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Abstract

We study learnability of hypotheses classes in ag-
nostic online prediction models. The analogous
question in the PAC learning model [ Valiant, 1984]
was addressed by Haussler [1992] and others, who
showed that the VC dimension characterization of
the sample complexity of learnability extends to
the agnostic (or “unrealizable”) setting. In his in-
fluential work, Littlestone [1988] described a com-
binatorial characterization of hypothesis classes
that are learnable in the online model. We ex-
tend Littlestone’s results in two aspects. First,
while Littlestone only dealt with the realizable
case, namely, assuming there exists a hypothesis in
the class that perfectly explains the entire data, we
derive results for the non-realizable (agnostic) case
as well. In particular, we describe several models
of non-realizable data and derive upper and lower
bounds on the achievable regret. Second, we ex-
tend the theory to include margin-based hypothesis
classes, in which the prediction of each hypothesis
is accompanied by a confidence value. We demon-
strate how the newly developed theory seamlessly
yields novel online regret bounds for the important
class of large margin linear separators.

1 Introduction

The goal of this paper is to analyze the effects of the structure
of hypothesis classes (or classes of experts) on their online
learnability in agnostic (non-realizable) settings. In the on-
line learning model, a learning algorithm observes instances
in a sequential manner. On round ¢, after observing the tth
instance, x; € X, the algorithm attempts to predict the la-
bel associated with the instance. For example, the instance
can be a vector of barometric features and the learner should
predict if it’s going to rain tomorrow. Once the algorithm has
made a prediction, it is told whether the prediction was cor-
rect (e.g. it was rainy today) and then uses this information
to improve its prediction mechanism. The goal of the learn-
ing algorithm is simply to minimize the number of prediction
mistakes it makes.

Littlestone [1988] studied online learnability in the re-
alizable case. That is, it is assumed that the label associated
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with each instance in the sequence of examples is determined
by a fixed, yet unknown, mapping rule, h : X — {0,1},
taken from a predefined hypothesis class, denoted 7, which
is known to the learner. For the realizable case, Littlestone
provided a full combinatorial characterization of the learning
complexity of a class. He defined a combinatorial measure,
which we call Littlestone’s dimension and denote Ldim (%),
and showed that this quantity is the minimum (over all learn-
ing algorithms) of the maximum (over all sequences of ex-
amples) of the number of prediction mistakes. Furthermore,
Littlestone’s proof is constructive — there exists a generic op-
timal algorithm that, for every hypothesis class, H, is guar-
anteed to make at most Ldim () prediction mistakes on any
sequence of examples (even if the instances are chosen in
adversarial manner).

Despite the elegance of Littlestone’s theory, it received
relatively little attention by online learning researchers. This
might be partly attributed to the fact that the realizable as-
sumption is rather strong. In recent years, much attention
has been given to the unrealizable case, in which no hypoth-
esis in H generates the labels, and we assume nothing about
the “true” labeling mechanism. In the batch model of learn-
ing, the agnostic setting, formalized by Haussler [1992], has
become the mainstream theoretical model for classification
prediction and has been thoroughly analyzed. Rather than
providing absolute error bounds, the bounds derived in that
model are relative to the best error rates in some benchmark
hypothesis class. The VC dimension of a class provides an
almost-tight characterization of the worst case (relative) er-
ror rates of learning w.r.t. that class. Similarly, in the on-
line learning model, in the unrealizable case there is no fi-
nite bound on the number of prediction mistakes. Instead,
the analysis examines bounds which are relative to the per-
formance of the benchmark hypothesis class. The learner’s
regret is the difference between the learner’s number of mis-
takes and the number of mistakes of the optimal hypothesis
in H. The term ’regret’ refers to how ’sorry’ the learner is, in
retrospect, for not to have followed the predictions of the op-
timal hypothesis. When analyzing the learner’s performance
using the notion of regret, the goal is to have a regret bound
which grows sub-linearly with the number of examples. Put
another way, the average per-round regret goes to zero as the
number of examples tends to infinity.

A basic observation, noted by Cover [1965] in the con-
text of universal prediction of individual sequences, is that
even a trivial hypothesis class, containing just two functions,



cannot have a vanishing regret if one allows the labels to
depend upon the learner’s prediction. It is therefore com-
mon to impose a basic restriction on the way the labels are
generated. Namely, to require that y;, will be determined by
the (possibly adversarial) environment before the learner pre-
dicts 7, (or independently of that prediction)'.

Using this assumption, and by allowing the learner to
randomize his predictions, Littlestone and Warmuth [1994]
presented a learning algorithm with vanishing expected re-
gret for the case of finite hypothesis classes. The actual value
of these regret bounds is determined by the size of the hy-
pothesis class. However, the cardinality of H is a crude mea-
sure of its ”learning complexity”. For example, in the batch
learning model, we know that the VC-dimension of a class
yields tighter sample complexity bounds. Does there exist
a similar combinatorial characterization for agnostic online
learning? Are there infinite hypothesis classes that yield re-
gret bounds that are sub-linear in the length of the instance
sequence? And, given a class H, what is the optimal online
learning strategy? Our first contribution is to provide upper
and lower bounds on the achievable regret for any hypothesis
class H in terms of its Littlestone dimension - the same pa-
rameter that controls the number of mistakes in the realizable
case.

The second contribution of this paper is the deriva-
tion of much tighter mistake bounds, for more restrictive
label-generation scenarios. In particular, we derive abso-
lute bounds on the number of mistakes (rather than regret
bounds) assuming that the labels are generated by some
h € 'H but are contaminated by a stochastic bounded noise.
This result is somewhat surprising as we can guarantee that
the learner will make less mistakes than the number of noisy
labels in the sequence of examples provided by the environ-
ment.

The third contribution of this paper is an extension of
the online learnability to the case of margin-based hypothe-
ses. That is, we now assume that each hypothesis is a map-
ping h : X — IR, where the actual prediction is based
on sign(h(z)) and the magnitude of h(z) is a confidence
level. This extension enables us to seamlessly derive online
margin-based regret bounds for the class of linear separa-
tors. However, while most previous results bound the num-
ber of mistakes using a convex surrogate loss function (e.g.
the hinge-loss) of a competing linear separator, we bound the
number of mistakes using the number of margin mistakes of
the competing linear separator.

1.1 Outline of Our Main Results

We denote by x; the example observed on round ¢, by g, the
prediction of the learner on round ¢ and by y; € {0,1} the
label generated by the teacher for x;. The number of rounds
is denoted by T'. The bounds we present below depend on
the Littlestone dimension of the hypothesis class H, denoted
Ldim(H). We formally define this combinatorial measure in
Section 2. To simplify the presentation, we use the notation:

Ldim(H) = min {In(|H]), Ldim(H)In(T)} . (1)
!This dates back to early work in the context of game the-

ory [Robbins, 1951, Blackwell, 1956, Hannan, 1957] and informa-
tion theory [Cover and Shenhar, 1977, Feder et al., 1992].

Note that Ldim(H) = O(Ldim(H)), where the O no-
tation hides logarithmic factors. While for every class
H, Ldim(H) < log,(|H|), there are classes for which
Ldim(H) is much smaller than log, (|#]) (e.g., there are in-
finite size classes with a finite Littlestone dimension).

We first describe results for two main models of unrealizable
data. At the end of this section, we discuss the margin-based
extension.

Arbitrary labels In the first and less restrictive model, we
make no assumptions regarding the origin of the sequence of
examples.

The following theorem shows that if Ldim(%) is finite
then there exist an online learning algorithm whose regret
is bounded by O(y/Ldim(H) T'). Our proof is constructive
— in Section 3 we present a generic online algorithm which
achieves this regret bound for every class, H.

Theorem 1. For any hypothesis class 'H, there exists an on-
line learning algorithm such that for any h € H and any
sequence of T examples we have

T T
B> e — el =Y |hixi) — ytﬂ < \/LLdim(H) T,
t=1 t=1
where 11, . . ., YT are the learner’s (randomized) predictions

and expectation is w.r.t. the algorithm own randomization.
Furthermore, no algorithm can achieve an expected regret

bound smaller than ( Ldim(H) T).

As mentioned previously, in the realizable case, it is
possible to derive the finite mistake bound Ldim(?). Our
next theorem interpolates between the realizable case and the
non-realizable case.

Theorem 2. For any hypothesis class ‘H, and scalar M* >
0, there exists an online learning algorithm such that for any
h € 'H and any sequence of T examples that satisfies:

T
i h — | < M*
hmé%;‘ (x) — el <
we have
T
ElZIz}t—ytI

< M* +4/2 M* Ldim(H) + Ldim(H) .

t=1

Note that in the realizable case M* = 0 and the above
bound becomes O(Ldim(#)). Additionally, since for any
sequence of T examples and any hypothesis h the cumula-
tive number of mistakes of h is at most 7', we can apply
Theorem 2 with M* = T and obtain a regret bound of the
same order as of the bound in Theorem 1.

Bounded Stochastic Noise In the second model of unre-
alizable data, we do not allow the labels to be chosen arbi-
trarily. Instead, we assume that the labels are random vari-
ables, and we require that the Bayes optimal strategy for pre-
dicting the labels is in our hypothesis class H. Formally,
there exists h € H, such that y;, ...,y are random vari-
ables with Pr[y; # h(x:)|x:] < 1/2. Furthermore, we re-
quire that for some v € [0,1/2), Prly: # h(x:)|x:] < 7.



We provide a general online learning strategy for this case
and analyze its performance. As in the first model, we al-
low the online learner to randomize its predictions. That is,
now both yy,...,yr and y1,...,yr are sequences of ran-
dom variables.

We can rewrite each label as y; = h(x;) + v4, where 1,
is a Bernoulli random variable with Pr[v; = 1] < v and the
plus is modulus 2 (the xor operation). That is, y; is a noisy
version of the “true” label h(x;). Based on this perspective,
it makes sense to count the mistakes of the learner with re-
spect to the “true” label h(x;) rather than with respect to the
noisy label y;. The following theorem provides an absolute
bound on the number of “true” mistakes of the learner.

Theorem 3. For any hypothesis class H, and noise level
v € [0,1/2), there exists an online learning algorithm
such that for any h € H and a sequence of examples
(x1,91), - -, (X7, Y1), where each label is a random vari-
able with Prly; # h(x:)|x¢] < v we have

Ldim(H)

T
t:zl |9 — h(xt)] < m )

where expectation is with respect to the random labels
Y1, ...,y and the algorithm own randomization.

E

For this model, we do not have a tightly matching gen-
eral lower bound. However, in Section 4.3 we prove lower
bounds for this model and show that for some family of
concept classes containing classes of arbitrary Littlestone
dimension, for every H in that family, any learning algo-
rithm for H makes Q(Ldim(H)In(7")) mistakes for some
sequences of 7" instances.

It is interesting to compare the above mistake bound to
the regret bound given in Theorem 1. Obviously, the condi-
tions of Theorem 1 holds for the case of stochastic noise as
well, and we can obtain the regret bound:

T
E Z(z?tytllyth(xtm] < y/iLdim(H) T .

To compare the above with Theorem 3, we use the triangle
inequality to get that

19t —ye| = e —h(xe)+h(xe) =ye| < |Ge—h(xe)[+|ye—h(x:)]

which gives |§: — y¢| — |yr — h(xt)] < |9+ — h(x¢)| . Combin-
ing this with Theorem 3 we conclude that, for every ‘H the
algorithm promised by the theorem obtains

T =g .
E D (19— vl = |y — h(x0)]) <%'

2

That is, Theorem 3 also implies a regret bound, similar to the
bound of Theorem 1. However, the dependence on 7T in the
regret bound is exponentially better here: In(7T) instead of
In(T) T. This type of assumption, and the resulting fast
rate, is somewhat similar to Massart noise condition in the
agnostic PAC model (see e.g. Boucheron et al. [2005]).
Additionally, Theorem 3 gives us an absolute bound on
the number of mistakes of the learner with respect to the

“ground truth” labels, h(x;). We usually think that the
learner cannot hope to have an error rate which is smaller
than the error rate of the teacher (environment). Quite sur-
prisingly, in our case the number of mistakes the learner will
make can be significantly smaller than the number of mis-
takes the teacher (environment) makes on the sequence. That
is, the learner can overcome label noise very efficiently. For
example, suppose that v = 0.25 and H is a finite class.
In this case, the expected error rate of the learner is upper

bounded by %, which goes to 0 with 7', while the er-
ror rate of the environment is the constant 0.25.

A similar model is discussed by Weissman and Merhav
[2001], Weissman et al. [2001]. However, our results are
stronger in two aspects. First, Weissman et al. [2001] bound
the regret w.r.t. the noisy sequence, and not the mistakes
w.r.t. the ”ground truth”. We distinguished between the two,
and showed that the latter is stronger than the former. A more
significant difference is that their regret bound has v/7" de-
pendence (in Corollary 13 of Weissman and Merhav [2001])
while our bound has exponentially better dependence on the
time 7.

Margin-based bounds So far, we assumed that each hy-
pothesis is a mapping from X to {0, 1}. We now describe an
extension for the case of margin-based hypotheses. We say
that H is a margin-based hypothesis class if, each hypothesis
h € Hisof the form h : X — R, where the actual prediction

is ¢(h(x)) where
o) 2 I oy G)

and |h(x)] is a confidence in the prediction. We define a p-
margin mistake of a hypothesis h : X — R on an example
(x,y) by |h(x) — y|, where:

det [0 ifdla)=y A |a| >
oy, {1 (@) =y A lal > p

otherwise
That is, |h(x) — y|, = 0 if h classifies x correctly with a
sufficient confidence.

We extend the notion of Littlestone’s dimension to
classes of margin-based hypotheses. The bounds we present
below depend on this margin-based dimension of H, denoted
Ldim,, (). Analogously to the definition of Ldim, we use
the notation

Ldim,(H) = min{In(|H|), Ldim,(H)In(T)} . (5)

The following two theorems are analogous to Theorem 1,
Theorem 2, and Theorem 3.

4)

Theorem 4. For any margin-based hypothesis class 'H, and
any margin parameter [, > 0, there exists an online learning
algorithm such that for any h € 'H and any sequence of T
examples we have

T T
E Z|gt—yt|—2|h(xt)—yt“] < y/$ Ldim, (H) T .
Lt=1 t=1

Additionally, for any M* > 0 there exists an online algo-
rithm such that if miny, ZtT:1 |h(x¢) — Ye|p < M* we have
rT

E > lg - yt|] < M* 4 1/2 M* Ldim(H) + Ldim(H) .

Lt=1




Theorem 5. For any margin-based hypothesis class H,
margin parameter i > 0, and noise level v € [0,1/2),
there exists an online learning algorithm such that for any
h € H and a sequence of examples (X1,y1),- .., (X1, yr),
such that |h(x¢)| > p for every t < T and Prly. #
o(h(x¢)) [ x¢] <, we have

N Ldim,, (H)
t*hxt < —#
Sl >] < Tl

An interesting margin-based class is the class of linear
separators. In particular, let X be the unit L» ball of a Hilbert
space and let H = {x — (w,x) : ||[w]j2 < 1}. Then, we
show that Ldim,,(H) = ﬁ As a corollary, we obtain:

E

Corollary 6. Let x > 0. There exists an online learn-
ing algorithm, such that for any (x1,v1), - - -, (X1, yr), with
lx¢|l2 < 1forallt, and for any w € RY such that |w||z < 1
we have

T T
Z@t?hﬂ < Z|<Waxt>*yt|u+
t=1 t=1

Additionally, for any M* > 0 there exists an online algo-
rithm such that if miny. | w,<1 ZtT:1 (W, @) —yelp < M*
we have

3 i —ytﬂ < M IR T 4 ()
t=1

Tn(T)

E —_— .
2 2

E

We can also derive a bound for bounded stochastic
noise using Theorem 5. It is important to notice that the
function |a — yq|,, is non-convex. Bounds with this non-
convex loss function are widely used in the batch setting.

However, most if not all previous on-

. Aa,y) line learning bounds for linear separa-
% tors are with the hinge-loss, ¢(a,y;) =
. max{0,1— (2y; — 1);}. This is mainly
_‘\\ because the hinge-loss is a convex func-
]_ﬁl tion, and previous learning algorithms

p g alg

assume (sometime implicitly) a convex
loss function. The two loss functions,
for the case y = 1, are illustrated on the left plot.

2 Background: Littlestone’s Dimension and
the Realizable Case

In this section we briefly overview Littlestone’s results re-
garding online learnability in the realizable case and for-
mally define Littlestone’s dimension. See Littlestone [1988]
for more details.

In the realizable case we assume that there exists h € H
such that for all ¢, y; = h(x;). The hypothesis h is called
the target. We make no additional assumptions regarding the
choice of the instances or the choice of the target hypothe-
sis h. We look at worst case guarantees on the number of
mistakes of an algorithm A. That is, we would like to upper
bound

T
M(A)=max  max_ > |g —hix)|.
T =

hE€EH X1,X2,...,X

Vi
hi | ha | hy | hy
Vi 0 0 1 1 / \
vo | O [ 1| 7|7 ” w
va| 221011 / N\ /\

hi  hs hy ha

Figure 1: An illustration of an H-shattered tree of depth 2. In-
ternal nodes are labeled with instances vi, va, v3 and the leaves
are labeled with hypothesis hi, ha, h3, ha. The predictions of hy-
potheses on vi,Vva,vs3 is given in the table. A question mark
means that hj(v;) can be either 1 or 0. For example, the
path from the root to the leaf labeled hs corresponds to the se-
quence of examples (v1,1), (vs,0), which can also be written as
(vi,h3(v1)), (vs, ha(vs)).

(where, ¢, is the prediction of the online algorithm A on the
instance x;). We assume that the online algorithm is deter-
ministic and so there is no expectation in the formula (see
the discussion about randomized algorithms in the realizable
case at the end of this section).

Given a hypothesis class H, the natural question is how
small M (A) can we make? In other words, what is the min-
imum of M(A) over all possible algorithms A. As men-
tioned above, Littlestone gave a nice combinatorial charac-
terization of this quantity. He called the quantity the optimal
mistake bound, and we refer to it as Littlestone’s dimension,
Ldim(H).

To define Ldim, we use the following notation. We con-
sider trees whose internal nodes are labeled by instances.
Therefore, any branch (i.e., a root-to-leaf path) can be de-
scribed as a sequence of examples (X1,¥1),- .-, (Xd, Yd)s
where x; is the instance associated with the ith internal node
in the path, and y; is 1 if node 7 + 1 in the path is the right
child of the ith node, and otherwise y; = 0.

Definition 7 (Shattered tree). An instance-labeled tree
is shattered by a class H if for any root-to-leaf path
(X1,91),- - - (Xa,Ya) there is some h € H such that for all
i <d, h(x;) = y; for all i.

An illustration of an H-shattered tree of depth 2 is given
in Figure 1.

Definition 8 (Littlestone’s dimension (Ldim)). For a non-
empty class, H, Ldim(H) is the largest integer d such that
there exist a full binary tree of depth d (i.e., any branch con-
tains d-many non-leaf nodes) that is shattered by H. (We
define Ldim(0) = —1.)

The definition of Ldim immediately implies that for any
class H, VCdim(H) < Ldim(H) < log,(H). The follow-
ing two lemmas (due to Littlestone) establish the connection
between Ldim () and online learnability of H.

Lemma 9. The worst-case number of mistakes, M(A), of
any deterministic learning algorithm A is at least Ldim(H).

This can be seen by noting that the environment can
choose an H-shattered tree of depth Ldim(?{) and, for any
learning algorithm, present to the learner instances along a
branch from the root to a leaf such that, for any instance, the
label predicted by the algorithm turns out to be wrong.



Interestingly, there is a generic algorithm, A, such
that for every class H with a finite Littlestone dimension,
M(A) = Ldim(H). Thus, Ldim(H) is the exact character-
ization of online learnability in the realizable case.

Algorithm 1 Standard Optimal Algorithm (SOA)

input: A hypothesis class H

initialize: V) = H

fort=1,2,...
receive X;
forr € {0,1} let Vt(r) ={heV, :
predict §; = arg max, Ldim(Vt(r))
(in case of a tie predict g; = 0)
receive true answer y;
update V; = Vt(y”)

h(x:) =1}

The following lemma formally establishes the optimality
of SOA.

Lemma 10. For any class 'H with finite Littlestone dimen-
sion, the SOA algorithm makes at most Ldim(H) mistakes
on any sequence of instances labeled by some h € H.

The idea behind the proof is to note that, whenever SOA
errs then the Ldim of the resulting version space (the space
of all the hypotheses in H that are consistent with the labels
presented by the environment, so far) decreases by at least 1.

Randomized Predictions To derive the lower bound, one
can think of the environment as choosing y; to be —g;. As
we describe in the next section, in the unrealizable case, al-
lowing the environment to base its label on the learner’s pre-
diction leads to non-vanishing regret. We circumvent this
problem by assuming that the environment must decide on
y¢ before observing ¢;, and the learner is allowed to make
randomized predictions (so the environment cannot predict
these predictions).

This leads to the question, whether randomization helps
in the realizable case. As it turns out, it does not help too
much, since one can show that even if the learner is random-
ized, there exists a sequence of instances and a target hypoth-
esis such that the expected number of mistakes (with respect
to the target) is at least Ldim(?)/2. This easily follows by
an averaging argument, since if the environment plays ac-
cording to a root-to-leaf path chosen uniformly at random in
a fixed mistake tree of depth Ldim (), the expected number
of mistakes is at least Ldim(#)/2. Therefore, the distinc-
tion between randomized and deterministic learners in the
realizable case is not significant.

3 Agnostic Online Learnability with
Arbitrary Labels

In the previous section we have shown that Littlestone’s di-
mension exactly characterizes the achievable mistake bounds
in the realizable case. However, the realizable assumption is
rather strong. The focus of this paper is on the more real-
istic, unrealizable, case. In the unrealizable case, our goal
is to minimize the regret with respect to a benchmark class
of labeling functions, . That is, the difference between the

learner’s number of mistakes and the number of mistakes of
the optimal hypothesis in H.

As before, we are interested in a combinatorial measure
that determines the optimal achievable regret bound for hy-
pothesis classes. A natural candidate is the Littlestone’s di-
mension. Recall that in the unrealizable case we assume that
the environment must decide on y; before observing ¢, and
the learner is allowed to make randomized predictions. As
a warm-up, we recall a well known expected regret bound
under these assumptions for the case of finite hypotheses
classes. That is in terms of the cardinality of H . Then,
we present the main result, constructing a generic online al-

gorithm that has the expected regret bound y/Ldim(H) T

(regardless of the cardinality of H). Finally, we provide a
lower bound on the achievable regret.

3.1 An Expert Algorithm for Finite Classes

Let H be a finite hypothesis class. We can think of the hy-
potheses in H as “experts”, and the goal of the online learn-
ing algorithm is to track the optimal expert. In the following
we denote the set of experts by { f1, fa, ..., fx} (rather than
by h;’s) since, the results apply to a more general case where
“experts” do not necessarily have to be fixed functions.

One way to do this is by using the weighted majority
algorithm [Littlestone and Warmuth, 1994]. The version of
the algorithm we give here, as well as the regret bound, is
based on [Cesa-Bianchi and Lugosi, 2006, Chapter 2].

Algorithm 2 Learning with Expert Advice

input: Number of experts N ; Learning rate 7 > 0
initialize: w° = (1,..., 1) e RN ; Zy, =N
for t=1,2,....n
receive expert advice (f{, f4,..., f&) € {0, 1}
environment determine y; without revealing it to learner
define p; = ﬁ Zi:ff:l wi™!
predict , = 1 with probability p,
receive label y;
update: wf = wi™t exp (=nlff —wil) 1 Z =21, w}

The algorithm maintains a weight for each expert and
makes a randomized prediction according to the relative
mass of experts. Finally, the weights of experts that erred
on the last example are diminished by a factor of exp(—n).
The definition of §j; clearly implies that

N
. 1 _
EHyt_ytH:Kwa YA =l (6)
T g=1

The following theorem, whose proof can be easily derived
from [Cesa-Bianchi and Lugosi, 2006, Chapter 2], analyzes
the expected regret of the algorithm.

Theorem 11. If we run Algorithm 2 with learning rate

17 = /8 In(N)/T then the following expected regret bound
holds:

T T
ZE[@t—ytH—lg}LnNZUf—yt\ < y/3In(N)T.
t=1 ==



Similarly, if we run Algorithm 2 with learning rate n =

In(1 + /2 In(d)/M~*), and if min; Y1, | [ — y| < M*

then the following expected regret bound holds:
T
STE(§ — wil] < M* + /2 M7 In(N) + In(N) .
t=1

Note that since, for every finite class H, Ldim(H) <
In(|H]) the bound of Theorem 11 is implied by Theorem 1
and Theorem 2.

3.2 Agnostic Online Learning and Littlestone’s
Dimension

The main result of this section replaces the parameter
In(|H|) of Theorem 11 by the Littlestone dimension of
‘H. As mentioned above, this will allow us to improve
the cardinality based bounds, as well as to extend them to
infinite H’s. We describe an algorithm for agnostic on-
line learnability that achieves an expected regret bound of
\/% Ldim(H) T In(T).

As in the case of finite hypothesis classes, the main
idea is to construct a set of experts and then to use the
Learning-with-experts-advice algorithm. However, the ex-
pected regret of the Learning-with-experts-advice algorithm
is O(4/In(N) T), where N is the number of experts. There-
fore, unless |H| is finite, we cannot use each h € H as an
expert. The challenge is therefore how to define a set of ex-
perts that on one hand is not excessively large while on the
other hand contains experts that give accurate predictions.

We construct the set of experts so that for each hypothe-
sis h € ‘H and every sequence of instances, X1, X2, . . ., X7,
there exists at least one expert in the set which behaves ex-
actly as h on these instances. For each L < Ldim(H) and
each sequence 1 < 1 < 19 < --- < i < T we de-
fine an expert. The expert simulates the game between SOA
(Algorithm 1) and the environment on the sequence of in-
stances x1,Xa, . . . , X7 assuming that SOA makes a mistake
precisely in rounds i1, %9, ...,7r. The expert is defined by
the following algorithm.

Algorithm 3 Expert(iy,io,...,4r)

input A hypothesis class H ; Indices ¢} < 19 < --- < if
initialize: V; = 'H
for t =1,2,...,T
receive x;
forr € {0,1}1et V") = {h € V; : h(xs) = r}
define g, = argmax, Ldim (Vt(T))
(in case of a tie set 3y = 0)
if t¢€ {i177;2,...77;L}
predict §; = g
else
predict Qt = ﬂt
update V; 1 = Vt(y‘)

The following key lemma shows that, on any sequence of
instances, for each hypothesis i € H there exists an expert
with the same behavior.

Lemma 12. Let H be any hypothesis class with Ldim(H) <
oo. Let x1,Xa,...,X be any sequence of instances. For
any h € M, there exists L < Ldim(H) and indices
1 <4 <19 < -+ < iy < T such that when running

Expert (i1, 2, ...,41) on the sequence X1, Xa, ...,Xr, the
expert predicts h(x;) on each online round t = 1,2,...,T.
Proof. Fix h € 'H and the sequence X1,Xs,...,X7. We

must construct L and the indices ¢1,%2,...,75. Con-
sider the Algorithm 1 (SOA) running on input (x1, h(x1)),
(x2,h(x2)), ..., (x7,h(x7)). SOA makes at most
Ldim(H) mistakes on such input. We define L to be
the number of mistakes made by SOA and we define
{41,172, ...,11} to be the set of rounds in which SOA made
the mistakes.

Now, consider the Expert(iy,io,...,4s) running on
the sequence xi,Xg,...,Xp. By construction, the set
V; maintained by Expert(iy,is,...,491) equals to the set
V: maintained by SOA when running on the sequence
(x1,h(x1)),..., (X7, h(x7)). Since the predictions of SOA
differ from the predictions of A if and only if the round

is in {41,42,...,ir}, we conclude that the predictions of
Expert(i1,t2, ..., ) are always the same as the predictions
of h. &

The above lemma holds in particular for the hypothesis in
‘H that makes the least number of mistakes on the sequence
of examples, and we therefore obtain the following:

Corollary 13. Let (x1,y1), (X2,Y2),- -, (XT,yT) be a se-
quence of examples and let H be a hypothesis class with
Ldim(H) < oo. There exists L < Ldim(H) and indices 1 <
i1 < idg < -+ < i < T, such that Expert(iy,is,...,4r)
makes at most as many mistakes as the best h € H does.
Namely,

T
. i
min ; |h(xt) — vt

mistakes on the sequence of examples.

Our agnostic online learning algorithm is now an appli-
cation of the Learning-with-expert-advice algorithm.

Algorithm 4 Agnostic Online Learning Algorithm

input: A hypothesis class H with Ldim(H) < oo ;
number of rounds 7" ; learning rate n > 0
for L=1,2,...,Ldim(H)
foreach sub-sequence 1 <4y < iy < --- <ip <T
construct an Expert (i1, iz, ...,47) as in Algorithm 3
run Algorithm 2 with the set of constructed experts and 7

To analyze Algorithm 4 we combine Corollary 13 with
the upper bound? on the number of experts,

Ldim(H) T
N = Z (L> < TLdim(H) , (7)
L=0

and with Theorem 11. This proves the regret bounds given
in Theorem 1 and Theorem 2.

Zmore precisely, the bound is (GT/Ldim(H))Ldim(H)



3.3 A Matching Lower bound

In this section we prove the second part of Theorem 1
which states that no algorithm can achieve regret below

Q(/Ldim(H)T).

Lemma 14 (Lower Bound). Let H be any hypothesis class
with a finite Ldim(H). For any (possibly randomized) algo-
rithm, exists a sequence (X1,41), .. ., (X1, yr) such that

T T
. . Ldim(H)T
— - —y| >
E ;:1 |9t ytll min ;:1 |h(xt) —ye| > 3

Proof. Let d = Ldim(H) and, for simplicity, assume that
T is an integer multiple of d, say, 7' = kd for some non-
negative integer k. Consider a full binary H-shattered tree of
depth d. We construct the sequence (x1,¥1), (X2,%2), - - -»
(x7, yr) by following a root-to-leaf path (uy, 1), (ug, 22),

.., (ug, zq) in the shattered tree. We pick the path in a
top-down fashion starting at the root. The label z; € {0,1}
determines whether the path moves to the left or to the right
subtree of u; and it thus determines u; ;.

Each node u; on the path, : = 1,2,...,d, corresponds
to a block (X(;—1)k+1, Y(i—1)k+1); - - - » (Xik, Yir) of k exam-
ples. We define X(;_1)p11 = X(i—1)k42 = =+ = Xip = W4
and we choose y(;_1)x+1; - - -, Yir independently uniformly
at random. For each block, let T; = {(i — 1)k + 1,...,ik}
be the indices of the ith block. Denote 7 =, . yi. We
have

. roifr>k/2
ZiglOr,ll}I;T|ZZ—yt| o {’I“ lf’l"<k'/2
Therefore, k/2 — min,, c(0,1} D _ser, 120 — we| = [r — k/2].

Taking expectation over the y’s and using Khinchine’s in-
equality (see e.g. [Cesa-Bianchi and Lugosi, 2006, page
364]) we obtain

min E |zi —
z;€{0,1

Next, we note that there exists A~ € H such that for each
block we have h(u;) = z;. Thus, by summing over the
blocks we get

—Elmmzm X¢) yt] > d\/k/8 .

Finally, since dk/2 = T/2 = E[Zz;l |9+ — ye|], we con-
clude that the expected regret, w.r.t. the randomness of

choosing the labels, is at least dy/k/8 = +/dT'/8. There-
fore, there exists a particular sequence for which the regret is

at least \/dT'/8, and this concludes our proof. B

k/2 —E =E[r — k/2]] =

VE/S.

4 Online Learning with Bounded Stochastic
Noise

We now turn to a second online learning model. While in
this model the labels are still not required to be realizable by
a hypothesis from H, their generation is more restrictive than
in the previously discussed “agnostic” model. The following

setting models a scenario in which there exist some function
h € "H that assigns “correct” labels to the instances. How-
ever, the information provided to the learner is a noisy ver-
sion of these labels. In realistic situations, such a noise may
stem from either communication issues or from an inherent
weakness of the expert providing the labels. In a sense, this
model is half way between the fully realizable model of Lit-
tlestone and the fully agnostic model we have discussed so
far.

Formally, in the Bounded Stochastic Noise model we as-
sume that there exists a hypothesis h* € H, called the rarget,
such that the labels provided to the learner, y1, yo, . . ., yr are
independent {0, 1}-valued random variables, such that for all
t, Pr[h*(x¢) # y¢] < 7, where v € (0,1/2) is a parameter
of the model which we call the noise rate (or, more precisely,
an upper bound on the noise rate).

Instead of regret, it is natural, in the stochastic model,
to measure the performance of a learning algorithm A by
the expected number of mistakes with respect to the target
hypothesis,

T

Z|yt h* (x¢ ] ;

where expectation is with respect to both the random choice
of labels (the noise) and the internal randomization of the
algorithm (and, as before, the 3;’s are A’s predictions for the
instances, ;). Anyway, the number M (A) is closely related
to the regret,

T T
R<A>=E[Z|yt—yt|] ~ B | D1~ b ]
t=1 t=1

where the second expectation is taken with respect to the ran-
dom choice of the labels y;’s and the first is taken with re-
spect to both the random choice of y;’s and the internal ran-
domization of the learning algorithm. Recall that, as shown
in the introduction, it is always the case that R(A) < M(A).
On the other hand, note that R(A4) > (1 — 2v)M(A), since
any mistake with respect to true label h(x;) adds to the regret
at least (1 — 2Pr[h(xs) # y:]) > 1 — 2. In other words,
R(A) and M(A) are within constant factor of each other.

To learn in the stochastic model, we use the learning al-
gorithms which mimic those we used in the agnostic model
(Section 3). The differences are in the learning rate 7, and
the resulting bounds on the number of mistakes. For a fi-
nite hypothesis class H and any fixed upper bound v < 1/2
on the noise rate, we show that the expected number of mis-
takes is upper bounded by O(In |H|). When H is infinite, we
use the Algorithm 4 which simulates a class of O (7™ (%))
experts, and apply the expert learning result for finite sets
of experts to obtain an upper bound O(In(T% ™)) =
O(Ldim(H) In(T")) for any fixed (upper bound on the) noise
rate vy < 1/2.

For this learning model, rather than providing a general
lower bound on the expected number of mistakes, we pro-
vide a lower bound only for a specific family of hypothesis
classes. Let Hj, denote the hypothesis class which contains
all the hypotheses that assign label 1 to k-many points of
the domain. Note that, for every k, Ldim(H) = k. For




such classes over a finite domain (and hence finite hypoth-
esis class), we show Q(In(|Hy|)) lower bound on the num-
ber of mistakes for any v € (0,1/2). For infinite domains
(and hence infinite classes H}), we prove a lower bound of
Q(kIn(T)). Note that for this particular family of classes
(the Hj’s) the two lower bounds match our upper bounds. It
remains an open question to prove similar lower bounds for
general hypothesis classes.

4.1 An Expert Algorithm for Finite Classes

This section is the counterpart of Section 3.1. We assume
that H = {hy,ha,...,hn} is finite and think of the hy-
potheses as “experts”. The goal of the learning algorithm,
essentially, is to find the target expert that did not make any
“true” mistake, despite that true labels are corrupted by ran-
dom noise with rate up to . We use Algorithm 2 for learning
with expert advice.

More precisely, we think of the expert advice f*, f2,...
as being deterministic and we assume that the feedback la-
bels 41,2, ... are independent random variables. We as-
sume that there exists ¢ € {1,2,..., N} such that Pr[y; #
f1] < v for all t. The “true” mistakes are counted with re-
spect to the predictions of the target expert. Formally, the
true number of mistakes is Zle |9+ — f}]. The following
theorem gives an upper bound on the expected number of
true mistakes of the algorithm.

Theorem 15. For v € [0,1/2), if we run Algorithm 2 with
learning rate n = % ln(kTV) with respect to a set of experts

{f1,---, [n}, then if for some i € {1,...,N}, the labels
ys (randomly generated by the environment) are such that
Pr(y; # f1) <~ for all t then,

T A ) 1
I DI ] [ a—
t=1 -2

(1 =) )

where the expectation is taken with respect to both y,’s and
the internal randomization of the algorithm.

The proof is given in the appendix. The bound above is
a weakened version of Theorem 3, where In(|H|) replaces

Ldim(H).

4.2 Ldim(H)-Based Bound and Infinite Hypothesis
Classes

For infinite hypothesis class H, we take the same approach
as in Section 3.2 and use Algorithm 4. The key ingredient
is Lemma 12 which guarantees that regardless of the tar-
get hypothesis and the sequence of instances, there exists
an Expert(iy,ia,...,1) with exactly the same predictions
as the target hypothesis. In other words, it does not matter
whether we count learner’s mistakes with respect to the tar-
get or with respect to Expert(iy, io, . . ., 47,). Combining this
with the upper bound (7) on number of experts, Theorem 15
concludes the proof of Theorem 3.

4.3 Two Lower Bounds

In this section, we present two lower bounds on the expected
number of mistakes in stochastic model. Both lower bounds
are for the hypothesis classes of the form Hj, consisting of

all functions h : X — {0, 1} that assign label 1 to exactly k
domain points (formally |h=1(1)| = k). Itis easy to see that,
for every value of k, Ldim(Hj) = k, provided the size of the
domain is at least 2k. The first, Q(In(|Hy|)), lower bound is
for the case when the domain (and hence Hy) is finite. The
second, Q(kIn(T)), lower bound is for the case when the
domain (and hence H}) is infinite. The main technical tool
for both lower bounds is the following lemma, which takes
care of the case when the domain is finite and & = 1.

Lemma 16. Let v € (0,1/2), let A be any learning al-
gorithm, and suppose X is finite. There exists a target
h* € Hy, time horizon T = O(|X|1n(|X])), a sequence
X1,Xs3, ..., X7 of instances and a sequence of independent
random variables y1,ya, . . .,y with Prly: # h*(x¢)] = v
such the expected number of mistakes of A is at least

T
> e — b (x4))]
t=1

A proof is given in the appendix.

E = QIn(|X1)) .

Theorem 17. Let v € (0,1/2), let A be any learning al-
gorithm, and suppose |X| > 2k is finite. There exists a
target h* € Hy, time horizon T = O(|X|log(|X]|/k)),
sequence of instances Xj,Xa,...,XT and sequence of in-
dependent random variables y1,ya,...,yr € {0,1} with
Pr[h*(x:) # y¢| = 7 for all t, such that the expected num-
ber of mistakes of A is at least

T
>l — 17 (%))
t=1

Proof. Let n = |X|. We split X into k disjoint subsets
Xy, Xa, ..., X each of size ©(n/k). The adversary picks
the target h* € Hj such that in each X; there is exactly
one point x; on which h* attains value 1. According to
Theorem 16, the adversary can choose the point in x] and
a sequence of O((n/k)log(n/k)) instances in X; such that
learner makes in expectation at least Q(log(n/k)) mistakes.
Concatenating the sequences together the adversary obtains
a sequence of O(nlog(n/k)) instances on which the learner
makes Q(klog(n/k)) = Q(log |H}|) mistakes. B

Theorem 18. Let v € (0,1/2), let A be any learning al-
gorithm, and suppose X is infinite. For any time horizon
T > 2k, there exists a target h* € Hy, and a sequence of T
instances such that A makes at least Q(klog T') mistakes in
expectation.

E > Q(log [Hk]) -

Proof. Consider subset X of the domain of size n =
O(T/log(T/k)) points. By Theorem 17 there exists a tar-
get h* € Hy|x, and sequence of instances in Xy of length

T T
1 = 1
ortstor) = © (75 8 e )
=0(T)
such that the learning algorithm makes

Q (klog(n/k)) = O <k: log (kk);w» — Q(klogT)

mistakes. We choose the size of X{; so that constant hidden
in the ©(T'/ log(T/k)) notation guarantees that the length of
the sequence of instances is exactly 7". B




5 Margin-based hypothesis classes

In this section we extend our results to the case of margin-
based hypothesis classes. By doing so, we will obtain new
regret bounds for the class of linear separators with large
margin, which is maybe the most popular hypothesis class.

Recall that margin-based hypotheses are mappings h :
X — R, where the prediction is ¢(h(x)), ¢(a) =
1 (sign(a)+1), and |h(x)| is the confidence in the prediction.
Recall also the definition of |a — y|, given in Eq. (4).

Our first step is to generalize the notion of a shattered
tree to margin-based hypotheses. This is done by simply re-
placing the loss |a — y| with the loss |a — y|,,.

Definition 19 (u-shattered tree). A d-depth full binary tree,
with an instance associated with each node, is p-shattered
by a margin-based hypothesis class 'H if for any root-to-leaf
path, (x1,y1),-..,(Xd,Yd), there exists h € H such that

25:1 |h(Xt) - yt\u =0.

Definition 20 (Margin-based Littlestone’s dimension).
The margin-based Littlestone’s dimension of a class H, de-
noted Ldim,,(H), is the largest integer d such that there
exists a d-depth tree that is p-shattered by H. (We define
Ldim(0) = —o0.)

It is easy to verify that if Ldim,(H) = L then
for any learning algorithm, there exists a sequence
(x1,91), - .-, (XL, yr) on which the algorithm makes L mis-

takes, while there exists h € H such that Zle |h(xt) —
ytlu = 0. The following theorem shows that we can
also modify the SOA algorithm for margin based hypothe-
sis classes.

Theorem 21. Let 'H be a margin-based hypothesis class
with Ldim,, (H) < oo. Let (x1,y1),...,(Xr,yr) be a se-
quence of examples such that there exists h € H for which
Zthl |h(x¢) — yel = 0. Then, if we run SOA (Algorithm
1) on the sequence, while replacing Ldim with Ldim,,, then
the number of prediction mistakes is at most Ldim,, (H).

The proof is analogous to the proof of Lemma 10. The
above theorem implies that as in previous sections, we can
construct a not-to-large pool of experts, that mimics the
predictions of all hypotheses in H, as long as Ldim,,(H)
is small. Formally, the following lemma is the analog of
Lemma 12.

Lemma 22. Let ‘H be any margin-based hypothesis class
with Ldim, (H) < oco. Let X1,Xa,...,Xr be any sequence
of instances. For any h € H, there exists L < Ldim,(H)
and indices 1 < 11 < 19 < -+ < i < T such
that when running Expert(iy,ia,...,i5) on the sequence
X1, X2, ..., Xr, while replacing Ldim with Ldim,,, the ex-
pert predicts ¢p(h(x¢)) on each online roundt = 1,2, ..., T.

The proof is again similar to the proof of Lemma 12. The
proofs of Theorems 4 and 5 follow from the above lemma
using the same technique as in previous sections.

Finally, we demonstrate the usefulness of our general
theory by considering a specific margin based class. Let
X = {x IIx|l2 < 1} be the unit 5 ball of some

Hilbert space, and let the hypothesis class be linear sepa-
rators, H = {x — (w,x) : ||wl||2 < 1}. The well known,
Novikoff [1962], mistake bound for the Perceptron algorithm
immediately implies that Ldim, (H) < 1/u?. Combining
this with Theorem 4 yields Corollary 6.

6 Extensions and Discussion

We extended Littlestone’s theory of online learnability in two
ways. First, while Littlestone focused only on the realizable
case, we give upper and lower regret bounds for the non-
realizable case as well. Second, we also consider margin-
based hypothesis classes. The elegance of the theory enables
us to seamlessly derive novel online regret bounds for the im-
portant class of linear separators. There are several possible
extensions that we leave to future work.

Automatically tuning parameters. All our algorithms re-
ceive the time horizon 7" (or the parameter M™) as part of
their input, which might be not realistic. Using the standard
doubling trick, this dependence on 7" or M™* can be easily
removed. See for example [Cesa-Bianchi and Lugosi, 2006,
Chapter 2] for details.

Adaptive vs. Oblivious Environments For simplicity of
presentation, we implicitly assume an oblivious environ-
ment. However, our results can easily be adapted to adap-
tive environment (see the discussion of this point in [Cesa-
Bianchi and Lugosi, 2006, Page 69]).

Comparison to batch learning Many of the results we de-
rived in this paper share similarity with results obtained for
the batch learning model. For example, the per-round re-

gret bound O(+/Ldim(H)/T) is similar to the generaliza-
tion bound O(+/VCdim(H)/T') for batch learning. Also,
margin based bounds, and faster rates under noise conditions
also appear in the analysis of batch learning algorithms. It
is therefore interesting to mirror additional results such as
Tsybakov noise condition (see e.g. Boucheron et al. [2005]).

Computational complexity The focus of this paper was
the existence of algorithms and the resulting regret bounds,
rather than computational efficiency. The algorithms pre-
sented here are based on Littlestone’s algorithm that needs
to compute the Ldim of sub-classes of H repeatedly. It turns
out that this is a computationally hard problem (at least as
hard as computing the VC-dimension, see Frances and Lit-
man [1998]). Ignoring this issue (we are computing the di-
mension only for sub-classes on a fixed H, which may be
much easier than the worst case general problem), we are
running 774(*) many experts, each making a constant
time computation for each label prediction.

Open Questions. The main open question is to close
the O(+/log T) gap between O(+/Ldim(H) log(T)T) regret
upper bound and Q(1/Ldim(H)T) lower bound. It seems
(and we believe it) that Ldim () is the key quantity char-
acterizing the worst-case regret with respect to . Theoreti-
cally, however, the factor O(1/log T') can hide a surprise and
defeat our belief.

The second open question is to find a lower bound on the
expected mistakes in the stochastic model with noise rate




for arbitrary classes H. It seems that for finite A the num-
ber of mistakes does not depend on Ldim() and rather it
depends only on the cardinality of H. The case when H is
infinite is also interesting, however, the main obstacle seems
to be the lack of examples of interesting infinite hypothesis
classes with finite Littlestone’s dimension.
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Sotakova for fruitful discussions about the stochastic
model.
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A Proof of Theorem 15

Fix 7,4, T. Suppose that at the end of round ¢ the algorithm
has computed a certain weight vector w;. We show that in
the following rounds s = ¢ + 1,¢ + 2,...,T the expected
number of mistakes the algorithm makes is at most

T
Z
N s t t
E[Z 95— f1 | W scxln(W) ®)
s=t+1 i
where Z; = Zle w! and C,, = - is a positive

1-24/5(1—7)

constant that depends only on «y. If we substitute ¢ = 0 in the
inequality, the theorem follows, since Zy = d and w? =1.

We prove inequality (8) by backward inductions on t.

The base case t = T is trivial, since the left side is zero

and the right side is positive because Z7/w! > 1. Suppose

that the inequality holds true for ¢, we show it for ¢ — 1. Let

_ § t—1 _ § : t—1
u = wj v = U)j
1<j<N 1<j<N
ri=rt FIA St

be the total weights of the experts that in round ¢ answer
correctly and incorrectly respectively. Clearly, v = Z;_1 —u.
The probability that in round ¢ the algorithm makes a mistake
is Pr(gy # fl|wi—1] = v/Z;—1. Then, with probability p =
Prly; # f}] < ~ the algorithm receives incorrect feedback
y; = —f! and updates the total weight to Z; = e~ u + v
and target expert’s weight w! = e*”wf_l. With probability
1 — p the algorithm receives correct feedback y; = f} and
updates total weight to Z; = u + e~ v and target expert’s
weight remains unchanged w! = wf_l. And so we have,

T T
E|Y g — fillw' | = 0/Zs +E| S [5s — £
s=t s=t+1
Z
<wv/Z;1+E {Cv In (i) Wt:|
w;
e "u+wv
= ’U/Zt_l erc,y ln (enwf—1>
u+e "M

where in the second step we have used the induction hy-
pothesis. It remains to show that the last expression is
bounded by C., In(Z;_; /w!). Canceling w!~" and recalling
that u + v = Z;_1, this is equivalent to showing that

v/(u+v) +pC, In(u+e"v) + (1 —p)C; In(u+ e "v)
< C,In(u+v)

Moreover, since for any a > 0 the inequality holds for a pair
(au, o) if and only it holds for (u, v), we can without loss
of generality assume that u + v = 1 (and u,v € (0,1)) and
so we are left to show

v+pCyIn(u+e’v) + (1 —p)CyIn(u+e""v) <0

Substituting © = 1 — v we can define a real-valued function
f of one real parameter v

f(v) :==v+pC,In(1—v+e"v)+(1—p)CyIn(1—v+e ")

‘

and we thus must show that f is non-positive on the interval
(0,1). We use the inequality In(1 + z) < z valid for all
x > —1 and obtain

f(0) <v+pCy(—v+em)+ (1 —p)Cy(—v+e ")
=v(1+Cy(e"p—1+(1—ple"))

Note that the last expression is a linear function in v. Thus,
in order to show that last expression is non-positive for all
v € (0, 1), it suffices to show that its slope is non-positive:

1+Cy(e"p—14+(1—ple™")
= LGyl e ) e - 1)
—_———

This concludes the proof.

B Proof of Lemma 16

Let X = {1,2,...,n}. The environment chooses the se-
quence of instances to consists of O(logn) blocks, each
block being 1,2,...,n. We assume that the environment

chooses the target hypothesis h* € H; uniformly at random.
The sequence of instances and the target together determine
the random variables 1,2, ...,yr. We compute the ex-
pected number of mistakes the learner makes and we show it
is at least Q(logn).

Consider the ¢-th block of domain points. Let P, denote
the probability that the learner makes at least one mistake in
this block. The total expected number of mistakes is at least
> oo 1 Pr. We now lower bound P.

Fori € X = {1,2,...,n} and 1 < j < ¢, let
yi.; € {0,1} be the random label of the point i received
by the learner in j-th block. Let Yy be the n x ¢ matrix with
entries y; ;. Consider the behavior of the learner for j-th
block as a function f that maps Y} to a hypothesis h € Hj.
In other words, f is the inference rule that is used to guess
what the target is. (We assume that that the learning algo-
rithm sees the /-th block all at once. Clearly, this way, the
learning algorithm can make only fewer mistakes.) Thus
P, > Pr[f(Y;) # h*]. For convenience we identify H;
with X' so that h € H; corresponds to the element in X on
which h attains 1.

We now show that the rule f can be no better then the
maximum likelihood rule g which works as follows. Let
m; = Z§:1 Yi,; be the “vote” for element ¢ € X'. The rule
g outputs ¢ € X (which corresponds to h € H;) with max-
imum vote. If in X there are multiple elements with max-
imum vote, g outputs the smallest one of them. We claim
that

Prf(Ye) # h*] = Prlg(Ye) # h'] . ©)



This can be seen as follows:

Pr(f(Ye) # 0] = Y Pr[f(Ye) # h, h* =]

heH1

= 3 Pl b = 1)

heH,

1
=L Pl = A =0
(h,h')e(H1)?
h#h'

=(1/n)> " Prf(Ye) = Ag(Ye) =" | h* = }]
(h,h' W' Ye(H1)?
h#h'

(10)

The triple sum consists of n%(n — 1) terms of the form
Pr[f(Yy) = W' A g(Ye) = R” | h* = h] indexed by triples
(h,h',h"") where b’ # h. Out of them n(n — 1) are such that
h = h". We lower bound each such term as

Pr[f(Ye) = W A g(Ye) = h | h* = I
> Pr{f(Ye) = ' Ag(Ye) = h | h* =] . (11)

The inequality (11) follows from the maximum likelihood
property of g. Namely, if Z, € {0,1}"*¢ is a matrix such
that g(Z;) = h, then for any b’ € Hq, Pr[Z, | h* = h] >
Pr[Z; | h* = h']. Summing over all matrices Z, such that
f(Zy) = h' we obtain (11).

We substitute (11) into (10). This effectively turns each
term in the triple sum with index (h, A/, h) into a term with
index (h/, W/, h). In another words, it exchanges the role of
g and f. Formally,

Pr[f(Yy) # h*]
1
=— > Prf(V) =W Ag(Yo)=h"|hT =1
(h,h! W' Ye(H1)?
h#h'

> Prlf(Y) =W Ag(Ye) =1 | h* =1
(h,h/ ,h'"Ye(H1)?

h;ﬁh”
= Prg(Ye) # 1]

This finishes the proof of the inequality (9).

Now, since P; > Pr[g(Yy) # h*], we can lower bound
the latter term i.e. the probability of error of the maximum
likelihood rule g. We do it in a very rough way. Suppose n
is even. With probability 1/2 the target h*, as an element of
X, liesin {n/2+ 1,n/2 +2,...,n}. Conditioned on that,
the rule g certainly errs, if for some ¢ € {1,2,...,n/2} all
entries y; 1,¥:.2,- .., Y are equal to 1 i.e. m; = ¢ for all
¢ < n/2. For fixed 7, the probability that m; = ¢ is 'ye. So,
the probability that my,ms, ..., my < £is at most (1 —

Y
S|

75)”/2 < e~ e, Thus, the probability that g errs is at least
Prlg(Yy) # h*] > 1—e~™". For £ < log; /. (n/2), the error
probability is at least 1 — e~ 2. Hence the total expected num-
ber of mistakes is at least Y o, Py > Zlgofl””("ﬂ) Py >
(1—e72). logy /,(n/2) = Q(logn). The length of the se-
quence needed is n(log; /. (n/2)) = O(nlogn).



