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We present an exhaustive analysis of the problem of computing the relative entropy
of two probabilistic automata. We show that the problem of computing the relative
entropy of unambiguous probabilistic automata can be formulated as a shortest-distance
problem over an appropriate semiring, give efficient exact and approximate algorithms
for its computation in that case, and report the results of experiments demonstrating
the practicality of our algorithms for very large weighted automata. We also prove that
the computation of the relative entropy of arbitrary probabilistic automata is PSPACE-
complete.

The relative entropy is used in a variety of machine learning algorithms and ap-
plications to measure the discrepancy of two distributions. We examine the use of the
symmetrized relative entropy in machine learning algorithms and show that, contrar-
ily to what is suggested by a number of publications in that domain, the symmetrized
relative entropy is neither positive definite symmetric nor negative definite symmetric,
which limits its use and application in kernel methods. In particular, the convergence
of training for learning algorithms is not guaranteed when the symmetrized relative en-
tropy is used directly as a kernel, or as the operand of an exponential as in the case of
Gaussian Kernels.

Finally, we show that our algorithm for the computation of the entropy of an un-
ambiguous probabilistic automaton can be generalized to the computation of the norm
of an unambiguous probabilistic automaton by using a monoid morphism. In particular,
this yields efficient algorithms for the computation of the Lp-norm of a probabilistic
automaton.

1



2 Corinna Cortes, Mehryar Mohri, Ashish Rastogi and Michael Riley

1. Introduction

The problem of comparing two distributions arises in a variety of applications. A

specific instance of that problem is that of comparing distributions given by prob-

abilistic automata. Probabilistic automata are used extensively in text and speech

processing to model different aspects of language such as morphology, phonology,

or syntax [Mohri, 1997, Mohri et al., 1996] or in other applications such as com-

putational biology [Durbin et al., 1998] and image processing [Culik II and Kari,

1997].

The output of a large-vocabulary speech recognition system or that of a complex

information extraction system is often represented as a probabilistic automaton

compactly representing a large set of alternative sequences [Mohri et al., 2002].

Natural language sequences such as documents or biological sequences can also be

modeled by probabilistic automata [Krogh et al., 1994]. The computation of the

distance or discrepancy between probabilistic automata can thus be used to cluster

the outputs of speech recognition or information extraction systems, documents,

biological sequences, or other objects modeled in a similar way.

The problem of efficiently computing the distance between two distributions

represented by weighted automata arises in many other machine learning problems.

When a weighted automaton is obtained as a result of training on a large data set,

the quality of the learning algorithm can be measured by computing the distance

between the automaton inferred and that of the target automaton. Similarly, in

many on-line learning algorithms and grammar inference applications, the conver-

gence of an iterative algorithm relies on the magnitude of the distance between two

consecutive weighted automata.

This motivates the design of efficient algorithms for the computation of the

distance or discrepancy between probabilistic automata.a There are many stan-

dard distances or divergences commonly used to compare distributions, including

the relative entropy or Kullback-Leibler divergence, the Lp distance, the Hellinger

distance, the Jensen-Shannon distance, the χ2-distance, and the Triangle distance

between two distributions q1 and q2 defined over a discrete set X [Topsøe, 2000,

Csiszar and Korner, 1997].

In a companion paper, we give an exhaustive study of the problem of computing

the Lp distance of two probabilistic automata and other similar distances such as

the Hellinger distance [Cortes et al., 2007]. In particular, we give efficient exact

and approximate algorithms for computing these distances for p even and prove the

problem to be NP-hard for all odd values of p, thereby completing previously known

hardness results. We also show the hardness of approximating the Lp distance of

two probabilistic automata for odd values of p.

This paper deals with the problem of computing the relative entropy of two

aA related problem is that of testing the equivalence of two arbitrary probabilistic automata A1

and A2. In [Cortes et al., 2006, 2007], we give an efficient algorithm for this problem whose time
complexity is O(|Σ| (|A1| + |A2|)3), where Σ is the alphabet.
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probabilistic automata. The relative entropy, or Kullback-Leibler divergence, is one

of the most commonly used measures of the discrepancy of two distributions p and q

[Cover and Thomas, 1991]. It is an asymmetric difference that admits the following

information-theoretical interpretation: it measures the number of additional bits

needed to encode distribution p when using an optimal code for q in place of an

optimal code for p.

One approximate solution for the computation of the relative entropy would

consist of sampling sequences from the distributions represented by each of the

automata and of using those to compute the KL-divergence by simply summing

their contributions. But, sample sizes guaranteeing a small approximation error

could be very large, which would significantly increase the computation, while still

providing only an approximate solution.

We present an exhaustive analysis of the problem of computing the relative

entropy of two probabilistic automata. We show that the problem of computing

the relative entropy of unambiguous probabilistic automata can be formulated as

a shortest-distance problem over an appropriate semiring, give efficient exact and

approximate algorithms for its computation in that case, and report the results of

experiments demonstrating the practicality of our algorithms for very large weighted

automata. We also prove that the computation of the relative entropy of arbitrary

probabilistic automata is PSPACE-complete.

A procedure for the approximate computation of the relative entropy was given

by Carrasco [1997]. The procedure applies to deterministic weighted automata and

cannot be generalized to the case of unambiguous weighted automata because of the

specific sum decomposition it is based on (the partitioning assumed in [Carrasco,

1997] [Eqs. 15 and 16, page 6] does not hold for unambiguous automata). Our

algorithms apply to the larger class of unambiguous weighted automata. For some

unambiguous weighted automata, the size of any equivalent deterministic weighted

automaton is exponentially larger. Since the size of the machine directly affects the

complexity of the computation, it is important to be able to compute the entropy

directly from the unambiguous automaton. We give the first exact algorithms for

the computation of the relative entropy. We also describe approximate algorithms

that are conceptually simpler than the procedure of Carrasco [1997] and have a

better time and space complexity.

The relative entropy is used in a variety of machine learning algorithms and

applications to measure the discrepancy of two distributions. We examine the use

of the symmetrized relative entropy in machine learning algorithms and show that,

contrarily to what is suggested by a number of publications (e.g., [Mandel et al.,

2006]), the symmetrized relative entropy is neither positive definite symmetric nor

negative definite symmetric, which limits its use and application in kernel methods.

In particular, the convergence of training for learning algorithms is not guaranteed

when the symmetrized relative entropy is used directly as a kernel, or as the operand

of an exponential as in the case of Gaussian Kernels [Schölkopf and Smola, 2002].

Finally, we show that our algorithm for the computation of the entropy of an
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unambiguous probabilistic automaton can be generalized to the computation of the

norm of an unambiguous probabilistic automaton by using a monoid morphism

[Cortes et al., 2006]. In particular, this yields efficient algorithms for the computa-

tion of the Lp-norm of a probabilistic automaton.

The paper is organized as follows. Section 2 introduces the preliminary semiring

and automata definitions used in the remaining of the paper. Section 3 recalls the

definition of the relative entropy of two probabilistic automata and introduces a

semiring, the entropy semiring, which helps formulate the computation of the rela-

tive entropy of unambiguous probabilistic automata as a shortest-distance problem.

Section 4 describes both an exact and a fast approximate algorithm for the computa-

tion of the relative entropy of unambiguous probabilistic automata. It also provides

a detailed analysis of these algorithms and reports the results of experiments with

large weighted automata. The case of arbitrary probabilistic automata is treated in

Section 5 where the problem is proven to be PSPACE-complete. Section 6 proves

several negative results for the use of the symmetrized relative entropy in kernel

methods. It proves that the symmetrized relative entropy is neither positive definite

nor negative definite. Finally, Section 7 extends our algorithm for the computation

of the entropy of a probabilistic automaton to the computation of other norms

defined via a monoid morphism.

2. Preliminaries

2.1. Semirings and Weighted Automata

Weighted automata are automata in which each transition carries some weight in

addition to the usual alphabet symbol [Eilenberg, 1974–1976, Salomaa and Soittola,

1978, Berstel and Reutenauer, 1988]. For various operations to be well-defined, the

weight set must have the algebraic structure of a semiring [Kuich and Salomaa,

1986]. A semiring is a ring that may lack negation.

Definition 1. A semiring is a system (K,⊕,⊗, 0, 1) such that:

• (K,⊕, 0) is a commutative monoid with 0 as the identity element for ⊕,

• (K,⊗, 1) is a monoid with 1 as the identity element for ⊗,

• ⊗ distributes over ⊕: for all a, b, c in K,

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b).

• 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

Some familiar semirings are the Boolean semiring ({0, 1},∨,∧, 0, 1) or the tropical

semiring (R+ ∪ {∞}, min, +,∞, 0) related to classical shortest-paths problems and

algorithms. A semiring is idempotent if for all a ∈ K, a⊕ a = a. It is commutative

when ⊗ is commutative.

Definition 2. A weighted automaton A = (Σ, Q, I, F, E, λ, ρ) over a semiring

(K,⊕,⊗, 0, 1) is a 7-tuple where:
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• Σ is the finite alphabet of the automaton,

• Q is a finite set of states,

• I ⊆ Q the set of initial states,

• F ⊆ Q the set of final states,

• E ⊆ Q× Σ ∪ {ǫ} ×K×Q a finite set of transitions,

• λ : I → K the initial weight function mapping I to K, and

• ρ : F → K the final weight function mapping F to K.

The weighted automata considered in this paper are assumed not to contain

ǫ-transitions. A pre-processing ǫ-removal algorithm can be used to remove such

transitions for the automata considered here [Mohri, 2002a]. In the absence of ǫ-

cycles, the complexity of that algorithm is in O(|Q|2 + |Q||E|) [Mohri, 2002a].

We denote by |A| = |E|+ |Q| the size of an automaton A = (Σ, Q, I, F, E, λ, ρ),

that is the sum of the number of states and transitions of A. Given a transition

e ∈ E, we denote by i[e] its input label, p[e] its origin or previous state and n[e] its

destination state or next state, w[e] its weight (weighted automata case). Given a

state q ∈ Q, we denote by E[q] the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions:

n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek]

and p[π] = p[e1]. A cycle is a path with the same origin and destination states.

We denote by P (q, q′) the set of paths from q to q′ and by P (q, x, q′) the set of

paths from q to q′ with input label x ∈ Σ∗. The labeling functions i and the weight

function w can also be extended to paths by defining the label of a path as the

concatenation of the labels of its constituent transitions, and the weight of a path

as the ⊗-product of the weights of its constituent transitions: i[π] = i[e1] · · · i[ek],

w[π] = w[e1]⊗ · · · ⊗ w[ek].

The output weight associated by an automaton A to an input string x ∈ Σ∗ is

defined by:

[[A]](x) =
⊕

π∈P (I,x,F )

λ[p[π]]⊗ w[π]⊗ ρ[n[π]]. (1)

The language denoted by A is denoted by L(A) and defined by: L(A) = {x :

P (I, x, F ) 6= ∅}.
A state of an automaton A is accessible if it can be reached from an initial state.

It is said to be co-accessible if it lies on a path reaching a final state. An automaton

is said to be trim if all of its states are both accessible and co-accessible.

2.2. Deterministic and Unambiguous Weighted automata

A weighted automaton A is said to be deterministic or subsequential if it has a

deterministic input, that is if it has a unique initial state and if no two transitions

leaving the same state share the same input label. A weighted automaton is said

to be unambiguous if for any x ∈ Σ∗ it admits at most one accepting path labeled
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0

a/.33
b/.33

1/.5
a/.33

b/.5

Fig. 1. An unambiguous weighted finite automaton that cannot be determinized. 0 is the initial
state and 1 the final state. The automaton accepts the set of strings (a∗b∗)∗ab∗.

with x. Thus, the class of unambiguous weighted automata includes deterministic

weighted automata.

Fig. 1 shows an unambiguous weighted automaton that does not admit an equiv-

alent deterministic weighted automaton. Previous work on the computation of the

relative entropy [Carrasco, 1997] was limited to deterministic finite automata. We

present the first algorithms for the computation of the relative entropy of unam-

biguous weighted automata.

2.3. Shortest-Distances

Let s[A] denote the ⊕-sum of the weights of all successful paths of A when it is

defined and in K. s[A] can be viewed as the shortest-distance from the initial states

to the final states. When the sum of the weights of all paths from any state p to

any state q is well-defined and in K, we can define the shortest distance from p ∈ Q

to q ∈ Q as:

d[p, q] =
⊕

π∈P (p,q)

w[π], (2)

where the summation is defined to be 0 when P (p, q) = ∅. When ⊕ is replaced by

min and ⊗ by +, this definition coincides with the classical definition of shortest-

distance in the tropical semiring. This justifies the terminology used.

2.4. Probabilistic Automata

Definition 3. A weighted automaton A defined over the probability semiring

(R+, +,×, 0, 1) is said to be probabilistic if for any state q ∈ Q,
⊕

π∈P (q,q) w[π],

the sum of the weights of all cycles at q, is well-defined and in R+ and
∑

x∈Σ∗

[[A]](x) = 1. (3)

A probabilistic automaton A is said to be stochastic if at each state the weights of

the outgoing transitions and the final weight sum to one.

Note that our definition of probabilistic automata differs from that of Ra-

bin [1963] and Paz [1971]. Probabilistic automata as defined by these authors are
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weighted automata over (R+, +,×, 0, 1) such that at any state q and for any label

a ∈ Σ, the weights of the outgoing transitions of q labeled with a sum to one.

More generally, with that definition, the weights of the paths leaving state q and

labeled with x ∈ Σ∗ sums to one. Such automata define a conditional probability

distribution Pr[q′ | q, x] over all states q′ that can be reached from q by reading x.

Instead, with our definition, probabilistic automata represent distributions over

Σ∗, Pr[x], x ∈ Σ∗. These are the natural distributions that arise in many applica-

tions. They are inferred from large data sets using statistical learning techniques.

We are interested in computing the relative entropy of two such distributions over

strings.

2.5. Intersection of Weighted Automata

Let A1 and A2 be two weighted automata over the same semiring, with Ai =

(Σ, Qi, Ii, Fi, Ei, λi, ρi) for i = 1, 2. The intersection A of A1 and A2 is denoted by

A = A1∩A2. It is a weighted automaton accepting the language L(A1)∩L(A2) and

defined by the tuple A = (Σ, Q1 ×Q2, I1 × I2, F1 × F2, E, (λ1, λ2), (ρ1, ρ2)), where

the transitions E are defined according to the following rule:

(q1, a, w1, q2) ∈ E1 and (q′1, a, w′
1, q

′
2) ∈ E2 ⇒ ((q1, q

′
1), a, (w1 ⊗ w′

1), (q2, q
′
2)) ∈ E.

There exists a general algorithm for the computation of the intersection over an

arbitrary semiring, even in the presence of ǫ-transitions [Mohri et al., 1996]. The

time complexity of the algorithm is quadratic O(|A1||A2|) since in the worst case

the outgoing transitions of each state of A1 match all those of each state of A2.

3. Relative Entropy

The problem that we are interested in is that of computing D(A‖B), the relative

entropy of two unambiguous probabilistic automata A and B.

3.1. Definition

The entropy H(p) of a probability distribution p defined over a discrete set X is

defined as [Cover and Thomas, 1991]:

H(p) = −
∑

x∈X

p(x) log p(x), (5)

where by convention 0 log 0 = 0. The relative entropy, or Kullback-Leibler divergence

of two probability distributions defined over a discrete set X is defined as:

D(p‖q) =
∑

x∈X

p(x) log
p(x)

q(x)
= Ep[log

p(X)

q(X)
], (6)

where we use the standard conventions: 0 log 0
q = 0 and p log p

0 =∞. It is straight-

forward to show, using Jensen’s inequality, that the relative entropy is non-negative
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and that D(p‖q) = 0 if and only if p = q. Note that the relative entropy does not

define a metric since it is not symmetric and does not satisfy the triangle inequality.

These definitions naturally apply to probabilistic automata since they define

distributions over strings. The relative entropy of A and B can be written as the

sum of two terms:b

D(A‖B) =
∑

x

[[A]](x) log[[A]](x) −
∑

x

[[A]](x) log[[B]](x). (7)

3.2. Entropy Semiring

This section introduces a semiring that will be later used to formulate the problem

of computing the relative entropy of two unambiguous automata as a single-source

shortest-distance problem.

Let K denote (R∪{+∞,−∞})×(R∪{+∞,−∞}). For pairs (x1, y1) and (x2, y2)

in K, define the following :

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2) (8)

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + x2y1) (9)

Lemma 4. The system (K,⊕,⊗, (0, 0), (1, 0)) defines a commutative semiring.

Proof. It is known that (K,⊕, (0, 0)) is a commutative monoid with (0, 0) as the

identity element for ⊕. Furthermore, it is clear that (K,⊗, (1, 0)) is a commutative

monoid with (1, 0) as the identity element for ⊗. Also, (0, 0) is an annihilator for

⊗. Thus, all that remains to be shown is that ⊗ distributes over ⊕. Since both

operations are commutative, we need to verify that for all z1, z2, z3 ∈ K,

(z1 ⊕ z2)⊗ z3 = (z1 ⊗ z3)⊕ (z2 ⊗ z3) (10)

Let zi = (xi, yi) for i = 1, 2, 3. We verify each of these properties one-by-one. First

consider (z1 ⊕ z2)⊗ z3. We have

(z1 ⊕ z2)⊗ z3 = ((x1, y1)⊕ (x2, y2))⊗ (x3, y3)

= (x1 + x2, y1 + y2)⊗ (x3, y3)

= ((x1 + x2)x3, (x1 + x2)y3 + x3(y1 + y2))

= (x1x3, x1y3 + x3y1)⊕ (x2x3, x2y3 + x3y2)

= ((x1, y1)⊗ (x3, y3))⊕ ((x2, y2)⊗ (x3, y3))

= (z1 ⊗ z3)⊕ (z2 ⊗ z3),

which ends the proof of the lemma.

We call the semiring just defined the entropy semiring due to its relevance in the

computation of the entropy and the relative entropy. This semiring arises in other

bThe first term is simply −H(A), where H(A) is the entropy of A.
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q q’b/w

q0

a/0
a/0
b/0

Fig. 2. Illustration of the completion operation.

contexts and can be defined in terms of an S-module [Bloom and Ésik, 1991, Eisner,

2001].

4. Relative Entropy of Unambiguous Probabilistic Automata

This section describes two algorithms for computing the relative entropy of two

unambiguous probabilistic automata using a single-source shortest distance over the

entropy semiring: an exact algorithm, and a more efficient and practical approximate

algorithm. Clearly, these algorithms can also be used to compute the entropy of a

single unambiguous probabilistic automaton.

4.1. Semiring Formulation

The unambiguous weighted automata A and B are not necessarily complete: at

some states, there may be no outgoing transition labeled with a given element of

the alphabet a ∈ Σ. We can however make them complete in a way similar to the

standard construction in the unweighted case. We introduce a new state q0 with

final weight 0, add self-loops with weight 0 at that state labeled with all elements

of the alphabet, and for any a ∈ Σ and q ∈ Q, add a transition from state q to q0

labeled with a with weight 0 when q does not have an outgoing transition labeled

with a (see Figure 2). This construction leads to a complete and unambiguous

weighted automaton equivalent to the original one since the transitions added have

all weight 0. The completion operation is only applied to handle the boundary case

when there exists a string x ∈ Σ∗ such that [[B]](x) = 0 and [[A]](x) 6= 0. In this

case, the completion operation ensures that the future computation of the relative

entropy would correctly lead to ∞. Note that the completion operation can be

done on-demand. States and transitions can be created only when necessary for the

application of other operations. We can thus assume that A and B are unambiguous

and complete. At the cost of introducing a super-initial and a super-final state, we

can also assume in the following, without loss of generality, that the initial weight

λ and the final weights ρ(q) are all equal to 1 in A and B.

Let log A denote the weighted automaton derived from A by replacing each

weight w ∈ R+ by log w and let Φ1(A) (Φ2(A)) denote the weighted automaton over
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the entropy semiring derived from A by replacing each weight w by the pair (w, 0)

(resp. (1, w)). The construction of log A, Φ1(A), or Φ2(A) from A is straightforward

and can be done in linear time.

Proposition 5. The relative entropy of A and B satisfies the following identity in

the entropy semiring:

(0, D(A‖B)) = s[Φ1(A) ∩ Φ2(log A)]− s[Φ1(A) ∩ Φ2(log B)]. (11)

Thus, the relative entropy is expressed in terms of single-source shortest-distance

computations over the entropy semiring.

Proof. Since A is unambiguous and complete, both Φ1(A) and Φ2(log A) are also

unambiguous and complete. Thus, for a given string x, there is at most one accepting

path in Φ1(A) or Φ2(log A) labeled with x. Then, by definition of intersection, the

weight associated by Φ1(A) ∩ Φ2(log A) to a string x is

([[A]](x), 0) ⊗ (1, log[[A]](x)) = ([[A]](x), [[A]](x) log[[A]](x)). (12)

Thus, the shortest-distance from the initial states to the final states in Φ1(A) ∩
Φ2(log A) is

s[Φ1(A) ∩ Φ2(log A)] =
⊕

x

([[A]](x), [[A]](x) log[[A]](x)) (13)

= (
∑

x

[[A]](x),
∑

x

[[A]](x) log[[A]](x)) (14)

= (1,
∑

x

[[A]](x) log[[A]](x)). (15)

Similarly, we can show thatc

s[Φ1(A) ∩ Φ2(log B)] = (1,
∑

x

[[A]](x) log[[B]](x)). (16)

The statement of the proposition follows directly from the identities 15 and 16 and

Equation 7.

Thus, the computation of the relative entropy is reduced to two single-source

shortest-distance computations over the entropy semiring. The next section dis-

cusses two general algorithms for computing these distances. Since the first term

simply corresponds to the entropy of a single unambiguous probabilistic automaton,

our results clearly also apply to the computation of the entropy.

cGiven a string x = x1x2 whose respective transitions have weights u1 and u2 in A and
v1 and v2 in B, the weight in Φ1(A) ∩ Φ2(log B) becomes (u1, u1 log v1) ⊗ (u2, u2 log v2) =
(u1u2, u1u2 log(v1v2)), that is (‖A‖(x1x2), ‖A‖(x1x2) log ‖B‖(x1x2)).
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4.2. Exact Algorithm

A generalization of the classical Floyd-Warshall algorithm can be used to compute

all-pairs shortest distances d[p, q] (p, q ∈ Q) over a closed semiring not necessarily

idempotent [Mohri, 1998, 2002b]. This algorithm can thus also be used to compute

s[A] for a weighted automaton A over a non-idempotent semiring, which is needed

for our purpose.

In what follows, we assume a definition of closed semirings [Lehmann, 1977] that

is more general than the classical one used by Cormen et al. [Cormen et al., 1992] in

that it does not assume idempotence. This is because idempotence is not necessary

for the proof of the correctness of the generic all-pairs shortest-distance algorithms

of Floyd-Warshall and Gauss-Jordan [Mohri, 1998, 2002b]. More generally, given a

graph or automaton A, we introduce the following definition.

Definition 6. A semiring is closed for A if the infinite sum (closure) is defined for

any cycle weight c of A and if associativity, commutativity, and distributivity apply

to countable sums of cycle weights.

Clearly, the generic Floyd-Warshall algorithm can also be applied to any automaton

A for which the semiring considered is closed. The following lemma shows that the

entropy semiring has the desired property.

Lemma 7. Let A be a weighted automaton over the entropy semiring such that

for any cycle weight w = (x, y), x less than one (0 ≤ x < 1). Then, the entropy

semiring is closed for A.

Proof. For any (x, y) ∈ K and k ≥ 0, define Rk as:

Rk =

k times
︷ ︸︸ ︷

(x, y)⊗ . . .⊗ (x, y), (17)

with R0 = (1, 0). It is straightforward to show by induction that Rk =

(xk, kyxk−1) = (xk, y d(xk)
dx ). For N ≥ 0, define SN by:

SN =

N⊕

i=0

Ri =

(
1− xN+1

1− x
, y ·

[
1− xN

(1− x)2
− NxN

1− x

])

. (18)

Thus, for 0 ≤ x < 1, the closure of (x, y) is well-defined and in K:d

(x, y)∗ = lim
N→∞

SN =

(
1

1− x
,

y

(1− x)2

)

=

(
1

1− x
, y

d

dx
(

1

1 − x
)

)

. (19)

The associativity, commutativity, and distributivity properties follow the associa-

tivity, commutativity, and distributivity of the sums SN with other elements of the

entropy semiring and the corresponding properties of their pointwise limits.

dThe right-hand side can also be written as: (x∗, y(x∗)2), if we denote by x∗ =
P

∞

n=0
xn.
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Let A be a probabilistic automaton, then the weight u of a cycle must verify 0 ≤ u <

1, otherwise the automaton is not closed. The weight of a cycle of Φ1(A)∩Φ2(log A)

is of the form (u, u logu) (see Equation 12), where u is the weight of the cycle of A,

and similarly, the weight of a cycle of Φ1(A) ∩ Φ2(log B) is of the form (u, u log v),

where v is the weight of a matching cycle in B.

Thus, the entropy semiring is closed both for Φ1(A) ∩ Φ2(log B) and Φ1(A) ∩
Φ2(log A) and the generic Floyd-Warshall algorithm can be applied to compute the

shortest-distances s[Φ1(A) ∩ Φ2(log B)] and s[Φ1(A) ∩ Φ2(log A)].

The generic Floyd-Warshall admits an in-place implementation [Mohri, 1998];

the following gives the corresponding pseudocode.

1 for i← 1 to |Q|
2 do for j ← 1 to |Q|
3 do d[i, j]←

⊕

e∈P (i,j)

w[e]

4 for k ← 1 to |Q|
5 do for i← 1 to |Q|
6 do for j ← 1 to |Q|
7 do d[i, j]← d[i, j]⊕ (d[i, k]⊗ d[k, k]∗ ⊗ d[k, j])

8 return d

The ⊕- and ⊗-operations of the entropy semiring can be performed in constant

time. For (x, y) with 0 ≤ x < 1, the closure (x, y)∗ = ( 1
1−x , y

(1−x)2 ) can also be

computed in constant time. Thus, the running time complexity of the algorithm

is Θ(|E| + |Q|3) and its space complexity is Ω(|Q|2) when applied to a weighted

automaton A = (Q, I, F,Σ, δ, σ, λ, ρ) over the tropical semiring.

The intersection Φ1(A) ∩ Φ2(log A) can be computed in linear time O(|A|) but

the worst cost computation of Φ1(A)∩Φ2(log B) is quadratic, O(|A||B|). The total

time complexity of the computation of the relative entropy is thus in Θ(|A ∩B|3).
Its space complexity is in Θ(|A ∩B|2).

This provides an exact algorithm for the computation of the relative entropy. The

cubic time complexity of the algorithm with respect to the size of the intersection

automaton makes it rather slow for large automata.

Its quadratic lower bound complexity with respect to the size of the intersec-

tion machine makes it prohibitive for use in many applications. In text and speech

processing applications, a weighted automaton may have several hundred million

states and transitions. Even, if A has only about 100,000 states and A∩B has about

the same number of states, the algorithm requires maintaining a matrix d with 10

billion entries.

The next section presents an algorithm that exploits the sparseness of the graph

and does not impose these space requirements.
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4.3. Approximate Algorithm

A generic single-source shortest-distance algorithm was presented for directed

graphs defined over a k-closed semiring in [Mohri, 2002b]. The algorithm can be

viewed as a generalization to these semirings of classical shortest-paths algorithms.

This generalization is not trivial and does not require the semiring to be idempotent.

The algorithm is also generic in the sense that it works with any queue discipline.

Definition 8. Let k ≥ 0 be an integer. A semiring (K,⊕,⊗, 0, 1) is k-closed if:

∀a ∈ K,

k+1⊕

n=0

an =

k⊕

n=0

an. (20)

More generally, we will say that K is k-closed for a graph G or automaton A, if

Equation 20 holds for all cycle weights a ∈ K.

By definition, the entropy semiring is k-closed for any value of k for any acyclic

automaton A and thus the generic single-source shortest distance can be used to

compute the relative entropy exactly in such cases. But, in general, the entropy

semiring is not k-closed for a non-acyclic automaton A since by definition of SN ,

∀k > 0, Sk+1 − Sk = Rk+1 = (xk+1, (k + 1)yxk). (21)

But, given a weighted automaton A over the entropy semiring such that all cycle

weights w = (x, y) verify 0 ≤ x < 1, there exists KA sufficiently large such that for

all k ≥ KA, ||Sk+1 − Sk||∞ ≤ ǫ. Indeed, let X denote the maximum value of x for

all cycles and Y the maximum |y|. Then, for k ≥ log(Y/ǫ)
log(1/X) , ||Sk+1−Sk||∞ ≤ ǫ for all

(x, y). This leads us to consider an approximate version of the generic single-source

shortest distance algorithm in non-acyclic cases, where the equality test is replaced

by an ǫ-equality: u =ǫ v if ||u− v||∞ ≤ ǫ. The following gives the pseudocode of the

modified algorithm.

1 for i← 1 to |Q|
2 do d[i]← r[i]← 0

3 d[s]← r[s]← 1

4 S ← {s}
5 while S 6= ∅
6 do q ← head(S)

7 Dequeue(S)

8 r′ ← r[q]

9 r[q]← 0

10 for each e ∈ E[q]

11 do if d[n[e]] 6=ǫ d[n[e]]⊕ (r′ ⊗ w[e])

12 then d[n[e]]← d[n[e]]⊕ (r′ ⊗ w[e])

13 r[n[e]]← r[n[e]]⊕ (r′ ⊗ w[e])

14 if n[e] 6∈ S

15 then Enqueue(S, n[e])
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d[q] denotes the tentative shortest distance from the source s to q. r[q] keeps track

of the sum of the weights added to d[q] since the last queue extraction of q. The

attribute r is needed for the shortest-distance algorithm to work in non-idempotent

cases. The algorithm uses a queue S to store the set of states to consider for the

relaxation steps of lines 11-15 [Mohri, 2002b]. Any queue discipline, e.g., FIFO,

shortest-first, topological (in the acyclic case), can be used. The test of line 11 is

based on an ǫ-equality.

Different queue disciplines yield different running times for our algorithm. The

choice of the best queue discipline to use can be based on the structure of the two

automata, which can be exploited to obtain a more efficient algorithm to compute

the relative entropy. More specifically, let Q, E denote (respectively) the set of

states and edges in the intersection automata. Further, let N(q) denote the number

of times a state q is inserted in the queue. Then, using the Fibonacci heap with

a shortest first queue discipline (as in Dijkstra’s algorithm), the complexity of the

algorithm is given by:

O(|Q|+ |E|max
q∈Q

N(q) + log |Q|
∑

q∈Q

N(q)). (22)

If the underlying automata are acyclic, then using the queue discipline correspond-

ing to the topological order yields the best time complexity, and the problem can

be solved in linear time: O(|Q| + |E|).
Using a breadth-first queue discipline (as in the Bellman-Ford shortest distance

algorithm), updates to the shortest distance estimates in iteration k can be formu-

lated as Dk = MDk−1, where M is the matrix associated to the automaton, that is

the matrix representing the weighted graph defined by the automaton. Note that

the matrix multiplication here is over the ⊕ and ⊗ operations of the semiring, so

that Dk[i] = ⊕|Q|
j=1M [i, j]⊗Dk−1[j].

We now analyze the convergence rate of the approximate algorithm with the

breadth-first queue discipline. Let us focus only on the first component of the dis-

tance pair. Let M1 be the matrix obtained by taking the first part of each element

of M . Assume that the matrix M is a stochastic matrix.

By the Perron-Frobenius theorem, we know that the largest eigenvalue is 1

and has a multiplicity of 1. Furthermore, all other eigenvalues λ are such that

|λ| < 1. Using the Jordan canonical form of M , it is not hard to show that the

matrix multiplication operation converges in O(|λ2|k), where λ2 is the second largest

eigenvalue of M (see [Golub and Loan, 1996] for a similar analysis). Thus, the

updates in the kth iteration are proportional to λk
2 , hence, k = log(1/ǫ)

log(1/|λ2|)
. Plugging

in this expression for N(q), the overall complexity of the approximate algorithm is:

O

(

|Q|+ (|E|+ |Q|) log(1/ǫ)

log(1/|λ2|)

)

. (23)
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For ǫ exponentially smaller than |λ2| (ǫ = |λ2|d), the cost in complexity is only

linear: O(|Q|+ d(|E|+ |Q|)).
It is possible to use different queue disciplines in different parts of the graph

and improve the running time of the algorithm. For example, for a large graph

with several strongly connected components, one can use a topological order on

the component graph, with shortest-first queue discipline in each strongly con-

nected component [Mohri, 2002b]. If there are k strongly connected components,

with the ith component having ni vertices, then the running time is given by

O(|Q|+ |E|maxq∈Q N(q)+ log |maxi ni|
∑

q∈Q N(q)). If the largest component has

O(n/k) vertices, then this improves the general complexity by an additive factor of
∑

q∈Q N(q) log k. Our experience with such computations for very large graphs of

several million states shows that the generic topological order with the shortest-first

queue discipline within each strongly connected component often leads to the most

efficient results in practice.

4.4. Comparison with Previous Work

In [Carrasco, 1997], the author describes a procedure for an approximate computa-

tion of the relative entropy of two deterministic stochastic automata. The procedure

is based on an iterative method (which can be viewed as approximating the inverse

of a matrix) for computing, for a stochastic automaton A, the probability of each

state q, that is the sum of the weights of all paths going through q. The convergence

is claimed but not proved and no bound is indicated on the maximum number of

iterations.

The author reports no complexity result for the procedure described, which

makes it difficult to compare with our algorithm. Our most favorable estimate of

its complexity is Ω(|A|2|B|2(T + |Σ|)), where T denotes the maximum number of

iterations executed. This is because the procedure requires using a matrix of size

|A|2|B|2. The complexity of the procedure also depends on the size of the alphabet,

which, in some applications such as natural language processing applications, may

be very large. Furthermore, the lower bound space complexity of this procedure is

Ω(|A|2|B|2). This makes it unsuitable for computing the relative entropy of large

weighted automata. Note that the experiments reported by the author were carried

out with very small grammars of about 30 rules. Nevertheless, the procedure bears

some resemblance with our approximate algorithm. It can be viewed as an alphabet-

dependent non-sparse implementation of that algorithm for the particular case of a

FIFO queue discipline.

4.5. Experiments

We implemented both the generic Floyd-Warshall algorithm and the approximate

algorithm for the computation of the relative entropy of unambiguous probabilistic

automata.
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To avoid the numerical instability issues related to the multiplications of prob-

abilities, we used instead negative log probabilities. This corresponds to taking the

image of the entropy semiring by the semiring morphism log×I where I is the

identity over the second element of the weights.

To evaluate the efficiency of our approximate algorithm for computing the rel-

ative entropy we created two n-gram statistical models trained on a large corpus –

one a bigram model (n = 2) and one a trigram model (n = 3). The minimal de-

terministic weighted automaton representing the bigram model had about 200,000

transitions, that of the trigram model about 400,000 transitions. It took about 3s

on a single 2GHz Intel processor with 128MB of RAM to compute the relative

entropy of these large weighted automata using a FIFO queue discipline. With a

shortest-first queue discipline, the time was reduced to 2s.

5. Relative Entropy of Arbitrary Probabilistic Automata

This section proves a hardness result suggesting that the problem of computing the

relative entropy of arbitrary probabilistic automata is intractable.

5.1. Hardness Result

We describe a reduction of the problem of determining whether the language ac-

cepted by an automaton is Σ∗ to the that of determining whether the relative

entropy of two probabilistic automata is infinite.

Automaton A0. We first describe an automaton A0 that is used in our reduction.

Fix a real number α > 0 such that α|Σ| < 1 and let A0 be the one-state weighted

automaton representing the weighted regular expression (1− α)(
∑

x∈Σ αx)∗ shown

in Figure 3 for Σ = {a, b}. By definition, A0 accepts all strings x ∈ Σ∗ and for

all x ∈ Σ∗, [[A]](x) = α|x|(1 − |Σ|α). By construction, A0 is stochastic and thus

probabilistic. Here is also a direct verification:

∑

x∈Σ∗

[[A0]](x) =
∞∑

n=0

∑

|x|=n

αn(1 − |Σ|α) =
∞∑

n=0

|Σ|nαn(1− |Σ|α) (24)

= (1− |Σ|α)
1

1 − |Σ|α = 1. (25)

The following theorem shows that the problem of determining the relative entropy

of two arbitrary probabilistic automata is at least as hard as determining if a finite

automaton accepts Σ∗.

Theorem 9. Let A be an arbitrary probabilistic automaton, then D(A0‖A) < ∞
iff A accepts Σ∗.

Proof. Assume that [[A]](x) = 0 for some x ∈ Σ∗. Then, since [[A0]](x) > 0,

[[A0]](x) log [[A0]](x)
[[A]](x) is infinite and D(A0‖A) =∞.
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0/1 − 2α

a/α
b/α

Fig. 3. The automaton A0 that accepts all strings, {a, b}∗, and assigns a weight of αn(1 − α) to
any string of length n. α > 0 is a constant such that 2α < 1.

Assume now that A accepts Σ∗, thus [[A]](x) 6= 0 for all x ∈ Σ∗. Without loss of

generality, we can assume A to be trim. Let E denote the set of transitions of A and

let δ denote the minimum weight of a transition: δ = mine∈E w[e]. By assumption,

δ > 0 since the automaton A is trim and probabilistic. For x ∈ Σ∗, |x| = n, [[A]](x) ≥
δn. Thus

∀x ∈ Σ∗,
[[A0]](x)

[[A]](x)
=

αn(1− |Σ|α)

[[A]](x)
≤ (1 − |Σ|α)

(α

δ

)n

. (26)

It follows that:

∀x ∈ Σ∗, [[A0]](x) log
[[A0]](x)

[[A]](x)
≤ αn(1− |Σ|α) (n log(α/δ) + log(1− |Σ|α)) . (27)

For any positive integer N , summing over all strings x of length at most N , in the

order of increasing |x| yields:

∑

|x|≤N

[[A0]](x) log
[[A0]](x)

[[A]](x)
=

N∑

n=0

∑

x:|x|=n

[[A0]](x) log
[[A0]](x)

[[A]](x)
(28)

≤
N∑

n=0

|Σ|nαn(1 − |Σ|α) (n log(α/δ) + log(1− |Σ|α)) .

Since α|Σ| < 1 the two series in this summation,
∑

n nβn and
∑

n βn with β =

|Σ|α < 1, converge. It is straightforward to verify that for 0 ≤ β < 1,
∑∞

n=0 nβn =
β

(1−β)2 . Using this identity, we obtain the following bound on D(A0‖A):

D(A0‖A) ≤ (1 − |Σ|α)

( |Σ|α log(α/δ)

(1− |Σ|α)2
+

log(1− |Σ|α)

1− |Σ|α

)

. (29)

Thus D(A0‖A) <∞.

Theorem 10. The problem of computing the relative entropy of two arbitrary prob-

abilistic automata is PSPACE-complete.

Proof. The universality problem, i.e., the problem of deciding if a trim finite au-

tomaton A accepts Σ∗, is PSPACE-complete [Stockmeyer and Meyer, 1973, Garey
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and Johnson, 1979]. The transitions of any trim finite automaton A can be aug-

mented with positive weights so that it becomes a probabilistic automaton. This

can be done by weighting each outgoing transition of state q, or final weight if q is

final, by 1/nq where nq is the out-degree of q, plus one if q is final. The encoding of

1/nq takes O(log2 nq) space, thus the space and time complexity of this construction

is polynomial in the size of A. By Theorem 9, it can be decided if a probabilistic

automaton A accepts all strings by computing the relative entropy D(A0‖A) and

testing its finiteness. Thus, the computation of the relative entropy can determine

if a trim finite automaton A accepts Σ∗.

5.2. Remarks

Theorem 10 suggests that the general problem of computing the relative entropy of

arbitrary probabilistic automata is intractable. However, one may resort to various

approximations of practical importance. An example is an approximation based on

the use of the log-sum inequality by [Singer and Warmuth, 1997] in the context

of machine learning. We have initiated a specific study of such approximations, in

particular by examining the quality of an approximation when using the algorithms

we presented for the unambiguous case.

Note that the general problem of determining if a weighted automaton over the

(R, +, ·, 0, 1) semiring accepts the full free monoid Σ∗ is undecidable [Berstel and

Reutenauer, 1988]. Here, we are considering the same decidability question but only

for probabilistic automata, which form a restricted class of all weighted automata

over the (R, +, ·, 0, 1) semiring. However, we conjecture that the problem is in fact

undecidable even in this case.

6. Relative Entropy as a Kernel

This section examines the use of the relative entropy, or its symmetrized version,

in machine learning algorithms. The results hold in general and are not limited to

the particular case of probabilistic automata.

In machine learning, functions K : X × X → R are called kernels. A kernel is

said to be positive definite symmetric (PDS for short) if it is symmetric, K(x, y) =

K(y, x) for all x, y ∈ X , and if for any subset {x1, . . . , xm} ⊆ X , the eigenvalues

of the matrix [K(xi, xj)]1≤i,j≤m are non-negative. PDS kernels play an important

role in machine learning since they can be combined with discriminant algorithms

such as support vector machines (SVMs) to create powerful predictors [Schölkopf

and Smola, 2002], the PDS condition ensuring the convergence of training.

In some cases, a symmetric kernel K is not positive definite but exp(−λK) is

PDS for any λ > 0. K is then said to be negative definite symmetric (NDS). Such

kernels are also important since they can be used to defined PDS kernels as in the

case of Gaussian kernels.

We will show however that the symmetrized relative entropy is neither PDS nor

NDS, contrarily to what is stated in a number of machine learning papers, which
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limits its use and application in kernel methods.

The symmetrized relative entropy of two distributions p and q is given by:

Dsym(p‖q) =
D(p‖q) + D(q‖p)

2
=

∑

x∈X

[p(x)− q(x)] log
p(x)

q(x)
. (30)

Theorem 11. The symmetrized relative entropy is not a PDS kernel.

Proof. Let {q1, q2, . . . , qm} be a set of probability distributions over X . Consider

the Gram matrix K ∈ R
m×m defined by Ki,j = Dsym(qi‖qj). By definition of Dsym,

Dsym(qi‖qi) = 0 for all i ∈ [1, m], thus tr(K) = 0. When K 6= 0, this implies that

K admits at least one negative eigenvalue.

To show that the symmetrized relative entropy is not an NDS kernel, we use the

following theorem of Schoenberg [1938].

Theorem 12 ([Schoenberg, 1938, Berg et al., 1984]) Let K : X ×X → R be

an NDS kernel such that for x, y ∈ X , K(x, y) = 0 iff x = y. Then, there exist a

Hilbert space H and a mapping Φ : X → H such that

∀x, y ∈ X , K(x, y) = ||Φ(x) − Φ(y)||2. (31)

Thus, under the hypothesis of the theorem,
√

K defines a metric.

Theorem 13. The symmetrized relative entropy is not an NDS kernel.

Proof. Note that for any two distributions p and q, Dsym(p‖q) = 0 iff D(p‖q) =

D(q‖p) = 0 that is iff p = q. Thus, by Theorem 12, if Dsym is an NDS kernel,
√

Dsym

defines a metric. We prove that
√

Dsym does not obey the triangle inequality, which

will show that Dsym is not NDS.

For the sake of simplicity, the proof is given in the case of a universe of events

limited to two elements: X = {x1, x2}. Let ǫ > 0 and let q1, q2, q3 be the three

distributions over X defined by:

∀i ∈ [1, 3], qi(x1) = 1− iǫ and qi(x2) = iǫ. (32)

By definition of the symmetrized relative entropy,

Dsym(q1‖q2) = ǫ log
1− ǫ

1− 2ǫ
− ǫ log

ǫ

2ǫ
= ǫ log

2(1− ǫ)

1− 2ǫ
. (33)

Similarly, Dsym(q2‖q3) = ǫ log 3(1−2ǫ)
2(1−3ǫ) and Dsym(q1‖q3) = 2ǫ log 3(1−2ǫ)

1−3ǫ . Note that:

Dsym(q1‖q3) = 2ǫ log 3(1−2ǫ)
1−3ǫ = 2

(
ǫ log 2(1−ǫ)

1−2ǫ + ǫ log 3(1−2ǫ)
2(1−3ǫ)

)

= 2
(
Dsym(q1‖q2) + Dsym(q2‖q3)

)
.

(34)

Since
√· is strictly concave,

√

Dsym(q1‖q3) = 2

√
Dsym(q1‖q2)

2 +
Dsym(q2‖q3)

2

>
√

Dsym(q1‖q2) +
√

Dsym(q2‖q3).
(35)

This shows that
√

Dsym does not obey the triangle inequality.



20 Corinna Cortes, Mehryar Mohri, Ashish Rastogi and Michael Riley

7. Computation of the Norm of a Probabilistic Automaton

In Section 4, we gave a general algorithm for computing the relative entropy of two

unambiguous probabilistic automata by relating this problem to a shortest-distance

problem over the appropriate semiring. A special case of that algorithm can be used

to compute the entropy of a single unambiguous probabilistic automaton. One may

ask if such results could be generalized to the computation of other similar quan-

tities that we will refer to as the norm of an unambiguous probabilistic automaton.

This section shows how they can be generalized indeed by considering an arbitrary

monoid morphism.

7.1. Computation of the Norm of an Unambiguous Probabilistic

Automaton

Let (K,⊕,⊗, 0, 1) be a closed semiring, or an ǫ-k-closed semiring for an automaton

A. Let Φ : (R+, ·, 1)→ (K,⊗, 1) be a monoid morphism. We will say that Φ preserves

closedness, if for all x, 0 ≤ x < 1,
⊕∞

n=0 Φ(xn) is well-defined and in K. For a such

a morphism, we can define the Φ-norm of a probabilistic automaton as:

‖A‖Φ =
⊕

x∈Σ∗

Φ([[A]](x)). (36)

Theorem 14. Let (K,⊕,⊗, 0, 1) be a closed or ǫ-k-closed semiring and let Φ :

(R+, ·, 1) → (K,⊗, 1) be a monoid morphism preserving closedness. Then, for any

unambiguous probabilistic automaton A, ‖A‖Φ can be computed exactly in time

O(|A|3).

Proof. The automaton Φ(A) derived from A by replacing each weight x by Φ(x)

is a weighted automaton over the semiring K. Since A is unambiguous, at most one

successful path in A, π = e1 · · · ek, is labeled with any string x ∈ Σ∗. Since Φ is

a monoid morphism, Φ([[A]](x)) =
⊗k

j=1 Φ(w[ej ]), that is the weight of the path

labeled with x in Φ(A). This shows that ‖A‖Φ = s(A) and proves the theorem.

Theorem 14 provides an algorithm for computing the Φ-norm of unambiguous

probabilistic automata for arbitrary monoid morphisms preserving closedness. We

will briefly illustrate two applications of the theorem.

(a) Entropy of a Probabilistic Automaton.

Let (K,⊕,⊗, (0, 0), (1, 0)) be the entropy semiring. It is not hard to

see that function Φ : (R+, +, ·, 0, 1) → (K,⊕,⊗, (0, 0), (1, 0)) defined by:

∀x ∈ R+, Φ(x) = (x,−x log x), is a monoid morphism preserving closed-

ness. Thus, the norm-Φ of an unambiguous probabilistic automaton can

be computed efficiently using a single-source shortest-distance algorithm.

Its second component is exactly the entropy of A, thus this provides an
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efficient and simple algorithm for computing the entropy of A.

(b) Norm Lα of a Probabilistic Automaton, α ∈ R+.

The function Φ : (R+, +, ·, 0, 1)→ (R+, +, ·, 0, 1) defined by Φ(x) = xα

is clearly a monoid morphism. Since for 0 ≤ x < 1, 0 ≤ xα < 1, it also

preserves closedness. Thus, the Lα-norm of an unambiguous probabilistic

automaton A can be computed efficiently using a shortest-distance algo-

rithm. In particular, the Bhattacharya norm, i.e., L 1

2

-norm, of A can be

computed efficiently.

7.2. Computation of the Norm of Arbitrary Automata

In general, a probabilistic automaton may not be unambiguous. But, the Lp-norm

can still be computed in polynomial time for any integer p ≥ 1.

Theorem 15. The Lp-norm of a probabilistic automaton A can be computed ex-

actly in time O(|A|3p) time and Θ(|A|2p) space.

Proof. Let A(p) denote the automaton obtained by intersecting A with itself p− 1

times. Then, by definition of intersection, (s[A(p)])1/p represents the Lp-norm of A.

The cost of intersection to create A(p) is in O(|A|p).

Note that the problem of computing the L∞ norm of a probabilistic is NP-hard

[Rune B. Lyngsø and Christian N. S. Pederson, 2002].

7.3. Approximate Computation

Here we consider the specific case of the computation of the Lp-norm of a proba-

bilistic automaton. Our results can be generalized to cover more general cases, in

particular in the case of unambiguous automata.

Since for any ǫ > 0, a probabilistic automaton is ǫ-k-closed for the probabil-

ity semiring, instead of the (generalized) Floyd-Warshall algorithm, we can use a

single-source shortest-distance algorithm to compute s[A] as already described in

Section 4.3. This algorithm works with any queue discipline and its space complex-

ity is linear which is significantly more efficient than the Floyd-Warshall algorithm.

The complexity results and analyses detailed in Section 4.3 apply identically here.

8. Conclusion

We presented an exhaustive study of the problem of computing the relative entropy

of probabilistic automata.

Our results demonstrate the benefit of semiring theory for the formulation of the

problem which becomes as a single-source shortest-distance one. This results in the
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definition of simple but efficient algorithms, both exact and approximate, for the

computation of the relative entropy of two unambiguous probabilistic automata or

the entropy of a single unambiguous probabilistic automaton. As shown by our ex-

perimental results, these algorithms scale to large probabilistic automata of several

hundred thousand transitions.

Our algorithms can be adapted straightforwardly to compute the so-called

unnormalized relative entropy of two unambiguous weighted automata over

(R+, +, ·, 0, 1), defined by:

D(A‖B) =
∑

x

[[A]](x) log
[[A]](x)

[[B]](x)
− [[A]](x) + [[B]](x) (37)

simply by replacing Φ1 and Φ2 by Φ′
1 and Φ′

2, where Φ′
1(A) (Φ′

2(A)) is the weighted

automaton over the entropy semiring derived from A by replacing each weight w

with the pair (w, 1) (resp (w, w)). The entropy semiring can also be used to give a

conceptually simple formulation of the computation of the relative entropy of tree

automata and to derive similar computation algorithms.

We proved that the computation of the relative entropy of arbitrary probabilis-

tic automata is PSPACE-complete and thus likely to be intractable. This suggests

examining approximate computations of the relative entropy. We have already ini-

tiated the study of a natural approximate computation of the relative entropy that

extends the results presented in this paper.

Acknowledgments

The work of Mehryar Mohri and Ashish Rastogi was partially funded by the New

York State Office of Science Technology and Academic Research (NYSTAR). This

project was also sponsored in part by the Department of the Army Award Number

W23RYX-3275-N605. The U.S. Army Medical Research Acquisition Activity, 820

Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering ac-

quisition office. The content of this material does not necessarily reflect the position

or the policy of the Government and no official endorsement should be inferred.

References

Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic Analysis

on Semigroups. Springer-Verlag: Berlin-New York, 1984.

Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages.

Springer-Verlag: Berlin-New York, 1988.
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