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We present efficient algorithms for testing the finite, polynomial, and exponential ambi-
guity of finite automata with ǫ-transitions. We give an algorithm for testing the exponen-
tial ambiguity of an automaton A in time O(|A|2

E
), and finite or polynomial ambiguity

in time O(|A|3
E

), where |A|E denotes the number of transitions of A. These complexities
significantly improve over the previous best complexities given for the same problem.
Furthermore, the algorithms presented are simple and based on a general algorithm
for the composition or intersection of automata. Additionally, we give an algorithm to
determine in time O(|A|3

E
) the degree of polynomial ambiguity of a polynomially am-

biguous automaton A and present an application of our algorithms to an approximate
computation of the entropy of a probabilistic automaton.

We also study the double-tape ambiguity of finite-state transducers. We show that
the general problem is undecidable and that it is NP-hard for acyclic transducers. We
present a specific analysis of the double-tape ambiguity of transducers with bounded
delay. In particular, we give a characterization of double-tape ambiguity for synchronized
transducers with zero delay that can be tested in quadratic time and give an algorithm
for testing the double-tape ambiguity of transducers with bounded delay.
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1. Introduction

A finite automaton is ambiguous if it admits distinct accepting paths with the same

label. The question of the ambiguity of finite automata arises in a variety of contexts.

In some cases, the application of an algorithm requires an input automaton to be

finitely ambiguous, in others, the convergence of a bound or guarantee relies on

finite ambiguity, or the asymptotic growth rate of ambiguity as a function of the

string length. Thus, in all these cases, an algorithm is needed to test the ambiguity,

either to determine if it is finite, or to estimate its asymptotic growth rate.

The problem of testing ambiguity has been extensively analyzed in the past

[10, 8, 17, 3, 7, 19, 16, 18, 20]. The problem of determining the degree of ambiguity of

an automaton with finite ambiguity was shown by Chan and Ibarra to be PSPACE-

complete [3]. However, testing finite ambiguity can be achieved in polynomial time

using a characterization of exponential and polynomial ambiguity given by Ibarra

and Ravikumar [7] and Weber and Seidel [19]. The most efficient algorithms for

testing polynomial and exponential ambiguity, thereby testing finite ambiguity, were

given by Weber and Seidel [18, 20]. The algorithms they presented in [20] assume

the input automaton to be ǫ-free, but they are extended by Weber to the case

where the automaton has ǫ-transitions in [18]. In the presence of ǫ-transitions, the

complexity of the algorithms given by Weber [18] is O((|A|E + |A|2Q)2) for testing

the exponential ambiguity of an automaton A and O((|A|E + |A|2Q)3) for testing

polynomial ambiguity, where |A|E stands for the number of transitions and |A|Q
the number of states of A.

This paper presents significantly more efficient algorithms for testing finite,

polynomial, and exponential ambiguity for the general case of automata with ǫ-

transitions. It gives an algorithm for testing the exponential ambiguity of an au-

tomaton A in time O(|A|2E), and finite or polynomial ambiguity in time O(|A|3E).

The main idea behind our algorithms is to make use of the composition or in-

tersection of finite automata with ǫ-transitions [14, 13]. The ǫ-filter used in these

algorithms crucially helps in the analysis and test of the ambiguity. The algorithms

presented in this paper would not be valid and would lead to incorrect results with-

out the use of the ǫ-filter. We also give an algorithm to determine in time O(|A|3E)

the degree of polynomial ambiguity of a polynomially ambiguous automaton A and

present an application of our algorithms to an approximate computation of the

entropy of a probabilistic automaton.

The notion of ambiguity is defined in a similar way for finite-state transducers

if one is only interested in the ambiguity with respect to the input labels, or only

the output labels, of a transducer. With that definition, all our results for automata

apply directly to the transducer case as well. There is, however, another notion of

interest for transducers that relates to both input and output labels and that we

refer to as the double-tape ambiguity of a transducer. A transducer is double-tape

ambiguous if it admits two distinct accepting paths with the same input label and

the same output label. Double-tape ambiguity can lead to inefficiencies in a variety
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of applications where transducers are now commonly used, e.g., machine translation,

speech recognition, other language processing areas, and image processing.

This motivates our study of the double-tape ambiguity of finite-state transduc-

ers. We show that the general problem of double-tape ambiguity is undecidable and

that it is NP-hard even for acyclic transducers. We also present a specific analysis

of the double-tape ambiguity of transducers with bounded delay. In particular, we

give a characterization of double-tape ambiguity for synchronized transducers with

zero delay that can be tested in quadratic time and give an algorithm for testing

the double-tape ambiguity of transducers with bounded delay.

The remainder of the paper is organized as follows. Section 2 presents general

automata and ambiguity definitions. In Section 3, we give a brief description of ex-

isting characterizations for the ambiguity of automata and extend them to the case

of automata with ǫ-transitions. In Section 4, we present our algorithms for testing

finite, polynomial, and exponential ambiguity, and the proof of their correctness.

Section 5 deals with questions related to the double-tape ambiguity of finite-state

transducers. Section 6 shows the relevance of the computation of the polynomial

ambiguity to the approximation of the entropy of probabilistic automata.

2. Preliminaries

Definition 1. A finite automaton A is a 5-tuple (Σ, Q, E, I, F ) where Σ is a finite

alphabet; Q is a finite set of states; I ⊆ Q the set of initial states; F ⊆ Q the set of

final states; and E ⊆ Q × (Σ ∪ {ǫ})× Q a finite set of transitions, where ǫ denotes

the empty string.

We denote by |A|Q the number of states, by |A|E the number of transitions, and by

|A| = |A|E + |A|Q the size of an automaton A. Given a state q ∈ Q, E[q] denotes

the set of transitions leaving q. For two subsets R ⊆ Q and R′ ⊆ Q, we denote by

P (R, x, R′) the set of all paths from a state q ∈ R to a state q′ ∈ R′ labeled with

x ∈ Σ∗. We also denote by p[π] the origin state, by n[π] the destination state, and

by i[π] ∈ Σ∗ the label of a path π. A state q ∈ Q is accessible if there exists a path

from an initial state to q and co-accessible if there exists a path from q to a final

state.

A string x ∈ Σ∗ is accepted by A if it labels an accepting path, that is a path

from an initial state to a final state. A finite automaton A is said to be trim if all

its states lie on some accepting path, that is if every state is both accessible and

co-accessible. It is said to be unambiguous if no string x ∈ Σ∗ labels two distinct

accepting paths; otherwise, it is said to be ambiguous. The degree of ambiguity of

a string x in A is denoted by da(A, x) and defined as the number of accepting

paths in A labeled by x. Note that if A contains an ǫ-cycle lying along an accepting

path, there exists x ∈ Σ∗ such that da(A, x) = ∞. Using a depth-first search of

A restricted to ǫ-transitions, it can be decided in linear time if A contains such

ǫ-cycles. Thus, in the following, we will assume, without loss of generality, that A

is ǫ-cycle free.
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Fig. 1. Illustration of the properties: (a) (EDA); (b) (IDA); and (c) (IDAd).

The degree of ambiguity of A is defined as da(A) = supx∈Σ∗ da(A, x). A is said

to be finitely ambiguous if da(A) < ∞ and infinitely ambiguous if da(A) = ∞.

It is said to be polynomially ambiguous if there exists a polynomial h such that

da(A, x) ≤ h(|x|) for all x ∈ Σ∗. The minimal degree of such a polynomial is called

the degree of polynomial ambiguity of A and is denoted by dpa(A). By definition,

dpa(A) = 0 iff A is finitely ambiguous. When A is infinitely ambiguous but not

polynomially ambiguous, it is said to be exponentially ambiguous and dpa(A) = ∞.

3. Characterization of infinite ambiguity

The characterization and test of finite, polynomial, and exponential ambiguity of

finite automata without ǫ-transitions are based on the following three fundamental

properties [7, 19, 18, 20].

Definition 2. The properties (EDA), (IDA), and (IDAd) for A are defined as fol-

lows.

(a) (EDA): there exists a state q with at least two distinct cycles labeled by

some v ∈ Σ∗ (see Figure 1(a)) [7].

(b) (IDA): there exist two distinct states p and q with paths labeled with v from

p to p, p to q, and q to q, for some v ∈ Σ∗ (see Figure 1(b)) [19, 18, 20].

(c) (IDAd): there exist 2d states p1, . . . , pd, q1, . . . , qd in A and 2d − 1 strings

v1, . . . , vd and u2, . . . , ud in Σ∗ such that for all 1 ≤ i ≤ d, pi 6= qi and

P (pi, vi, pi), P (pi, vi, qi), and P (qi, vi, qi) are non-empty, and, for all 2 ≤

i ≤ d, P (qi−1, ui, pi) is non-empty (see Figure 1(c)) [19, 18, 20].

Observe that (EDA) implies (IDA) as shown below. Indeed, assuming (EDA), let

e and e′ be the first transitions that differ in the two cycles at state p, then, since

Definition 1 disallows multiple transitions between the same two states with the

same label, we must have n[e] 6= n[e′]. Thus, (IDA) holds for the pair (n[e], n[e′]).

In the ǫ-free case, it was shown that a trim automaton A satisfies (IDA) iff A is

infinitely ambiguous [19, 20], that A satisfies (EDA) iff A is exponentially ambiguous

[7], and that A satisfies (IDAd) iff dpa(A) ≥ d [18, 20].

In the following, we show that these results can be extended to the case of

automata with ǫ-transitions. To simplify the proofs, we first consider the case of

multiset automata.

A multiset automaton or m-automaton is a 5-tuple (Σ, Q, E, I, F ) as defined in

Definition 1 except that E and F are multisets. We will denote by ⊎ the union of two
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multisets ({1, 2} ⊎ {1, 3} = {1, 1, 2, 3}), by ⊗ the scalar multiplication of a multiset

by a natural number (2 ⊗ {1, 1, 2} = {1, 1, 1, 1, 2, 2}), by |X |a the multiplicity of

element a in the multiset X (|{1, 1, 2}|1 = 2) and by |X | the cardinality (|{1, 1, 2}| =

3) of X .

Lemma 3. Let A be a trim ǫ-free m-automaton.

(i) A is infinitely ambiguous iff A satisfies (IDA).

(ii) A is exponentially ambiguous iff A satisfies (EDA).

(iii) dpa(A) ≥ d iff A satisfies (IDAd).

Proof. Given a trim m-automaton A = (Σ, Q, E, I, F ), we construct a finite au-

tomaton A′ = (Σ∪ {#}, Q′, E′, I, F ′) by inserting a transition labeled with # after

each transition and from each final state as follows:

Q′ = Q ∪ QE ∪ QF with QE = {qe | e ∈ E} and QF = {qf | f ∈ F},

E′ =
⋃

e∈E

{(p[e], i[e], qe), (qe, #, n[e])} ∪
⋃

f∈F

{(f, #, qf )}, and

F ′ = QF .

Observe that the cardinality of the set QE (resp. QF ) is equal to the cardinality of

the multiset E (resp. F ). Each state qE has only one incoming and one outgoing

transition. The mapping αE : e 7→ (p[e], i[e], qe)(qe, #, n[e]) is an injection from E

into E′2 and the mapping αF : f 7→ (f, #, qf ) an injection from F into E′.

Several key properties follow from the existence of these injections. (1) A′ is

trim since A is trim (follows from the existence of αE and αF ). (2) There exists

an injection β : e1 . . . en 7→ αE(e1) . . . αE(en) from the set of paths in A to the set

of paths in A′ such that the following conditions are equivalent: (a) (IDA) (resp.

(EDA), (IDAd)) holds for A, (b) (IDA) (resp. (EDA), (IDAd)) holds for all paths in

the image of β and (c) (IDA) (resp. (EDA), (IDAd)) holds for A′. (3) The mapping

γ : x1x2 . . . xn 7→ x1#x2# . . . xn## is a bijection from the language accepted by

A to the language accepted by A′ and (4) da(A, x) = da(A′, γ(x)) for all x ∈ Σ∗

since the mapping δ : π 7→ β(π)αF (n[π]) is a bijection between the sets of accepting

paths of A and A′ such that i[δ(π)] = γ(i[π]).

The proposition holds for A′ since A′ is a standard trim automaton as shown in

[19, 20] for (i), [7] for (ii) and [20] for (iii). Hence, it follows from (2) and (4) that

the proposition also hold for A.

We will now show that Lemma 3 can be generalized to the case of m-automata

with ǫ-transitions.

Lemma 4. Let A be a trim ǫ-cycle free m-automaton.

(i) A is infinitely ambiguous iff A satisfies (IDA).

(ii) A is exponentially ambiguous iff A satisfies (EDA).
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Fig. 2. ǫ-filter and ambiguity : (a) Finite automaton A; (b) A ∩ A without using ǫ-filter, which
incorrectly makes A appear as exponentially ambiguous; (c) A ∩ A using an ǫ-filter. Weber’s

processing of ǫ-transitions: (d) Finite automaton B; (e) ǫ-free automaton B′ such that dpa(B) =
dpa(B′).

(iii) dpa(A) ≥ d iff A satisfies (IDAd).

Proof. The proof is by induction on the number of ǫ-transitions in A. If A does

not have any ǫ-transition, then the proposition holds and follows from Lemma 3.

Assume now that A has n+1 ǫ-transitions, n ≥ 0, and that the statement of the

proposition holds for all m-automata with n ǫ-transitions. Select an ǫ-transition e0

in A such that there are no outgoing ǫ-transitions in n[e0]. Such a transition must

exist since A is ǫ-cycle free. Let A′ be the m-automaton obtained after application

of ǫ-removal to A limited to transition e0. A′ is obtained by deleting e0 from A

and by adding a transition (p[e0], l[e], n[e]) for every transition e ∈ E[n[e0]], i.e. the

multiset E′ of transitions of A′ is defined as:

E′ = (E \ {e0}) ⊎ {(p[e0], l[e], n[e]) | e ∈ E such that p[e] = n[e0]}.

Finally, p[e0] is added to the multiset of final states as many times as the multiplicity

of n[e0] in F , i.e. the multiset F ′ of final states of A′ is defined as:

F ′ = F ⊎ (|F |n[e0] ⊗ {p[e0]}).

It is clear that A and A′ are equivalent and that there is a label and acceptance-

preserving bijection between the paths in A and A′. Thus, (a) A satisfies (IDA)

(resp. (EDA), (IDAd)) iff A′ satisfies (IDA) (resp. (EDA), (IDAd)) and (b) for all

x ∈ Σ∗, da(A, x) = da(A′, x). By induction, Lemma 4 holds for A′ and thus, it

follows from (a) and (b) that Lemma 4 also holds for A.

The case of finite automata with ǫ-transitions then follows as a corollary of

Lemma 4.

Proposition 5. Let A be a trim ǫ-cycle free finite automaton.

(i) A is infinitely ambiguous iff A satisfies (IDA).

(ii) A is exponentially ambiguous iff A satisfies (EDA).

(iii) dpa(A) ≥ d iff A satisfies (IDAd).

These characterizations have been used in [18, 20] to design algorithms for testing

infinite, polynomial, and exponential ambiguity, and for computing the degree of
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polynomial ambiguity in the case of ǫ-free finite automata.

Theorem 6 ([18, 20]) Let A be a trim ǫ-free finite automaton.

(1) It is decidable in time O(|A|3E) whether A is infinitely ambiguous.

(2) It is decidable in time O(|A|2E) whether A is exponentially ambiguous.

(3) The degree of polynomial ambiguity of A, dpa(A), can be computed in

O(|A|3E).

The first result of Theorem 6 has also been generalized by [18] to the case of au-

tomata with ǫ-transitions but with a significantly worse complexity.

Theorem 7 ([18]) Let A be a trim ǫ-cycle free finite automaton. It is decidable in

time O((|A|E + |A|2Q)3) whether A is infinitely ambiguous.

The algorithms designed for the ǫ-free case cannot be readily used for finite

automata with ǫ-transitions since they would lead to incorrect results (see Fig-

ure 2(a)-(c)). Instead, [18] proposed a reduction to the ǫ-free case. First, [18] gave

an algorithm to test if there exist two states p and q in A with two distinct ǫ-paths

from p to q. If that is the case, then A is exponentially ambiguous (complexity

O(|A|4Q + |A|E)). Otherwise, [18] defined from A an ǫ-free automaton A′ over the

alphabet Σ∪{#} such that A is infinitely ambiguous iff A′ is infinitely ambiguous,

see Figure 2(d)-(e).a However, the number of transitions of A′ is |A|E + |A|2Q. This

explains why the complexity in the ǫ-transition case is significantly worse than in

the ǫ-free case. The same approach can be used to test the exponential ambiguity

of A in time O((|A|E + |A|2Q)2) and to compute dpa(A) when A is polynomially

ambiguous in O((|A|E + |A|2Q)3). Note that we give tighter estimates of the com-

plexity of the algorithms of [18, 20] where the authors gave complexities using the

loose inequality: |A|E ≤ |Σ| |A|2Q.

4. Algorithms

Our algorithms for testing ambiguity are based on a general algorithm for the

composition or intersection of automata, which we briefly describe in the following

section.

aObserve that A′ is not the result of applying the classical ǫ-removal algorithm to A, since ǫ-
removal does not preserve infinite ambiguity and would lead to an even larger automaton. Instead,
[18] used a more complex algorithm where ǫ-transitions are replaced by regular transitions labeled
with a special symbol while preserving infinite ambiguity, dpa(A) = dpa(A′), even though A′ is
not equivalent to A. States in A′ are pairs (q, i) with q a state in A and i ∈ {1, 2}. There is a
transition from (p, 1) to (q, 2) labeled by # if q belongs to the ǫ-closure of p and from (p, 2) to
(q, 1) labeled by σ ∈ Σ if there was such a transition from p to q in A.
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4.1. Intersection of finite automata

The intersection of finite automata is a special case of the general composition

algorithm for weighted transducers [14, 13]. States in the intersection A1∩A2 of two

finite automata A1 and A2 are identified with pairs of a state of A1 and a state of A2.

The following rule specifies how to compute a transition of A1∩A2 in the absence of

ǫ-transition from appropriate transitions of A1 and A2: (q1, a, q′1) and (q2, a, q′2) =⇒

((q1, q2), a, (q′1, q
′

2)). Figure 3 illustrates the algorithm. A state (q1, q2) is initial (resp.

final) when q1 and q2 are initial (resp. final). In the worst case, all transitions of

A1 leaving a state q1 match all those of A2 leaving state q2, thus the space and

time complexity of composition is quadratic: O(|A1||A2|), or O(|A1|E |A2|E) when

A1 and A2 are trim.

4.2. Epsilon-filtering

A straightforward generalization of the ǫ-free case would generate redundant ǫ-

paths. This is a crucial issue in the more general case of the intersection of weighted

automata over a non-idempotent semiring, since it would lead to an incorrect result.

The weight of two matching ǫ-paths of the original automata would then be counted

as many times as the number of redundant ǫ-paths generated in the result, instead of

once. It is also a crucial problem in the unweighted case since redundant ǫ-paths can

affect the test of infinite ambiguity, as we shall see in the next section. A critical

component of the composition algorithm of [14, 13] consists however of precisely

coping with this problem using an epsilon-filtering mechanism.

Figure 4(c) illustrates the problem just mentioned. To match ǫ-paths leaving

q1 and those leaving q2, a generalization of the ǫ-free intersection can make the

following moves: (1) first move forward on an ǫ-transition of q1, or even a ǫ-path,

and remain at the same state q2 in A2, with the hope of later finding a transition

whose label is some label a 6= ǫ matching a transition of q2 with the same label; (2)

proceed similarly by following an ǫ-transition or ǫ-path leaving q2 while remaining

at the same state q1 in A1; or, (3) match an ǫ-transition of q1 with an ǫ-transition

of q2.

Let us rename existing ǫ-labels of A1 as ǫ2, and existing ǫ-labels of A2 as ǫ1, and

let us augment A1 with a self-loop labeled with ǫ1 at all states and similarly, augment
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Fig. 4. Marking of automata, redundant paths and filter. (a) Automaton A1 = A2. (b) Ã1: self-loop
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when composing just two simple transducers (A1 ◦A2). (e) Filter transducer M allowing a unique
ǫ-path. Each transition labeled x : x represents transitions with input and output x of all x in Σ.

A2 with a self-loop labeled with ǫ2 at all states, as illustrated by Figures 4(a) and

(b). These self-loops correspond to remaining at the same state in that machine

while consuming an ǫ-label of the other transition. The three moves just described

now correspond to the matches (1) (ǫ2 : ǫ2), (2) (ǫ1 : ǫ1), and (3) (ǫ2 : ǫ1). The grid

of Figure 4(c) shows all the possible ǫ-paths between intersection states. We will

denote by Ã1 and Ã2 the automata obtained after application of these changes.

For the result of intersection not to be redundant, between any two of these

states, all but one path must be disallowed. There are many possible ways of se-

lecting that path. One natural way is to select the shortest path with the diagonal

transitions (ǫ-matching transitions) taken first. Figure 4(c) illustrates in boldface

the path just described from state (0, 0) to state (2, 1). Remarkably, this filtering

mechanism itself can be encoded as a finite-state transducer such as the transducer

M of Figure 4(d). We denote by (p, q) � (r, s) to indicate that (r, s) can be reached

from (p, q) in the grid.

Proposition 8. Let M be the transducer of Figure 4(d). M allows a unique ǫ-path

between any two states (p, q) and (r, s), with (p, q) � (r, s).

Proof. The proof of this proposition was previously given in [2]. Let a denote

(ǫ1 : ǫ1), b denote (ǫ2 : ǫ2), c denote (ǫ2 : ǫ1), and let x stand for any (x : x), with

x ∈ Σ. The following sequences must be disallowed by a shortest-path filter with

matching transitions first: ab, ba, ac, bc. This is because, from any state, instead of

the moves ab or ba, the matching or diagonal transition c can be taken. Similarly,

instead of ac or bc, ca and cb can be taken for an earlier match. Conversely, it is clear

from the grid or an immediate recursion that a filter disallowing these sequences

accepts a unique path between two connected states of the grid.

Let L be the set of sequences over σ = {a, b, c, x} that contain one of the
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Fig. 5. (a) Finite automaton A representing the set of disallowed sequences. (b) Automaton B,
result of the determinization of A. Subsets are indicated at each state. (c) Automaton C obtained
from B by complementation, state 3 is not coaccessible.

disallowed sequence just mentioned as a substring that is L = σ∗(ab+ba+ac+bc)σ∗.

Then L represents exactly the set of paths allowed by that filter and is thus a regular

language. Let A be an automaton representing L (Figure 5(a)). An automaton

representing L can be constructed from A by determinization and complementation

(Figures 5(a)-(c)). The resulting automaton C is equivalent to the transducer M

after removal of the state 3, which does not admit a path to a final state.

Thus, to intersect two finite automata A1 and A2 with ǫ-transitions, it suffices

to compute Ã1 ◦ M ◦ Ã2, using the ǫ-free rules of composition (see section 5 for

a formal definition of the composition of finite-state transducers). States in the

intersection are now identified with triplets made of a state of A1, a state of M ,

and a state of A2. A transition (q1, a1, q
′

1) in Ã1, a transition (f, a1, a2, f
′) in M ,

and a transition (q2, a2, q
′

2) in Ã2 are combined to form the following transition

in the intersection: ((q1, f, q2), a, (q′1, f
′, q′2)), with a = ǫ if {a1, a2} ⊆ {ǫ1, ǫ2} and

a = a1 = a2 otherwise. In the rest of the paper, we will assume that the result of

intersection is trimmed after its computation, which can be done in linear time in

the size of the result of intersection.

Theorem 9. Let A1 and A2 be two finite automata with ǫ-transitions. To each

pair (π1, π2) of accepting paths in A1 and A2 sharing the same input label x ∈ Σ∗

corresponds a unique accepting path π in A1 ∩ A2 labeled with x.

Proof. This follows straightforwardly from Proposition 8.

4.3. Ambiguity Tests

We start with a test of the exponential ambiguity of A. The key is that the (EDA)

property translates into a very simple property for A2 = A ∩ A. A state in A2 is

a triple (p, f, q), denoted by (p, q)f in the following, where p and q are states in A

and f is a filter state.
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Lemma 10. Let A be a trim ǫ-cycle free finite automaton. A satisfies (EDA) iff

there exists a strongly connected component of A2 = A∩A that contains two states

of the form (p, p)0 and (q, q′)f , where p, q and q′ are states of A with q 6= q′.

Proof. Assume that A satisfies (EDA). There exist a state p and a string v such

that there are two distinct cycles c1 and c2 labeled by v at p. Let e1 and e2 be the

first edges that differ in c1 and c2. We can then write c1 = πe1π1 and c2 = πe2π2.

If e1 and e2 share the same label, let π′

1 = πe1, π′

2 = πe2, π′′

1 = π1 and π′′

2 = π2. If

e1 and e2 do not share the same label, exactly one of them must be an ǫ-transition.

By symmetry, we can assume without loss of generality that e1 is the ǫ-transition.

Let π′

1 = πe1, π′

2 = π, π′′

1 = π1 and π′′

2 = e2π2. In both cases, let q = n[π′

1] = p[π′′

1 ]

and q′ = n[π′

2] = p[π′′

2 ]. Observe that q 6= q′. Since i[π′

1] = i[π′

2], π′

1 and π′

2 are

matched by intersection resulting in a path in A2 from (p, p)0 to (q, q′)f . Similarly,

since i[π′′

1 ] = i[π′′

2 ], π′′

1 and π′′

2 are matched by intersection resulting in a path

from (q, q′)f to (p, p)0. Thus, (p, p)0 and (q, q′)f are in the same strongly connected

component of A2.

Conversely, assume that there exist states p, q and q′ in A such that q 6= q′ and

that (p, p)0 and (q, q′)f are in the same strongly connected component of A2. Let

c be a cycle in (p, p)0 going through (q, q′)f , c has been obtained by matching two

cycles c1 and c2. If c1 were equal to c2, intersection would match these two paths

creating a path c′ along which all the states would be of the form (r, r)0 making c′

distinct from c, and since A is trim this would contradict Theorem 9. Thus, c1 and

c2 are distinct and (EDA) holds.

Observe that the use of the ǫ-filter in composition is crucial for Lemma 10 to hold

(see Figure 2). The lemma leads to a straightforward algorithm for testing expo-

nential ambiguity.

Theorem 11. Let A be a trim ǫ-cycle free finite automaton. It is decidable in time

O(|A|2E) whether A is exponentially ambiguous.

Proof. The algorithm proceeds as follows. We compute A2 and, using a depth-first

search of A2, trim it and compute its strongly connected components. It follows

from Lemma 10 that A is exponentially ambiguous iff there is a strongly connected

component that contains two states of the form (p, p)0 and (q, q′)f with q 6= q′.

Finding such a strongly connected component can be done in time linear in the

size of A2, i.e. in O(|A|2E) since A and A2 are trim. Thus, the complexity of the

algorithm is in O(|A|2E).

Testing the (IDA) property requires finding three paths sharing the same label

in A. As shown below, this can be done in a natural way using the automaton

A3 = (A∩A)∩A, obtained by applying twice the intersection algorithm. A state in

A3 is a 5-tuple (p, f, q, g, r), denoted by (p, q, r)f,g in the following, where p, q and

r are states in A and f and g are filter states.
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Lemma 12. Let A be a trim ǫ-cycle free finite automaton. A satisfies (IDA) iff

there exist two distinct states p and q in A with a non-ǫ path in A3 = A ∩ A ∩ A

from state (p, p, q)f.f ′ to state (p, q, q)g,g′ .

Proof. Assume that A satisfies (IDA). Then, there exists a string v ∈ Σ∗ with three

paths π1 ∈ P (p, v, p), π2 ∈ P (p, v, q) and π3 ∈ P (q, v, p). Since these three paths

share the same label v, they are matched by intersection resulting in a path π in A3

labeled with v from (p[π1], p[π2], p[π3])f,f ′ = (p, p, q)f,f ′ to (n[π1], n[π2], n[π3])g,g′ =

(p, q, q)g,g′ .

Conversely, if there is a non-ǫ path π from (p, p, q)f,f ′ to (p, q, q)g,g′ in A3, it

has been obtained by matching three paths π1, π2 and π3 in A with the same input

v = i[π] 6= ǫ. Thus, (IDA) holds.

This lemma appears already as Lemma 5.10 in [9]. Finally, Theorem 11 and

Lemma 12 can be combined to yield the following result.

Theorem 13. Let A be a trim ǫ-cycle free finite automaton. It is decidable in time

O(|A|3E) whether A is finitely, polynomially, or exponentially ambiguous.

Proof. First, Theorem 11 can be used to test whether A is exponentially ambiguous

by computing A2. The complexity of this step is O(|A|2E).

If A is not exponentially ambiguous, we proceed by computing and trimming A3

and then testing whether A3 verifies the property described in Lemma 12. This is

done by considering the automaton B on the alphabet Σ′ = Σ∪{#} obtained from

A3 by adding a transition labeled by # from state (p, q, q)g,g′ to state (p, p, q)f,f ′

for every pair (p, q) of states in A such that p 6= q. It follows that A3 verifies

the condition in Lemma 12 iff there is a cycle in B containing both a transition

labeled by # and a transition labeled by a symbol in Σ. This property can be

checked straightforwardly using a depth-first search of B to compute its strongly

connected components. If a strongly connected component of B is found that con-

tains both a transition labeled with # and a transition labeled by a symbol in Σ,

A verifies (IDA) but not (EDA) and thus A is polynomially ambiguous. Other-

wise, A is finitely ambiguous. The complexity of this step is linear in the size of B:

O(|B|E) = O(|A|3E + |A|2Q) = O(|A|3E) since A and B are trim.

The total complexity of the algorithm is O(|A|2E + |A|3E) = O(|A|3E).

When A is polynomially ambiguous, we can derive from the algorithm just described

one that computes dpa(A).

Theorem 14. Let A be a trim ǫ-cycle free finite automaton. If A is polynomially

ambiguous, dpa(A) can be computed in time O(|A|3E).

Proof. We first compute A3 and use the algorithm of Theorem 13 to test whether

A is polynomially ambiguous and to compute all the pairs (p, q) that verify the

condition of Lemma 12. This step has complexity O(|A|3E).
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We then compute the component graph G of A, and for each pair (p, q) found in

the previous step, we add a transition labeled with # from the strongly connected

component of p to the one of q. If there is a path in that graph containing d edges

labeled by #, then A verifies (IDAd). Thus, dpa(A) is the maximum number of

edges marked by # that can be found along a path in G. Since G is acyclic, this

number can be computed in linear time in the size of G, i.e. in O(|A|2Q). Thus, the

overall complexity of the algorithm is O(|A|3E).

Finally, let us point out that A2 can also be used to devise a simple test for the

ambiguity of A based on the following observation.

Lemma 15. Let A be a trim ǫ-cycle free finite automaton. A is unambiguous iff

every coaccessible state in A2 = A ∩ A is of the form (p, p)0.

Proof. Assume A is unambiguous and let (p, q)f be a coaccessible state in A2.

Since A2 has been trimmed,b (p, q)f is both accessible and coaccessible. Hence,

there exist a path π from the initial state to a final state of A2 that goes through

(p, q)f . This path was obtained by matching two accepting paths π1 and π2 with

the same label with π1 going through p and π2 going through q. If p 6= q or f 6= 0,

then π1 and π2 are distinct (by Theorem 9) and this contradicts A unambiguous.

Hence, p = q and f = 0.

Conversely, let us assume that every coaccessible state in A2 is of the form (p, p)0.

Let us consider two accepting paths π1 and π2 sharing the same label. These two

paths will be matched by composition to form an accepting path π in A2. Since

there cannot be multiple transitions with the same label between a given pair of

states, the fact that all states along π are of the form (p, p)0 implies that π1 = π2.

Hence, A is unambiguous.

Observe that here again the use of the ǫ-filter in composition is crucial for

Lemma 15 to hold (see Figure 2).

Theorem 16. Let A be a trim ǫ-cycle free finite automaton. It is decidable in time

O(|A|2E) whether A is ambiguous.

Proof. The algorithms proceeds as follows. We first compute A2 and perform a

depth-first search to trim it. We can now check in O(|A2|Q) time that each state is

of the form (p, p)0. Thus, the complexity of the algorithm is in O(|A|2E).

5. Double-Tape Ambiguity

The previous sections presented a comprehensive study of the ambiguity of finite

automata. The notion of ambiguity is typically defined in the same way for finite-

state transducers: a transducer is said to be ambiguous if it admits two accepting

bAs mentioned in section 4.2, we always trim the result of intersection.
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paths with the same input label. Thus, the results of the previous sections apply to

the transducer case identically with that notion of ambiguity.

There is however another notion of ambiguity related to both tapes of a trans-

ducer that is of interest in applications, which we refer to as double-tape ambiguity.

This section deals with that notion of double-tape ambiguity. It gives general de-

cidability and hardness results for double-tape ambiguity, and presents a specific

analysis for the case of transducers with bounded delay, including characterizations

and algorithms for testing the double-tape ambiguity of such transducers. We start

with the standard definition of a finite-state transducer.

Definition 17 (Finite-state transducers) A finite-state transducer T is a 6-

tuple (Σ, ∆, Q, E, I, F ) where Σ is a finite input alphabet of the transducer; ∆ is

a finite output alphabet; Q is a finite set of states; I ⊆ Q the set of initial states;

F ⊆ Q the set of final states; and E ⊆ Q× (Σ∪ {ǫ})× (∆∪ {ǫ})×Q a finite set of

transitions.

We say that the transducer T accepts a pair (x, y) ∈ Σ∗ × ∆∗ if T admits an

accepting path with input label x and output label y and denote this by (x, y) ∈

R(T ). R(T ) is the rational relation defined by T .

Given a transducer T , we define the inverse of T , denoted by T−1, the transducer

obtained by swapping the input and output labels of each transition in T , thus

(x, y) ∈ R(T−1) iff (y, x) ∈ R(T ).

Let T1 and T2 be two finite-state transducers such that the input alphabet of

T2 coincides with the output alphabet of T1. The result of the composition of T1

and T2 is a finite-state transducer denoted by T1 ◦ T2 and specified for all x, y by:

(x, y) ∈ R(T1 ◦ T2) iff there exists z such that (x, z) ∈ R(T1) and (z, y) ∈ R(T2).

The algorithm to compute the composition of two finite-state transducers is a

slight modification of the intersection algorithm described in section 4. The following

rule specifies how to compute a transition of T1 ◦T2 from appropriate transitions of

T1 and T2 in the absence of output-ǫ transitions in T1 and input-ǫ transitions in T2:

(q1, a, b, q′1) and (q2, b, c, q
′

2) =⇒ ((q1, q2), a, c, (q′1, q
′

2)). The same epsilon-filtering

technique described in section 4.2 is then used to deal with output-ǫ transitions in

T1 and input-ǫ transitons in T2 [14, 13]. The notion of double-tape unambiguous

transducers is defined as follows.

Definition 18 (Double-Tape Unambiguous Transducer) A transducer T is

said to be double-tape unambiguous if for all (x, y) ∈ Σ∗×∆∗, it admits at most

one accepting path in T with input label x and output label y.

This notion clearly differs from the single-tape notion discussed in the previ-

ous sections for automata and often used for transducers. A transducer admitting

multiple paths with the same input label x can still be double-tape unambiguous

so long as the output labels of those paths are all distinct. The general problem of

determining double-tape ambiguity turns out to be considerably harder than that

of determining single-tape ambiguity however.
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1

1:u[1]
...

N:u[N]

2

1:v[1]
...

N:v[N]

Fig. 6. The transducer constructed corresponding to a PCP problem with lists of strings ui, vi ∈ Σ∗

for 1 ≤ i ≤ N . Both states 1 and 2 are initial and final.

5.1. Undecidability Result

We show that the general problem of determining if a transducer T is double-tape

ambiguous is undecidable. When we restrict the transducer to be acyclic, then the

problem becomes NP-hard. Our reduction is from the Post Correspondence Problem

(PCP) [15].

Definition 19 (The Post Correspondence Problem [15]) Given two list of

strings u1, u2, . . . , uN and v1, v2, . . . , vN , with ui, vi ∈ Σ∗ for 1 ≤ i ≤ N , deter-

mine whether there exists a sequence of indices (i1, i2, . . . , iK) with K ≥ 1 and

1 ≤ ik ≤ N such that:

ui1ui2 . . . uiK
= vi1vi2 . . . viK

.

Theorem 20 ([15, 11]) PCP is undecidable in general. Furthermore, the prob-

lem remains undecidable even when restricted to a fixed number of strings in

(ui)
N
i=1, (vi)

N
i=1, for N ≥ 7.

Theorem 21. The problem of determining the double-tape ambiguity of an arbi-

trary finite-state transducer T is undecidable.

Proof. Given a PCP problem instance over the alphabet Σ with strings (ui)
N
i=1

and (vi)
N
i=1, we construct a transducer T such that T is double-tape ambiguous if

and only if the PCP problem has a solution. The transducer T is defined as follows

(see Figure 6):

• The set of states Q = {1, 2} with I = F = Q.

• The set of transitions E as:

E = {(1, i, ui, 1) : 1 ≤ i ≤ N} ∪ {(2, i, vi, 2) : 1 ≤ i ≤ N},

where (qi, a, b, qj) denotes a transition from state qi to qj with input label

a and output label b.c

If the PCP instance has a solution (i1, . . . , iK), then T is double-tape ambiguous

since the pair i1 . . . iK : ui1 . . . uiK
is accepted on two paths: one through the tran-

sitions (1, ik, uik
, 1) for 1 ≤ k ≤ K, the other through (2, ik, vik

, 2) for 1 ≤ k ≤ K.

cIn order to simplify the proof we consider here a transducer with transition outputs in ∆∗. There
straightforwardly exists an equivalent transducer with transition outputs in ∆ ∪ {ǫ}.
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Conversely, if T is double-tape ambiguous then there exists two paths π1 and π2

with the same input and output labels. A path in T either remains at state 1 or at

state 2. It is clear that if two distinct paths π1 and π2 have the same input labels,

then they must be at different states. Let π1 be the path that remains at state 1

and π2 the path that remains at state 2. Let the input label on π1 (and π2) be the

sequence i1 . . . iK . Since the output labels are the same on π1 and π2, it follows

that u1u2 . . . uiK
= v1v2 . . . viK

. Thus the PCP admits a solution and the proof is

complete.

It is natural to ask how hard the problem remains if we restrict our attention to

more specific classes of transducers. We show that if we restrict ourselves to acyclic

transducers, the problem is NP-hard.

Theorem 22. The problem of determining the double-tape ambiguity of an arbi-

trary acyclic transducer T is NP-hard.

Proof. The reduction is from bounded PCP: a variant of PCP in which we seek a

sequence of indices i1 . . . iK with K ≤ B for some fixed B > 0. The bounded PCP

is NP-complete [6]. Instead of having self-loops at states 1 and 2 in the construction

of Theorem 21, we simply unfold the loops B times. This shows that the problem

for acyclic transducers is (at least) NP-hard.

Note that this result does not imply that the problem is in NP, which in fact, most

likely, is not the case.

5.2. Bounded-delay transducers

One natural class of transducers for which more positive results hold is that of

transducers with bounded delay. This imposes a bound on the maximum difference

of length between the input and output label of a path. The following gives a formal

definition of the notion of delay.

Definition 23 (Delay) The delay of a path π is defined as the difference of length

between its input and output labels:

delay(π) =
∣

∣|o[π]| − |i[π]|
∣

∣. (5)

A trim transducer T is said to have bounded delay if the delay of all paths of T is

bounded. We then denote by delay(T ) the maximum delay of all paths in T .

A transducer T is synchronized if along any accepting path of T the delay

is zero or increases strictly monotonically: for any accepting path π = π1eπ2,

delay(π1) < delay(π1e) or delay(π1) = delay(π1e) = 0. A transducer with bounded

delay is synchronizable, that is it admits an equivalent synchronized transducer [12].

Given a transducer T , let Ts denote the synchronized transducer obtained from T

using the synchronization algorithm of [12]. The complexity of the synchronization
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algorithm is in O(|Ts|). However, the size of Ts is exponential in the worst-case :

O(|T |(|Σ|delay(T )+ |∆|delay(T ))) where Σ is the input alphabet of T and ∆ its output

alphabet.

When T is a synchronized transducer with a delay of 0, we can give a char-

acterization of double-tape ambiguity based on the form of the identity paths in

T−1 ◦ T . An identity path π is an accepting path with equal input and output

labels: i[π] = o[π].

Recall that a state in T ◦ T ′, the composition of two transducers T and T ′, is

of the form (p, q)f , where p is a state of T , q is a state of T ′, and f a state of the

epsilon-filter.

Lemma 24 (Characterization) Let T be a synchronized transducer with

delay(T ) = 0. T is double-tape ambiguous if and only if there exists a successful

identity path in T−1 ◦ T going through a state of the form (p, q)f with p 6= q or

f 6= 0.

Proof. Observe that since T is synchronized and has delay zero, every transition

must have either both its input and output labels equal to ǫ, or both non-ǫ.

Assume that T is double-tape ambiguous. Then, T admits two accepting paths

π1 and π2 with the same input and output labels, say x and y respectively. Since

these two paths share the same input, they are matched by composition, which

results in a path π in T−1 ◦ T . Moreover, π is an identity path since π1 and π have

the same output label: o[π1] = o[π2]. Let e be the first transition along π that was

obtained by matching two distinct transitions e1 and e2 in T . We shall show that

n[e] is a state of the form (p, q)f with p 6= q or f 6= 0. If e1 is a virtual transition

corresponding to remaining at the same state without consuming any symbol while

e2 is an actual ǫ-transition in T , then the filter state of n[e] is not 0, f 6= 0. Assume

now that both e1 and e2 are actual transitions in T . Since e1 and e2 are distinct

and i[e1] = i[e2], we must have n[e1] 6= n[e2] or o[e1] 6= o[e2]. Since T has a delay

of 0, we must have o[e1] = o[e2]. Thus n[e1] 6= n[e2] and n[e] is of the form (p, q)f

with p 6= q.

Conversely, assume that there exists an identity path π in T−1◦T going through

a state of the form (p, q)f with f 6= 0 or p 6= q. This path was obtained by matching

in composition two paths π1 and π2 such that i[π1] = i[π2] (since they are matched

in composition) and o[π1] = o[π2] (since π is an identity path). If π1 and π2 were

equal, all the states along π would be of the form (p, p)0. Thus, π1 6= π2 and T is

double-tape ambiguous.

This characterization directly leads to an algorithm for testing the double-tape

ambiguity of synchronized transducers.

Theorem 25. The double-tape ambiguity of a synchronized transducer T can be

decided in time O(|T |2), where |T | = |Q| + |E| is the total number of states and

transitions of T .
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Proof. A key property of a synchronized transducer T is that along any successful

path, a transition with non-ǫ input and ǫ output can only be followed by transitions

with non-ǫ input and ǫ output. Similarily, a transition of with ǫ input and non-

ǫ output can only be followed by transitions with ǫ input and non-ǫ output. By

replacing such ǫs with a special symbol not already in Σ or ∆, say #, we obtain a

synchronized transducer T ′ with a delay of 0 such that T is double-tape ambiguous

iff T ′ is double-tape ambiguous.

The algorithm then consists of computing T ′−1 ◦ T ′, deleting any transitions e

such that i[e] 6= o[e] and performing a depth-first search to verify that the states

that are both accessible and co-accessible are all of the form (p, 0, p).

Finally, we can use the previous result to devise an effective algorithm for testing

the double-tape ambiguity of bounded-delay transducers.

Corollary 26. Let T be a bounded-delay transducer with input alphabet Σ and out-

put alphabet ∆. It is decidable in time O(|T |2(|Σ|delay(T ) + |∆|delay(T ))2) whether T

is double-tape ambiguous.

Proof. Since T has bounded delay, we can use the synchronization algorithm from

[12] to compute an equivalent synchronized transducer Ts. The synchronization

algorithms preserves double-tape ambiguity thus Ts is double-tape ambiguous iff

T is double-tape ambiguous and by Theorem 25 we can decide the double-tape

ambiguity of T in time O(|Ts|
2).

6. Application to Entropy Approximation

In this section, we describe an application in which determining the degree of am-

biguity of a probabilistic automaton helps estimate the quality of an approximation

of its entropy. Weighted automata are automata in which each transition carries

some weight in addition to the usual alphabet symbol. The weights are elements of

a semiring, that is a ring that may lack negation. The following is a more formal

definition.

Definition 27. A weighted automaton A over a semiring (K,⊕,⊗, 0, 1) is a 7-

tuple (Σ, Q, I, F, E, λ, ρ) where Σ is a finite alphabet, Q a finite set of states, I ⊆ Q

the set of initial states, F ⊆ Q the set of final states, E ⊆ Q × Σ ∪ {ǫ} × K × Q a

finite set of transitions, λ : I → K the initial weight function mapping I to K, and

ρ : F → K the final weight function mapping F to K.

Given a transition e ∈ E, we denote by w[e] its weight. We extend the weight

function w to paths by defining the weight of a path as the ⊗-product of the weights

of its constituent transitions: w[π] = w[e1] ⊗ · · · ⊗ w[ek]. The weight associated by

a weighted automaton A to an input string x ∈ Σ∗ is defined by

[[A]](x) =
⊕

π∈P (I,x,F )

λ[p[π]] ⊗ w[π] ⊗ ρ[n[π]]. (6)
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The entropy H(A) of a probabilistic automaton A is defined as:

H(A) = −
∑

x∈Σ∗

[[A]](x) log([[A]](x)). (7)

The system (K,⊕,⊗, (0, 0), (1, 0)) with K = (R ∪ {+∞,−∞}) × (R ∪ {+∞,−∞})

and ⊕ and ⊗ defined as follows defines a commutative semiring called the entropy

semiring [4]: for any two pairs (x1, y1) and (x2, y2) in K,

(x1, y1) ⊕ (x2, y2) = (x1 + x2, y1 + y2) (8)

(x1, y1) ⊗ (x2, y2) = (x1x2, x1y2 + x2y1). (9)

In [4], the authors showed that a generalized shortest-distance algorithm over

this semiring correctly computes the entropy of an unambiguous probabilistic au-

tomaton A. The algorithm starts by mapping the weight of each transition to

a pair where the first element is the probability and the second the entropy:

w[e] 7→ (w[e],−w[e] log w[e]). The algorithm then proceeds by computing the gen-

eralized shortest-distance defined over the entropy semiring, which computes the

⊕-sum of the weights of all accepting paths in A.

Here, we show that the same shortest-distance algorithm yields an approxima-

tion of the entropy of an ambiguous probabilistic automaton A, where the approx-

imation quality is a function of the degree of polynomial ambiguity, dpa(A). Our

proofs make use of the standard log-sum inequality [5], a special case of Jensen’s

inequality, which holds for any positive reals a1, . . . , ak, and b1, . . . , bk:

k
∑

i=1

ai log
ai

bi

≥

(

k
∑

i=1

ai

)

log

∑k
i=1 ai

∑k

i=1 bi

. (10)

Lemma 28. Let A be a probabilistic automaton and let x ∈ Σ+ be a string accepted

by A on k paths π1, . . . , πk. Let w[πi] be the probability of path πi. Clearly, [[A]](x) =
∑k

i=1 w[πi]. Then,

k
∑

i=1

w[πi] log w[πi] ≥ [[A]](x)(log[[A]](x) − log k). (11)

Proof. The result follows straightforwardly from the log-sum inequality, with ai =

w[πi] and bi = 1:

k
∑

i=1

w[πi] log w[πi] ≥

(

k
∑

i=1

w[πi]

)

log

∑k

i=1 w[πi]

k
= [[A]](x)(log[[A]](x) − log k). (12)

Let S(A) be the quantity computed by the generalized shortest-distance algorithm

over the entropy semiring or a probabilistic automaton A. When A is unambiguous,

it is shown by [4] that S(A) = H(A).

Theorem 29. Let A be a probabilistic automaton and let L denote the expected

length of the strings accepted by A (i.e. L =
∑

x∈Σ∗ |x|[[A]](x)). Then,
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(1) if A is finitely ambiguous with da(A) = k for some k ∈ N, then H(A) ≤

S(A) ≤ H(A) + log k;

(2) if A is polynomially ambiguous with dpa(A) = k for some k ∈ N, then

H(A) ≤ S(A) ≤ H(A) + k log L.

Proof. The lower bound S(A) ≥ H(A) follows from the observation that for a

string x that is accepted in A by k paths π1, . . . , πk,

k
∑

i=1

w[πi] log(w(πi)) ≤

( k
∑

i=1

w[πi]

)

log

( k
∑

i=1

w[πi]

)

. (13)

Since the quantity −
∑k

i=1 w[πi] log(w[πi]) is string x’s contribution to S(A) and the

quantity −(
∑k

i=1 w[πi]) log(
∑k

i=1 w[πi]) its contribution to H(A), summing over all

accepted strings x, we obtain H(A) ≤ S(A).

Assume that A is finitely ambiguous with degree of ambiguity k. Let x ∈ Σ∗ be

a string that is accepted on lx ≤ k paths π1, . . . , πlx . By Lemma 28, we have

lx
∑

i=1

w[πi] log w[πi] ≥ [[A]](x)(log[[A]](x) − log lx) ≥ [[A]](x)(log[[A]](x) − log k). (14)

Thus,

S(A) = −
∑

x∈Σ∗

lx
∑

i=1

w[πi] log w[πi] ≤ H(A) +
∑

x∈Σ∗

(log k)[[A]](x) = H(A) + log k.(15)

This proves the first statement of the theorem.

Next, assume that A is polynomially ambiguous with degree of polynomial am-

biguity k. By Lemma 28, we have

lx
∑

i=1

w[πi] log w[πi] ≥ [[A]](x)(log[[A]](x)− log lx) ≥ [[A]](x)(log[[A]](x)− log(|x|k)).(16)

Thus,

S(A) ≤ H(A) +
∑

x∈Σ∗

k[[A]](x) log |x| = H(A) + kEA[log |x|] (17)

≤ H(A) + k log EA[|x|] = H(A) + k log L, (by Jensen’s inequality)

which proves the second statement of the theorem.

The theorem shows in particular that the quality of the approximation of the en-

tropy of a polynomially ambiguous probabilistic automaton can be estimated by

computing its degree of polynomial ambiguity, which can be achieved efficiently as

described in the previous section. This also requires the computation of the expected

length L of an accepted string. L can be computed efficiently for an arbitrary proba-

bilistic automaton using the entropy semiring and the generalized shortest-distance

algorithms, using techniques similar to those described in [4]. The only difference is

in the initial step, where the weight of each transition in A is mapped to a pair of

elements by w[e] 7→ (w[e], w[e]).
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7. Conclusion

We presented simple and efficient algorithms for testing the finite, polynomial, or

exponential ambiguity of finite automata with ǫ-transitions. We conjecture that

the time complexity of our algorithms is optimal. These algorithms have a variety

of applications, in particular to test a pre-condition for the applicability of other

automata algorithms. Our application to the approximation of the entropy gives

another illustration of their usefulness.

We also initiated the study of the double-tape ambiguity of finite-state trans-

ducers and gave a number of decidability and characterizations results as well as

algorithms in the bounded delay case. These algorithms can be of interest in a

number of modern applications where finite-state transducers are used.

Our algorithms also demonstrate the prominent role played by the intersection of

finite automata or composition of finite-state transducers with ǫ-transitions [14, 13]

in the design of testing algorithms. Composition can be used to devise simple and

efficient testing algorithms. We have shown elsewhere how it can be used to test

the functionality of a finite-state transducer, or the twins property for weighted

automata and transducers [1].
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[18] Andreas Weber. Über die Mehrdeutigkeit und Wertigkeit von endlichen, Automaten
und Transducern. Dissertation, Goethe-Universität Frankfurt am Main, 1987.

[19] Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. In
MFCS 1986, volume 233 of LNCS, pages 620–629. Springer, 1986.

[20] Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata.
Theoretical Computer Science, 88(2):325–349, 1991.


