the snapshot should be made when the cost of catch-up from the
log becomes bigger than the cost of catch-up from the snapshot. Note that catch-up time also includes
time of state/log transfer.

5.4.2 Replica vs service responsibility

There are two approaches to the problem who is in charge for the initiating of snapshot creation. Either
the JPaxos Replica module issues a snapshot, or the service chooses an appropriate moment.

Embedding this functionality into JPaxos would surely provide more secure work (the service may
simply not deliver the snapshots, which means forever growing log). It is easier for the Replica to
measure the size of the messages that should be transferred in order to catch-up (or recover).

However, JPaxos does not know anything about the service. We can also assume, that the service
is not aware of network conditions. Therefore choosing the proper moment (when the cost of log-based
catch-up becomes more expensive than the state-based catch-up) is impossible for both. It is clearly
visible, that service is better informed – it knows not only the size of requests, but also it may estimate
the size of its current state and the resources that are needed to execute all commands from the log.

The latter is most significant difference: JPaxos has no idea how long the log execution from previous
snapshot would take. It seems possible to estimate this: measuring the time between a request and

19

the reply to that request might solve the problem. However, such estimate can give mistaken results,
especially in a multi-process environment. If another process is consuming CPU, or the replica waits a
long time for granting some resources (like an access to a file or even a printer), the estimate surely will
not reflect the real value.

Below we present a table showing in compact way the state of knowledge needed to select the best
moment for a next snapshot:

Service JPaxos Replica

Size of requests known known

Size of state known estimate

Log execution time good estimate poor estimate

Time for sending message unknown estimate

Table 4: Comparing knowledge of the service and the Replica

5.4.3 Snapshotting in JPaxos

Snapshotting, as described above, may be done in a variety of ways. Moreover, how often the snapshots
are made depends on the implementation. Here we give some main clues how the snapshotting is
implemented.

The decision who orders a snapshot creation has been left to the future user of the library. To achieve
this, some assumptions have been taken – mainly concerning the architecture of the service.

The service must implement three methods: askForSnapshot, forceSnapshot and updateToSnap-

shot. Also it is required to implement adding and removing snapshot listeners – objects that implement
the onSnapshotMade function. When a snapshot is made on the state machine, method onSnapshotMade

with the snapshot as a parameter must be called on all snapshot listeners.
Replica measures the size of the log after every n-th instance, and calculates an average size of the

snapshot based on the previous ones. By every log measurement, a ratio is calculated: log size

snapshot estimate
. As

the ratio exceeds one constant, method askForSnapshot is called. After another constant, forceSnapshot

is executed.
There are several approaches possible on who decides the proper time for the snapshot:

• State machine only - Service ignores the functions askForSnapshot and forceSnapshot and
does the snapshot at its convenience,

• Using replica calls as hints – service takes under consideration askForSnapshot and force-

Snapshot functions, but decides itself when to do snapshot,

• Balanced responsibility – service uses both askForSnapshot and forceSnapshot; the first as
a hint, the latter treats as an order,

• Replica only - each time askForSnapshot is called, the state machine does snapshot.

Snapshotting requires also additional data exchanged between replica and service: the state machine
must know the request number, to allow snapshot identification in the replica. For example, if the snap-
shotting would be done completely on service’s side, how would the replica know after which command
the snapshot was taken.

5.5 Log truncation

The replicated log cannot be allowed to grow forever, it must be bounded in any practical system. After
a replica executes some command, it no longer needs the corresponding log entry locally. However, other
replicas might not have learned the decision yet. In this case, these late replicas need to learn the decision
by asking the corresponding log entry from a replica that still has it.

Having the old log entries is needed in three cases: for the catch-up, for view change and, in the
crash-recovery model, for recovery. The catch-up needs old log entries in order to send them to a replica
which is not up-to-date, once the replica requests them. During the view change, the leader requests log
entries of all instances it considers undecided. By recovery, a replica needs the log of other replicas in
order to know what has been decided at least since its crash.

20

p1

p2

p3

i

i + 1

(a) Paxos with pipelining

p1

p2

p3

Instance i

(b) Paxos with batching.

Figure 7: Paxos optimizations.

Especially the latter is problematic. The view change always requires a bounded number of instances
in the log. However, if we assume recovery with minimal or no stable storage (as in the case of the
epoch-based or view-based recovery algorithm), after the recovery a replica needs to recover the state
from scratch. For this, it needs the whole log or complete state.

Global Commit Point A command can be deleted from the log after being executed by all replicas in
crash-stop and crash-recovery models with stable storage. The highest instance executed by all replicas
is called a global commit point.

However, removing all instances prior to the global commit point is not enough to ensure that the
log is kept bounded, because a correct replica may be disconnected from the system for some time.
When communication is reestablished, the replica needs to learn about all the decisions taken in the
meantime. If one replica crashes, the other replicas have no way of knowing that it is a crash and not a
disconnection, so they would have to keep the logs forever. Therefore, JPaxos relies solely on snapshots
for log-truncation.

6 Paxos optimizations: Batching and pipelining

Batching and pipelining are two optimizations that can be applied to MultiPaxos to greatly improve
performance in many common situations. This section describes the JPaxos implementation of these
two optimizations and summarizes the results of an experimental study evaluating the gains offered by
these optimizations. Further details of this study, including an analytical analysis, can be found in [12].

6.1 Pipelining

Pipelining is an optimization originally described in [1] that allows the leader to execute several instances
in parallel. It is based on the observation that when a leader receives a new request, it can start a new
instance at once, even if there are other that are still undecided, as shown in Figure 7a.

Executing parallel instances improves the utilization of resources by pipelining the different instances.
This optimization is especially effective in high-latency networks, as the leader might have to wait a long
time to receive the Phase 2b messages.

JPaxos limits the number of instances that can be executed in parallel by a configuration parameter
named window size. This is necessary because setting the window size to an excessive value can degrade
performance. On the one hand, each instance requires additional resources from the system. If too many
instances are started in parallel, they may overload the system, either by maxing out the leader’s CPU
or by causing network congestion, resulting in a more or less severe performance degradation. A large
window size will also tend to increase the time required for view change, as the new leader has to learn
the state of all instances that were started but not decided. Finally, although instances can be decided
out-of-order, requests must be executed in order which means that an undecided instance will delay the
execution of all the requests ordered in later instances, potentially stalling the service until the gaps are
filled. Although having some requests prepared ahead of time for execution may improve performance
as it allows execution to proceed quickly after the gaps are filled, a large window size may result in the

21

system spending resources ordering requests that cannot be executed instead of deciding the instances
that are next in execution order.

The optimal value for the window size depends on many factors, including the network latency, the
size of the requests, the speed of the replicas, and the expected workload. In [12] we have explored this
problem, with an analytical analysis and an experimental evaluation of parallel instances and batching
in the context of Paxos.

A non-obvious consequence of pipelining is that the same request may be ordered twice.

��

��

��

��

��

����

�

����

����

����

����

�

����

�

�

����

�

����

�

�

����

�

�

����

�

�

����

�

�

Figure 8: Duplicating messages – the example scenario

Consider the following scenario, illustrated in Figure 8. There are three replicas - R1, R2 and R3.
R1 is the leader, proposes <1:B> (value B in first consensus instance). No other processes receives these
messages and R2 becomes the leader. R2 proposes <1:C> and <2:B>. All proposes for <1:C> are
lost, but <2:B> is decided. R2 fails and R1 becomes the leader again. While preparing, it learns about
<2:B>. It has <1:B> as a previously accepted value. The Paxos algorithm requires R1 to propose
<1:B> again, since its the accepted value with the highest timestamp. In addition, this will result in
the request being decided twice.

The scenario above is fairly unlikely because of the mechanism used to deal with lost replies. Recall
that a replica keeps the answer to the last request executed from each client, so that it can retransmit it
to the client. Therefore, if the retransmitted request arrives after the replica has executed the request,
the replica will know it is a duplicate and will not try to order it.

For the rare cases where the request is ordered multiple times, JPaxos repeats the check for duplica-
tions just before executing the request. This is done by comparing the sequence id of the request with
the one of the last request executed from that client, and executing the request only if the sequence id
of the new request is higher.

6.2 Batching

Batching is a common optimization in communication systems, which generally provides large gains in
throughput and, indirectly, in response time [19]. It can also be applied to Paxos, as illustrated by
Figure 7b. Instead of proposing one request per instance, the leader packs several requests in a single
instance. Once the order of a batch is established, the order of the individual requests is decided by
a deterministic rule applied to the request identifiers. Packing and unpacking of requests is further
illustrated by Figure 9.

�������
���	�
�����	�
��
���	�
������	�
���
���	�
���

���	�
��������

���	�
��

���	�
���

���	�
���

���	�
�����	�
��
���	�
������	�
���
���	�
���

�������������

���	�
��������

����
 �������

���	�
��

���	�
���

���	�
���

Figure 9: The batching mechanism

22

The gains of batching come from spreading the fixed costs of an instance over several requests, thereby
decreasing the average per-request overhead. For each instance, the system performs several tasks that
take a constant time regardless of the size of the proposal, or whose time increases only residually as
the size of the proposal increases. These include interrupt handling and context switching as a result
of reading and writing data to the network card, allocating buffers, updating the replicated log and
the internal data structures, and executing the protocol logic. In [20], the authors show that the fixed
costs of sending a packet over a Ethernet network are dominant for small packet sizes, and that for
larger packets the total processing time grows significantly slower than the packet size. In the case of
Paxos, the fixed costs of an instance are an even larger fraction of the total costs because, in addition
to processing individual messages, processes also have to execute the ordering algorithm. Additionally,
batching decreases dramatically the cost of using stable storage, because a single stable storage access is
enough to log the state of all requests in a batch.

Although batching has a trivial implementation, ensuring that it performs well across a wide-range
of workloads is challenging. The main difficulty is choosing a policy to decide when to stop waiting for
more client requests and propose a batch in a new instance. This policy is critical to ensure a good
performance in terms of response time observed by the clients and in throughput. In general, the larger
the batches, the bigger the gains in throughput. But in practice, there are several reasons to limit the
size of a batch. First, the system may have physical limits on the maximum packet size (for instance, the
maximum UDP packet size is 64KB) or may perform better if UDP packets are kept under other physical
limits like the maximum Ethernet frame size. Second, larger batches take longer to build because the
leader has to wait for more requests, possibly delaying the ones that are already waiting and increasing
the average time to order each request. This is especially problematic with low load, as it may take
a long time to form a large batch. Finally, a large value takes longer to transfer and process, further
increasing the latency. Therefore, a batching policy must strike a balance between creating large batches
(to improve throughput) and deciding when to stop waiting for additional requests and send the batch
(to keep latency within acceptable bounds). This problem has been studied in the general context of
communication protocols by [21, 20, 22].

JPaxos has a Batcher module that receives the requests from clients, forms batches according to a
given policy, and then passes them to the Proposer to start a new instance. This modules uses a policy
that starts batches using a combination of a size and time-based trigger: a batch is started either if it is
large enough or if it has been waiting for long enough, according to two configurable parameters. This
policy is described below, together with the pipelining implementation as the two are intimately related.

6.3 Batching and pipelining algorithm

In JPaxos, the Batcher module controls both the batching and pipelining optimizations, i.e., it decides
when to create a new batch and initiate a new instance. The algorithm used by this module (Algorithm 2)
is based on the following three parameters: WND, BSZ and ∆B. The parameter WND is the maximum
number of instances that can be executed in parallel (maximum window size), BSZ is the maximum
batch size (in bytes), and ∆B is the batch timeout.

The algorithm starts by waiting until there are free slots in the window size, that is, the current
number of instances executing is smaller than WND.

It then tries to form a new batch, by retrieving values from the request queue, which holds the
requests received from the client that are waiting for. The leader then waits until either it has enough
requests to fill the batch or the age of the batch is greater than ∆B, with age of a batch being the largest
waiting time in the system among all requests in the batch.

6.4 Discussion

In [12], we present the results of an experimental study evaluating batching and pipelining. Here we
summarize the conclusions of that study.

Our experiments show clearly that batching by itself provides the largest gains both in high and
low latency networks. Since it is fairly simple to implement, it should be one of the first optimizations
considered in Paxos and, more generally, in any implementation of a replicated state machine.

Pipelining is useful only in some systems, as its potential for throughput gains depends on the ratio
between the speed of the nodes and the network latency: the more time the leader spends idle waiting

23

Algorithm 2 Algorithm used to batch requests and start consensus instances. size(Batch) =
∑

r′∈Batch |r
′|, age(Batch) = min{r′.ts : r′ ∈ Batch} where r.ts is the local time when the request

was received from the client, and Ct() returns the local time.
Initialization:

reqQueue {queue with client requests waiting to be ordered}
w ← 0 {number of active instances}
fork main() task

upon instance decided
w ← w − 1

procedure buildBatch()
Batch ← ∅
while true do

wait until reqQueue not empty or age(Batch) + ∆B ≥ Ct()
while reqQueue not empty do

r ← reqQueue.first()
if size(Batch) + |r| ≤ BSZ then

Batch ← Batch ∪ {r}
reqQueue.removeFirst()

else

return Batch

if size(Batch) ≥ BSZ or age(Batch) + ∆B ≥ Ct() then

return Batch

procedure main()
while true do

wait as long as w = WND

Batch ← buildBatch()
start new instance with Batch

w ← w + 1

for messages from other replicas, the greater the potential for gains of executing instances in parallel.
Thus, in general, it will provide minimal performance gains over batching alone in low latency networks,
but it provides substantial gains when latency is high.

While batching decreases the CPU overhead of the replication stack, executing parallel instances has
the opposite effect because of the overhead associated with switching between many small tasks. This
reduces the CPU time available for the service running on top of the replication task and, in the worst
case, can lead to a performance collapse if too many instances are started simultaneously (see Emulab
experiments). This problem can be avoided by carefully setting the limit on the number of parallel
instances, taking in consideration the available CPU time on the leader.

The analytical model in [12] can be used to chose the parameters for these two optimizations.

7 Recovery

In this section, we describe the issues concerning recovery from crash. We start with short overview
of recovery and then present four different algorithms – crash-stop, crash-recovery with stable storage,
epoch-based recovery and view-based recovery. After that, we summarize and compare performance and
fault tolerance of the algorithms.

Descriptions and proofs of algorithms presented in this chapter can also be found in [23]. The pseudo
code provided in this chapter is a slightly modified version of pseudo code from [23]. The modifications
reflect the actual implementation of the algorithms in the JPaxos library.

7.1 Overview

When reasoning about the crash-recovery, it is usual to assume that processes have access to volatile and
stable storage. Any data stored in volatile memory is lost during a crash, while data on stable storage

24

is preserved.
In practice, an hard disk is the typical media used to store data. An hard drive can be used as a stable

storage media by using a write protocol that ensures that data will be consistent (based on write-ahead
logging) and by using synchronous writes. Asynchronous writes provide a semantics of volatile storage,
since due to buffering at the operating system level, the data may not have been written to the physical
media by the time the process regains control after executing the write system call. A synchronous write
is orders of magnitude slower than an asynchronous write, therefore it is important to minimize the
number of stable storage writes on the critical path.

In this section, we use n to denote the number of processes, f for the number of faulty processes and
p for the ID of local process.

7.2 Crash stop

In the crash-stop model, crashed process will never be up again. Because of that, there is no recovery
phase and we do not need stable storage. Because processes do not perform any synchronous writes to
stable storage, the protocol can execute at the maximum speed allowed by the CPU and the network,
which is usually one order of magnitude higher than when stable storage is used.

However, in this model, if a majority of processes crashes, the algorithm stops, which makes this
model unpractical for long lived systems. Below we present three algorithms, which allow for process
recovery.

7.3 Recovery phase

A recovery phase is the state of JPaxos replica after starting the process. It must be decided, if this is
the first run of this replica or recovery from crash.

Of course, if this is the first start, the process can just go to normal state. Otherwise, the process
must stay in the Recovery phase as long as it does not fulfill requirements of the recovery model.

The process cannot join the Paxos protocol until the recovery phase is finished. So recovering process
cannot respond to any message received, like Propose, Accept, Prepare and PrepareOK. However,
these messages may be received and processed, so the process can passively join the protocol. The
moment when the process joins (actively) Paxos protocol is also a moment when the process is considered
as correct.

7.4 Crash-recovery with stable storage

First algorithm with ability to recover a process is crash recovery with stable storage. In this algorithm,
a process saves enough information to stable storage so that upon recovery, it can restore its state
using only information stored on local storage, and rejoin the protocol without executing any additional
recovery protocol involving the other replicas. With this algorithm, processes write to stable storage
often, once per instance of the ordering protocol, which results in a significant overhead.

The following are the variables used in the algorithm.
logp – the array of consecutive instances – id→< view, value >

viewp – the current view number
statep – the last snapshot made by service or received from catch-up

On recovery, the algorithm reads the view, values for all consensus instances and last snapshot from
stable storage and can join a Paxos protocol (the process cannot respond to any message until it loads
everything from stable storage).

This synchronous writes are made on critical path, so the performance of this algorithm will be
much lower comparing to crash-stop model. However, the crash recovery with stable storage algorithm
tolerates catastrophic failures – the failure when all processes crashed. Of course, when the majority of
the processes are crashed, the replicated service is unavailable. However, we can start all processes again
and they will recover to a state before the crash.

As we can see, this algorithm is already deployable in environment with crashes. However, because
the performance is low, we describe two more algorithms. These algorithms will not tolerate catastrophic
failures but their performance should be close to the performance of crash-stop model.

25

Algorithm 3 Crash-recovery with stable storage [23].
1: Initialization:

2: logp ← ⊥
3: viewp ← 0
4: if viewp mod n = p then

5: viewp ← 1
6: statep ← ⊥
7:

8: if recovery after crash then

9: viewp ← last view number written to stable storage
10: for < id, view, value > from stable storage do

11: logp[id]←< view, value >

12: statep ← last snapshot saved to stable storage
13:

14: join Paxos protocol

15: procedure advanceView(view)
16: write view to stable storage
17: viewp ← view

18: procedure updateValue(id, view, value)
19: logp[id]←< view, value >

20: write < id, view, value > to stable storage

21: procedure newSnapshot(snapshot)
22: write snapshot to stable storage
23: statep ← snapshot

7.5 Epoch-based recovery

In this section, we describe the algorithm based on epoch numbers. This algorithm makes only one
synchronous write to stable storage on process startup, but the recovery phase is more complicated
compared to the previous algorithm.

We will use following variables in the pseudocode:
epochp – vector of epoch numbers

e – epoch number of single process
highestId – the id of highest known consensus instance

Algorithm 4 presents the pseudo-code.
Epoch-based recovery algorithms tolerates f =

⌊

n−1
2

⌋

crashed processes. It requires that at least a
majority of up processes at any time - otherwise the algorithm will block forever.

In the recovery phase the process first notifies the majority of other replicas about its recovery. As
the process must know when its state becomes correct, it must wait for recovery answer from the leader,
who has the most recent state. Once it gets the acknowledgments, it is downloading all information from
other replicas using the catch-up mechanism. When all necessary information is transferred, the replica
can join the Paxos protocol and is considered as correct.

On normal execution, this algorithm should be as fast as the algorithm in the crash-stop model. The
size of PrepareOK message is increased by epoch vector, which contains n numbers but it should not
have big impact on performance or network usage. This algorithm is a compromise between crash-stop
and crash-recovery with stable storage.

Example

The following example illustrates the algorithm (See Figure 10). Let 5 processes, numbered from 0 to
4, which are all up and in view 4 (where process 4 is a leader). The epoch vectors are initially set to
[0, 0, 0, 0, 0].

26

Algorithm 4 Epoch-based recovery [23].
1: Initialization:

2: logp ← ⊥
3: viewp ← 0
4: if viewp mod n = p then

5: viewp ← viewp + 1
6: statep ← ⊥
7: ∀q : epochp[q]← 0
8:

9: if recovery after crash then

10: epochp[p]← last epoch number written to stable storage
11: epochp[p]← epochp[p] + 1
12: send < Recovery , epochp[p] > to all except p

13: wait for n − f < RecoveryAnswer , epoch, view, highestId > messages including from pri-
mary of highest view received

14: ∀s ∈ Π : epochp[s]← max{epoch[s] received}
15: viewp ← max{view received}
16: download all instance up to highestId from leader using catch-up module
17: write epochp[p] to stable storage
18:

19: join Paxos protocol

20: upon receive < Recovery , e > from q

21: if q is primary of viewp then

22: change to a higher view where q is not primary
23: wait until view change is complete
24: epochp[q]← e

25: send < RecoveryAnswer , epochp, viewp, highestIdp > to q

26: upon < PrepareOK , epoch, view, highestId > from q

27: if view > viewp then

28: viewp ← view

29: send < Prepare , viewp > to all
30: else

31: ∀q : epochp[q]← max{epoch[q], epochq[q]}
32: for all s ∈ Π do

33: discard all messages < PrepareOK , epoch, viewp,−,− > from s where epoch[s] < epochq[p]
34: execute normal handler

27

Process 0 suspects the leader and advances to view 5 by sending Prepare message to all. Process
1 receives Prepare and respond with 〈PrepareOK, [0, 0, 0, 0, 0], 5,−〉. The process 0 receives the
response and process 1 crashes. After the crash process 1 recovers, increases epoch number to 1 and sends
〈Recovery, 1〉 message to all. Processes [2, 3, 4] receive Recovery message, update epoch vector to [0,
1, 0, 0, 0] and responds with RecoveryAnswer and view 4. After receiving three RecoveryAnswer

messages with view 4 (also from leader of view 4), process 1 joins the protocol with view 4. Now process
2 receives the Prepare from process 0 and responds with 〈PrepareOK, [0, 1, 0, 0, 0], 5,−〉.

Process 0 already received three PrepareOK responses, from [0, 1, 2]. However, message from
process 1 will be discarded because it was sent when process 1 was in epoch 0 and now from process 2
we know that process 1 is in epoch 1. If we would not discard this message, process 0 would be prepared
leader in view 5 but processes [1, 3, 4] would be in view 4 and that would cause violation of Paxos
protocol.

��

��

��

�
��
�
�
��

�	

�

������
��

�����������������������

�
��
�
�
��
�
�

������
��

�����������������������

���������

�����������������������

������
��

�����������������������

������
��

�����������������������

������
��

�����������������������

���������

�����������������������

������
��

�����������������������

������
��

�����������������������

������
��

�����������������������

��
�
�
�
�
��

������
��

�����������������������

�
��
�
�
��

�
��
�
�
��
�
� ���������

�����������������������

���������

�����������������������

������������

������������������������ �����

�����!���"��������!

��
��
�
�
��
#
�
�
�
�

������������

Figure 10: Example of epoch-based recovery.

7.6 View-based recovery

The next algorithm is view-based recovery. Like epoch-based recovery, it requires a majority of up
processes at any given moment, but instead of using epoch numbers, the view number is written to
stable storage on every change. The pseudocode of this algorithm is presented in Algorithm 5.

This algorithm writes to stable storage on every view change. If the network is stable and the leader
does not crash, performance of the algorithm should be the same as in crash-stop model. If the view is
changed often because of message loss or leader crash, the performance can decrease.

The recovery phase is quite similar to the epoch-based recovery. The recovering process sends Re-

covery message to all, waits for a majority of RecoveryAnswer , including one from the leader from
which it obtains the highestId value. Then catch-up mechanism is used to retrieve missing instances
from correct processes. This algorithm is easier than based on epoch, because it does not introduce any
changes in handling the PrepareOK message.

7.7 Comparison

We presented four different algorithms implemented in JPaxos library. Each algorithm has different
performance and fault tolerance. To choose the best algorithm for user service, we need to decide what
fault tolerance and performance is required. Table 5, compares the four algorithms.

Crash recovery with full stable storage is an algorithm with the best fault tolerance because it tolerates
catastrophic failures. However, to achieve that it makes a synchronous write to stable storage on every
round (on every view and value change) what decreases the performance.

28

Algorithm 5 View-based recovery [23].
1: Initialization:

2: logp ← ⊥
3: viewp ← 0
4: if viewp mod n = p then

5: viewp ← viewp + 1
6: statep ← ⊥
7:

8: if recovery after crash then

9: viewp ← last view number written to stable storage
10: if viewp mod n = p then

11: viewp ← viewp + 1
12: send < Recovery, viewp > to all except p

13: wait for n − f < RecoveryAnswer, view, highestId > messages including from primary of
highest view received

14: viewp ← max{view received}
15: download all instance up to highestId from leader using catch-up module
16:

17: join Paxos protocol

18: procedure advanceView(view)
19: write view to stable storage
20: viewp ← view

21: upon receive < Recovery, view > from q

22: if q is primary of viewp then

23: change to a higher view where q is not primary
24: wait until view change is complete
25: if view > viewp then

26: advanceView(view)
27: send < RecoveryAnswer, viewp, highestIdp > to q

29

Crash-stop Full stable storage View-based Epoch-based

Fault tolerance 2f + 1 f 2f + 1 2f + 1
Process can recover no yes yes yes
Stable storage use no per round per view change on recovery
Additional messages — — Recovery Recovery

State transfer no if needed yes yes
Increased msg size — — — PrepareOK by n

Table 5: Comparison of recovery algorithms [23].

����������	

��
���	

�	�����	�

��
������	�

�����

��
�

�������
�	����	

�	��
�����	

�	�� �
���

�	���
���

Figure 11: Comparison of recovery algorithms.

Crash stop does not provide any recovery (crashed processes will never be up again) and a majority
of processes must be correct. However, no synchronous writes to stable storage are made so it provides
the best performance.

The compromise between crash recovery with stable storage and crash stop are view-based and
epoch-based recovery. They support recovery of crashed process and their performance should be close
to crash-stop model. If the service does not have to tolerate catastrophic failures, it is the best to use
them in production environment.

8 Threading and Scalability with multi-core

One of the main goals of JPaxos is to be scalable with multi-core CPUs. There are two main difficulties
in achieving this goal: 1) finding and exploiting opportunities for parallel execution and 2) ensuring
thread safety.

Parallelism and thread safety are often in conflict, as extracting parallelism requires the use of multiple
threads which, in turn, introduces the danger of race conditions. These are particularly problematic in an
implementation of state-machine replication, which has a complex state that is accessed and manipulated
in response to a variety of external and internal events that for the most part happen concurrently.

It is possible to side-step all race conditions with a single-thread design, using non-blocking I/O and
an event-driven architecture. Because race-conditions cannot occur in the presence of a single thread,
this is a trivially thread-safe design. Additionally, it may be more efficient than a threaded design, as it
eliminates all the overhead from managing threads. The main drawback is that this design does not take
advantage of multi-core CPUs, which – given the current trend to an increasing number of cores – is a
severe limitation. A second concern is the complexity of the design, which can be significantly higher in
a purely event-driven model. Some modules have simple designs when implemented as a thread, but are
complex to express in an event-driven model (e.g., failure detection).

JPaxos uses a hybrid design, with a mixture of event-driven and thread-based modules. This design
is loosely based on the concept of Actors in languages like Erlang and Scala, where an Actor encapsulates
both state and threading. Each module consists of private state, one or more threads, and a well-defined
interface for communicating with threads from other modules (usually through message queues). The
private state is accessible only by the threads managed by the module. This organization keeps complex
state isolated in a module, with well-defined access points, making it easier to reason about thread
safety. Some modules may contain a single thread, which automatically provides thread-safety inside
the module. Other modules may contain multiple threads, but as the shared state is confined to the
module, it is usually easier to enforce thread safety (either through locking or by state partitioning among
threads).

The design for each module is chosen based on several factors, like the potential for parallelism,
the complexity of its state and the complexity of its implementation. In the modules with the greatest

30

Replicas

Retransmitter
FailureDetector

TCPSenderTCPSenderTCPSender

Protocol

TCPReceiver

propose

suspect

process

Alive

received

start/stop

transmit

retransmit

send

instance

decided

Replica

message

received

send

answer

Selector

Batcher

enqueue

request

UDPNetwork

send

alive

Clients

snapshot

made

message

received

message

sent

Figure 12: Threading architecture of JPaxos. Solid lines represent synchronous calls and dashed lines
represent asynchronous calls.

potential for parallelism, we used several threads to extract this parallelism. This is the case of receiv-
ing/sending messages from/to the clients and the replicas, which corresponds to the bulk of the CPU
usage. When the module has little or no potential for parallelism, we chose the design with the simplest
implementation, in terms both of code complexity and thread safety. For instance some tasks, like re-
transmission and failure detection, have simpler implementations using a dedicated thread and blocking
operations rather than using an event-driven model. Other tasks, like executing the core MultiPaxos
protocol, have more natural implementations using an event-driven architecture, as they consist mainly
of event handlers.

Below we describe the threading design of JPaxos. The results of an experimental evaluation of the
scalability in multicore systems can be found in [24].

8.1 Threading architecture

Figure 12 shows the threading architecture of JPaxos.
Each module contains one or more threads. A module with a single box contains only one thread,

while those with multiple overlapping boxes contain several. The arrows represent the type of interaction
between the modules. A solid arrow represents a synchronous call or communication with an external
process, while a dashed arrow represents an asynchronous call (putting a message on the message queue
of the module).

Next we describe each module.

Selector This module handles all connections with the clients, being responsible for receiving new
connection requests, receiving requests and sending answers. It uses non-blocking I/O (Java NIO) in
order to scale efficiently to several thousands of concurrent client connections. The profiling tests have
shown that reading and writing requests represent a significant fraction of the CPU utilization of JPaxos,
so we have parallelized this module using state partitioning among threads. New connections are assigned
to one of multiple Selector threads using a round-robin strategy; these threads will then be responsible
to handle the connection during its lifetime. The number of threads is configurable.

31

Batcher This thread manages a queue with incoming requests, packs them into proposals according
to the batching policy and feeds them to the Protocol thread once this thread is ready to send additional
proposals. The Selector thread places new request in the Batcher queue, where the requests will remain
until there is space for them in batch. This queue is also a key part of flow control in JPaxos. If the
system is overloaded, this queue eventually fills up, which in turn blocks the Selector threads when they
try to add new requests. As these threads stop reading requests from the clients, the TCP buffers become
full which in turn stops the clients from sending more requests.

Protocol This thread is responsible for executing the core replication protocol and has exclusive access
to the protocol state, i.e., replicated log and associated variables, as well as the view number. It is
implemented as a single-thread event loop with an associated queue for incoming events. The main events
handled by the protocol thread are reception of new protocol message, batch ready to be proposed, leader
suspected, and snapshot performed. It is also responsible to manage catch-up internally. The complexity
of the state and of the operations performed by this module were the main reason to make it single-
threaded. Additionally, there would be little to gain in making this module multi-threaded, as most
operations execute quickly.

FailureDetector JPaxos uses a dedicated thread for failure detection. This is a very natural design
for this type of task. Additionally, as compared to an event-driven architecture, it provides more precise
timing of suspicions or sending heartbeats, as the scheduling is handled directly by the operating system.
This thread simply alternates between sending heartbeats or suspecting the leader, in both cases blocking
until it is time to send an heartbeat or to suspect a leader. Since protocol messages are also used as
heartbeats, this module receives callbacks whenever a message is sent or received. If the message comes
from the leader or is sent by the leader to all, then the corresponding timestamps are updated. To
minimize context switches, this is done by the callback thread without waking up the failure detector
thread. This is safe, because updating these fields will always result in delaying either the sending of the
heartbeat or the suspicion of the leader, so we can let the failure detector thread wait for the original
delay and then recompute what to do.

Retransmitter The retransmitter is responsible to ensure that messages essential to the progress of
the protocol are eventually delivered. When the Protocol thread sends a message for the first time, it
also hands it over to the Retransmitter thread which will start retransmitting it periodically. As the
protocol advances, the Protocol thread cancels the retransmission of messages that no longer need to
be delivered. This module consists of a thread and a blocking queue containing the messages to be
retransmitted sorted by next time of retransmission.

TCPSender and TCPReceiver When using TCP to communicate between the replicas, each replica
keeps a connection to each other replica. For each connection, JPaxos uses one thread for receiving
messages and another to send. The TCPReceiver threads read and deserialize the request and pass it to
the Protocol thread. With this design, deserialization of messages from different replicas can be done in
parallel, without slowing down the Protocol thread, which increases the potential parallelism of JPaxos.

Each TCPSender thread keeps a queue with messages to be sent, writing them to the socket as
fast as the socket can accept them. The purpose of this thread is to prevent the Protocol thread from
blocking. This can easily occur when sending bursts of messages faster than the TCP stack can send
them, which will result in filling up the TCP buffers of the operating system thereby blocking the thread
writing to the socket. If the protocol thread is allowed to block in these situations, then any problem in
communicating with a single replica could stop the whole system. We experienced this last situation in a
early prototype that used such design: when the TCP connection to one replica stopped accepting more
data, the protocol thread would block and stop processing messages from other replicas. This problem
continued until the TCP connection finally failed, which can take up to a few minutes. By having a
dedicated thread sending to every replica, then in the worst case only this thread is blocked. If the queue
of a TCPSender becomes full, then the connection is closed.

UDPNetwork This thread receives and deserializes all the messages received using UDP, and forwards
them to the appropriate module. There is always a single UDP socket for each replica, which is used for

32

the heartbeats of the failure detector and, optionally, for inter-replica communication. Contrary to when
using TCP for inter-replica communication, there is no dedicated UDP sender thread. This is because a
UDP send will never block, so there is no risk of blocking the whole system when sending through UDP.

Replica After a batch is ordered by the Protocol thread, it is handed over to the Replica thread
incoming queue. This thread will then read the batches from the queue, unpack them and execute them
sequentially, and pass the answers to the Selector thread for sending to the clients.

9 Performance Evaluation

This section presents a summary of the results of a performance evaluation of JPaxos, focusing on the
effect of batching and pipelining on the throughput of JPaxos.

In all experiments we assume the crash-stop model, and either 3 or 5 replicas.
The replicated service keeps no state. It receives requests containing an array of Sreq bytes and

answers with an 8 bytes array. We chose a simple service as this puts the most stress on the replication
mechanisms. In order to show the limits of JPaxos, all the experiments were performed with the system
under high load.

All communication is done over TCP. We did not use IP multicast because it is not generally available
in WAN-like topologies. Initially we considered UDP, but rejected it because in our tests it did not provide
any performance advantage over TCP. TCP has the advantage of providing flow and congestion control,
and of having no limits on message size, therefore saving us the tedious work of reimplementing these
features. The replicas open the connections at startup and keep them open until the end of the run.
Each data point in the plots corresponds to a 3 minutes run, excluding the first 10%. For clarity, the
plots below do not include error bars for the 95% confidence interval, as the errors are usually very small.

9.1 Batching versus pipelining

The experiments below examine the impact of batching and pipelining on the performance of JPaxos.
The full results can be found in [12].

We used 900 clients in the cluster and 1200 in Emulab, which is enough for the leader to form new
batches without having to wait for additional requests. All experiments were run using a single-core, by
using the taskset Linux utility to instruct the OS scheduler to run the process only on a single core.
This was done to better isolate the parameters in study.

For each experiment, we show six metrics: client latency, instance latency, request throughput,
instance throughput, average batch size and average number of parallel instances. The client latency
is the time the client waits for the reply to one request, which includes the transmission time from the
client to the leader, the queuing time of the request at the leader, the time to order the request, and the
time to send the answer back to the client.

The latency per instance is the time elapsed at the leader from proposal to decision of an instance,
i.e., from sending the Phase 2a message to receiving a majority of Phase 2b messages.

The throughput of instances is the number of Phase 2 executed per second, and the throughput of
requests is the number of requests ordered per second. Note that the throughput of requests is equal to
the throughput of instances multiplied by the average number of requests per instance.

The average batch size (bsz) and average window size (w) show how well the system is taking ad-
vantage of the optimizations. As mentioned previously, the leader might not always fill the batches
completely (i.e., up to BSZ) or to execute the maximum number of parallel instances. This can happen
either because of the lack of sufficient client requests queued for ordering or because the leader is not fast
enough to execute WND parallel instances simultaneously (previous instances finish before the leader is
able to start additional ones). Therefore, we measured the average size of the batches and the average
number of parallel instances and show the results below, in order to evaluate the effectiveness of the
optimizations in each scenario.

9.1.1 Cluster

The following experiments were run on a cluster of Pentium 4 at 3GHz with 1GB memory connected by
a Gigabit Ethernet. The effective bandwidth of a TCP stream between two nodes measured by netperf

33

20 40 60
0

100

200

300

400

500

600

Max. Batch Size (KB) (BSZ)

L
a
te

n
c
y
 (

m
s
)

WND=1
WND=2
WND=5

(a) Client latency

20 40 60
0

1

2

3

4

Max. Batch Size (KB) (BSZ)

L
a

te
n

c
y
 (

m
s
)

(b) Instance latency

20 40 60
0

20

40

60

80

Max. Batch Size (KB) (BSZ)

B
a
tc

h
 S

iz
e
 (

K
B

)

(c) Avg batch size (bsz)

20 40 60
0

5000

10000

15000

Max. Batch Size (KB) (BSZ)

R
e
q
u
e
s
ts

/s
e
c

(d) Requests/sec

20 40 60
0

500

1000

1500

2000

Max. Batch Size (KB) (BSZ)

In
s
ta

n
c
e
s
/s

e
c

(e) Instances/sec

20 40 60
0

1

2

3

4

5

Max. Batch Size (KB) (BSZ)

#
In

s
ta

n
c
e

s

(f) Avg window size (w)

Figure 13: Cluster, experimental results with Sreq = 128.

is 940 Mbit/s.
Figure 13 shows the results as a function of batch size, for request sizes of 128 bytes, and maximum

window sizes of 1, 2 and 5.
The throughput reaches a maximum of 12K requests for batch sizes of 20KB and higher (Fig 13d).

At this point, the bottleneck is the CPU of the leader. The network shows an utilization of around
24Mbits/s, which is far from the limit of 940Mbits/s. The response time as seen by the client is under
100ms (Fig 13a), while the latency of each instance is below 1ms, increasing slightly as the batch size
increases (Fig 13b). The reason for such a large difference between these two values is the large queuing
time of client requests at the leader before being proposed as part of a batch, caused by the clients
generating more load than the capacity of the system.

The results show the importance of batching for small requests. The throughput increases almost 10
times, until a maximum of 12K req/s with 20KB batches. Nevertheless, as BSZ is increased, the number
of instances executed per second drops (Fig 13e). This is expected, because larger batches take longer to
create and to transmit over the network. This drop in instance throughput is compensated by a larger
increase in the number of requests per batch, resulting in an overall gain in request throughput.

Contrary to batching, pipelining does not improve throughput. This is evident in Figure 13f, which
shows that the leader is not fast enough to start more than one instance at a time, except for the smallest
batch sizes. This is because in these conditions it takes longer to form a new batch than to execute an
instance. The performance does not drop if the BSZ or WND are increased past their optimal values.
This is a desirable behavior, because the system will perform optimally with a wide range of configuration
parameters, making it easier to tune.

9.1.2 Emulab - WAN environment

We used Emulab [25] to emulate the conditions of a typical WAN environment with geographically
distributed nodes. The replicas are connected point-to-point by a 10Mbits link with 50ms of latency. To
keep the system under high load the clients are connected directly to each replica and communicate at
the speed of the physical network (1Gbits). The physical cluster used to run the experiments consisted
of nodes of Pentium III at 850MHz with 512MB of memory, connected by a 100Mbps Ethernet.

The maximum throughput in the Emulab experiments is reached at 3K requests/sec (Fig 14d). At
this level, the network is close to saturation, with an utilization of over 7Mbits. The response time is on

34

20 40 60
0

2000

4000

6000

8000

10000

Max. Batch Size (KB) (BSZ)

L
a
te

n
c
y
 (

m
s
)

WND=1
WND=2
WND=5
WND=10
WND=20
WND=30

(a) Client latency

20 40 60
100

110

120

130

140

150

160

170

Max. Batch Size (KB) (BSZ)

L
a
te

n
c
y
 (

m
s
)

(b) Instance latency

20 40 60
0

20

40

60

80

Max. Batch Size (KB) (BSZ)

B
a
tc

h
 S

iz
e
 (

K
B

)

(c) Avg batch size (bsz)

20 40 60
0

1000

2000

3000

4000

Max. Batch Size (KB) (BSZ)

R
e
q
u
e
s
ts

/s
e
c

(d) Requests/sec

20 40 60
0

50

100

150

200

250

300

Max. Batch Size (KB) (BSZ)

In
s
ta

n
c
e
s
/s

e
c

(e) Instances/sec

20 40 60
0

5

10

15

20

25

30

Max. Batch Size (KB) (BSZ)

#
In

s
ta

n
c
e
s

(f) Avg window size (w)

Figure 14: Emulab, experimental results with Sreq = 128.

the order of seconds (Fig 14a), which is justified by the low capacity of the system.
Contrary to the cluster experiments, the maximum throughput is reached for a variety of combinations

of the BSZ and WND. For small values of WND, the BSZ must be increases up to 70KB to achieve
the maximum throughput, but as WND is increased, the maximum is reached with smaller and smaller
values for BSZ . This is explained by a different bottleneck in the Emulab experiments. The CPU is
mostly idle, while the limited bandwidth and high latency limit the performance. Under these conditions,
executing multiple instances in parallel pays off, by filling up the waiting time between instances due
to the latency. But if the batch size is large enough, then sending the batch is already enough to fully
occupy the bandwidth, in which case there is no gain in executing parallel instances. This is clear in
Fig 14f, which shows that for small batch sizes the system can run many parallel instances, but as the
batch size decreases the number of parallel instances drops to around 3.

10 Related work

The first works describing replication protocols incorporating the algorithmic ideas of Paxos were pub-
lished in the end of the 1980s. Lamport presented Paxos and MultiPaxos in [26], while in [17] Oki and
Liskov presented the Viewstamped Replication protocol for state machine replication, which is based on
the same ideas as MultiPaxos. For the first two decades after the initial publication, the work on Paxos
was mostly theoretical, consisting mainly of analytical analysis and extensions of the basic algorithm.
In [7], DePrisco describes and analyzes Paxos using timed-automata, and in [27], Lampson describes
several variants of Paxos and compares them in terms of safety, liveness and performance. Among the
protocols that extend Paxos, some of the most important are the following: Disk Paxos [28] uses re-
motely accessible disks to decrease the number of processes needed for liveness, PBFT [29] extends the
algorithmic ideas of Paxos into the Byzantine model, Cheap Paxos [2] shows how to use only f+1 accep-
tors, Fast Paxos [3] decreases the fault-free case latency by one message delay, and Mencious [5] uses a
multi-coordinator schema to decrease the average number of message delays in high-latency networks.

Although Paxos is well understood from a theoretical point of view, it was only recently that there
has been a growing interests in the practical aspects of using Paxos for state machine replication. This
is especially important because, as shown in this report, the abstract description of Paxos leaves open
many important details that must all be correctly addressed in any practical implementation. One of
the first works addressing these practical aspects was published in 2007 in [10]). The article describes

35

several implementation issues concerning the Paxos algorithm in the Chubby distributed locking server
developed at Google. A year later, [11] provides a detailed algorithmic description of an implementation
of state machine replication using MultiPaxos. This work was the primary inspiration for JPaxos. Other
works have focused in improving the throughput of Paxos. LCR [30] distributes the processes along a
ring to maximize network utilization and RingPaxos [31] combines several optimizations, including ring
topology, f+1 acceptors and usage of IP multicast.

The crash-recovery model has also been the subject of many research papers. Both of the original
descriptions of Paxos ([1, 17]) mention that by logging to stable storage one message per consensus
instance, Paxos can tolerate catastrophic failures. Because stable storage access adds significant overhead
to the protocol, there has been some effort to reduce the usage of stable storage. In [32], Liskov describes
a variant of viewstamped replication that reduces the number of stable storage accesses to one per view
change.

Completely avoiding stable storage is not possible in the general case, because if all processes crash
at the same time, the system looses all its state. In [14] the authors provide a tight bound on the number
of processes that must be always-up for consensus to be solved. In practice, it is possible to circumvent
this impossibility and design a system where an arbitrary number of processes can fail, as long as not
"too many" fail at the "same time". This is because as long as a majority of processes are up and have
a correct state at any given time, they can help processes that crashed and recovered in rebuilding their
state. Therefore, sometime after the crash and recovery of a process, the system is repaired, allowing
other processes to crash. This idea is used in [32], in another variant of viewstamped replication that
tolerates an arbitrary number of crashes and recoveries over the lifetime of the system.

In our work, we improve upon these algorithms, by further reducing the amount of stable storage
accesses from one per view change to one per recovery. Further details, including the description of the
recovery algorithms implemented in JPaxos, can be found in [23].

11 Conclusions

In this report, we have presented JPaxos, a fully functional state-machine replication library. JPaxos has
at its core the MultiPaxos algorithm described originally in [1], providing the fundamental theoretical
basis of our work. But, as described in this report, this is just a small part of building a complete system;
a fully functional system must tackle many engineering challenges. For instance, it must handle unreliable
network with message loss and delays, so we presented the catch-up mechanism, which guarantees that
eventually every correct replica will be up to date. The snapshot mechanism is used to bound the size of
the replicated log and to limit the amount of data that must be copied during state transfer. To improve
the efficiency of JPaxos, we implemented several performance improvements like skipping redundant
messages, pipelining and batching. A companion report [12] studies in detail how to tune pipelining and
batching. To tolerate crash-recovery faults, JPaxos includes four different recovery algorithms, which
we have described above. We have also devoted considerable attention to the threading architecture of
JPaxos, with the goals of providing a good scalability with the number of cores in a node while at the
same time keeping the architecture simple enough to minimize the risk of race-conditions. For this, we
adopted an hybrid architecture, combining event-driven with thread-based modules, where the decision
for each module is based on its potential for parallelism, and the relative implementation complexity of
the two options.

Although some of these challenges were already described in the literature, others, to our knowl-
edge, have received little attention in the context of state machine replication, like tuning batching and
pipelining, the recovery algorithms with little or no stable storage, and a scalable threading architecture.

We have released JPaxos as an open source project3. Additionaly, several research projects are using
JPaxos, including PaxosSTM [33], where it is used as communication layer.

Our future work includes introducing further performance improvements to JPaxos and adding sup-
port for crash-recovery models without the stable storage at all. It would be also interesting to evaluate
all recovery algorithms in a network with message loss and environment when failure of replica is a
common scenario.

3https://github.com/JPaxos/JPaxos

36

Acknowledgments

We would like to thank Tadeusz Kobus and Maciej Kokociński for using and testing our library and
discussions about JPaxos API.

This work has been partially supported by the Polish Ministry of Science and Higher Education within
the European Regional Development Fund, Grant No. POIG.01.03.01-00-008/08. The visit of Kończak
and Żurkowski at EPFL in July and August 2009 was supported by EPFL within the Summer@EPFL
internship program.

References

[1] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems, vol. 16, no. 2,
May 1998.

[2] L. Lamport and M. Massa, “Cheap Paxos,” in DSN ’04: Proceedings of the 2004 International
Conference on Dependable Systems and Networks (DSN’04). Washington, DC, USA: IEEE
Computer Society, 2004. [Online]. Available: http://portal.acm.org/citation.cfm?id=1009382.
1009745

[3] L. Lamport, “Fast Paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–102, Oct. 2006.

[4] E. Gafni and L. Lamport, “Disk Paxos,” Distributed Computing, vol. 16, no. 1, pp. 1–20, 2003.

[5] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building efficient replicated state machines
for wans,” in Proceedings of the 8th USENIX conference on Operating systems design and
implementation, ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 369–384.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1855741.1855767

[6] L. Lamport, D. Malkhi, and L. Zhou, “Vertical Paxos and primary-backup replication,”
in Proceedings of the 28th ACM symposium on Principles of distributed computing,
ser. PODC ’09. New York, NY, USA: ACM, 2009, pp. 312–313. [Online]. Available:
http://doi.acm.org/10.1145/1582716.1582783

[7] R. De Prisco, B. Lampson, and N. Lynch, “Revisiting the Paxos algorithm,” Theoretical Computer
Science, vol. 243, no. 1–2, pp. 35–91, 2000.

[8] N. Hayashibara, P. Urbán, A. Schiper, and T. Katayama, “Performance comparison between the
Paxos and Chandra-Toueg consensus algorithms,” in Proc. Int’l Arab Conference on Information
Technology (ACIT 2002), 2002, pp. 526–533.

[9] L. Lamport, “Lower bounds for asynchronous consensus,” Distributed Computing, vol. 19,
pp. 104–125, 2006, 10.1007/s00446-006-0155-x. [Online]. Available: http://dx.doi.org/10.1007/
s00446-006-0155-x

[10] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an engineering perspective,”
in PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing. New York, NY, USA: ACM Press, 2007, pp. 398–407. [Online]. Available:
http://dx.doi.org/10.1145/1281100.1281103

[11] Y. Amir and J. Kirsch, “Paxos for system builders,” Johns Hopkins University, Tech. Rep. CNDS-
2008-2, 2008.

[12] N. Santos and A. Schiper, “Tuning Paxos for high-throughput with batching and pipelining,” EPFL,
Tech. Rep. EPFL-REPORT-165372, Jul. 2011.

[13] M. Welsh, D. Culler, and E. Brewer, “Seda: an architecture for well-conditioned, scalable
internet services,” in Proceedings of the eighteenth ACM symposium on Operating systems
principles, ser. SOSP. New York, NY, USA: ACM, 2001, pp. 230–243. [Online]. Available:
http://doi.acm.org/10.1145/502034.502057

37

[14] M. K. Aguilera, W. Chen, and S. Toueg, “Failure detection and consensus in the crash-recovery
model,” Distributed Computing, vol. 13, no. 2, pp. 99–125, Apr. 2000. [Online]. Available:
http://www.cs.cornell.edu/home/sam/FDpapers/crash-recovery-finaldcversion.ps

[15] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast algorithms: Taxonomy
and survey,” ACM Comput. Surv., vol. 36, Dec. 2004.

[16] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,” Journal
of the ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996.

[17] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary copy method to support
highly-available distributed systems,” in PODC ’88: Proceedings of the seventh annual ACM Sym-
posium on Principles of distributed computing. New York, NY, USA: ACM, 1988, pp. 8–17.

[18] R. Ekwall and A. Schiper, “Solving atomic broadcast with indirect consensus,” in Proceedings of
the International Conference on Dependable Systems and Networks. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 156–165. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1135532.1135696

[19] R. Friedman and R. Renesse, “Packing messages as a tool for boosting the performance of total
ordering protocols,” Department of Computer Science, Cornell University, Tech. Rep. TR95-1527,
1995.

[20] B. Carmeli, G. Gershinsky, A. Harpaz, N. Naaman, H. Nelken, J. Satran, and P. Vortman, “High
throughput reliable message dissemination,” in Proceedings of the 2004 ACM Symposium on Applied
Computing, NY, USA, 2004.

[21] A. Bartoli, C. Calabrese, M. Prica, E. Di Muro, and A. Montresor, “Adaptive message packing for
group communication systems,” in OTM 2003 Workshops, ser. LNCS. Springer, 2003.

[22] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,” in Symposium on Reliable
Distributed Systems, SRDS’06, Oct. 2006.

[23] N. Santos, “Recovery on the Paxos protocol,” EPFL, Tech. Rep., May 2010.

[24] N. Santos and A. Schiper, “Scaling Paxos to multicore systems,” EPFL, Tech. Rep. to appear, 2011.

[25] B. White and J. L. et al, “An integrated experimental environment for distributed systems and
networks,” in Proc. of the Fifth Symposium on Operating Systems Design and Implementation,
Boston, MA, Dec. 2002.

[26] L. Lamport, “The part-time parliament,” SRC Research, Tech. Rep., Sep. 1989.

[27] B. Lampson, “The ABCD’s of Paxos,” in Proceeding of the 19th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC’01). ACM Press, Aug. 2001, p. 13.

[28] E. Gafni and L. Lamport, “Disk Paxos,” in Proceedings of the 14th International Conference on
Distributed Computing (DISC’00), 2000, pp. 330–344.

[29] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM Trans-
actions on Computer Systems, vol. 20, no. 4, 2002.

[30] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma, “Throughput optimal total order broadcast
for cluster environments,” ACM Trans. Comput. Syst., vol. 28, no. 2, 2010.

[31] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: A high-throughput atomic broadcast
protocol,” in Dependable Systems and Networks (DSN’10), Jun. 2010.

[32] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams, “Replication in the
Harp file system,” SIGOPS Oper. Syst. Rev., vol. 25, no. 5, pp. 226–238, 1991.

[33] T. Kobus and M. Kokociński, “Design and implementation of Distributed Software Transactional
Memory (DSTM),” Master’s thesis, Poznan University of Technology, Poznan, Sep 2010.

38

