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Abstract

We study sequential prediction problems in which,
at each time instance, the forecaster chooses a bi-
nary vector from a certain fixed sét C {0,1}¢

and suffers a loss that is the sum of the losses of
those vector components that equal to one. The
goal of the forecaster is to achieve that, in the long
run, the accumulated loss is not much larger than
that of the best possible vector in the class. We
consider the “bandit” setting in which the fore-
caster has only access to the losses of the chosen
vectors. We introduce a new general forecaster
achieving a regret bound that, for a variety of con-
crete choices of, is of order,/nd In |S| wheren

is the time horizon. This is not improvable in gen-
eral and is better than previously known bounds.
We also point out that computationally efficient
implementations for various interesting choices of
S exist.

Introduction

caster is to choose, at every time instance 1,...,n, an

element from a sef of N actions. After making a choice,
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structured classes of experts is a thoroughly studied enobl
Once again, we refer to [6] for a survey.

An interesting variant of the sequential prediction prob-
lem is theadversarial multi-armed banghtoblem in which
the forecaster only observes the loss of the chosen actibn an
uses the randomized choices to gather information. It was
shown by Auer et al. [2] that an expected regret of the order
of vnN In N is achievable in this case. There has been a
flurry of activity to address versions of the adversarialdian
problem for large and structured classes of experts, see-Awe
buch and Kleinberg [3], McMahan and Blum [16], Dani and
Hayes [8], Gyobrgy, Linder, Lugosi, and Ottucsak [10], Dan
Hayes, and Kakade [7], Abernethy, Hazan, and Rakhlin [1],
Bartlett, Dani, Hayes, Kakade, and Tewari [4]. The efforts
have been focused on two main issues: (1) obtaining regret
bounds as small as possible; (2) constructing computation-
ally feasible forecasters.

In this paper we propose a new general methodology for
the cases when the finite class of experts has a certain com-
binatorial structure. The obtained regret bounds imprave o
those derived from general on-line optimization resulte W
also show that in some interesting cases nontrivial efficien
algorithms exist.

The paper is organized as follows. In Section 2 we for-
mulate the problem. In Section 3 we discuss the relationship
of our results to earlier work. The general prediction sigat

the forecaster suffers a loss corresponding to the chosen acis defined and the main performance bound is established in
tion. The goal of the forecaster is to achieve that the accu- Section 4. Various applications are described in Section 6,
mulated loss is not much larger than that of the best pos-including a multitask bandit problem, learning permutasio
sible fixed action, chosen in hindsight. The difference be- learning spanning trees of a complete graph, and learning
tween the achieved and optimal cumulative losses is calledbalanced cut sets.

the regret 1t is well known (see [6] for a survey) that ran-

domized prediction strategies exist that guarantee tieabth
pected regret of the forecaster is bounded by a constarg time 2~ Statement of the problem

vnlIn N, regardless of the sequence of losses, as long as ] ) )

they are bounded. The logarithmic dependence on the numn the combinatorial bandit problera setS C {0,1}¢ of
ber of actions allows one to compete with very large classesélementsv(k) for k = 1,..., N is given (this is the set of
of actions (also called experts). However, large classez-of ~ “experts” or “actions”), and a forecaster plays with the op-
perts raise nontrivial computational issues. The constmc ~ Ponent the following repeated game:

of computationally efficient forecasters for various casks For each step= 1,2, ...
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PASCAL2 Network of Excellence under EC grant no. 216886sThi L+ 1he opponent secretly chooses a loss vefter [0, 1]
publication only reflects the authors’ views. 2. The forecaster choosé§ € {1,..., N}
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The forecaster’s goal is to control thegret
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revealed to the forecaster. They exhibit a computationally
efficient forecaster achieving a regret of ordet/ndIn N

with high probability. Even though [10] only considers the
path planning problem, it is not difficult to extend their re-
sults to the more general setup of this paper. However, the

The forecaster is allowed to use randomization. More pre- model considered here, that is, when the forecaster only re-

cisely, at every time instanaethe forecaster chooses a dis-
tributionp;_1(1),...,p:—1(N)overthese{l,..., N} (i.e.,
pii(k) > 0forallk=1,...,Nand>r_ p,1(k) = 1)
and draws an indek; = k with probabilityp; (k). Thus,

ceives information about the total loss of the chosen opject
is more challenging. Dani, Hayes, and Kakade [7] were the
first to prove an expected regret bound with the optigal

dependence on the time horizon. Their bound is of the form

the regret is a random variable. In this paper we investigate Bd\/nIn N. Bartlett, Dani, Hayes, Kakade, Rakhlin, and

the behavior of thexpected regret

max E [En - Ln(k)}

k=1,...N

where the expectation is with respect to the forecastest’s in
ternal randomization.

Tewari [4] show that this bound also holds with high proba-
bility. The forecaster of [7] is based on exponential wesght
and can be computed efficiently whenever efficient imple-
mentations of the exponentially weighted average forecast
are available. This is certainly possible for the path plan-
ning problem, but there are various other interesting exam-

The most important parameters of the problem are the ples —see the discussion of the examples in Section 6 below.

time horizonn, the dimensionl, the cardinalityNV and the
maximum “weight” of any experB = maxycs Z‘Z:l v;.

Note thatB is an upper bound for the logs(k) = £, v (k)

of any expert.

Abernethy, Hazan, and Rakhlin [1] consider a very different
approach which allows one to construct computationally ef-
ficient forecasters for a large variety of problems and has an

expected regret of the order &fdv/ndInn. This requires

We note here that the combinatorial bandit problem is a the construction of aelf-concordarftinction tailored to the

special case of the online linear optimization problem con-
sidered, for example, in [1, 4, 7]. In the online linear opti-
mization problem the expert class is an arbitrary (finité)-su
setS of R? and the loss of an expestc S, at timet, is the
inner product, v. The fact that we restric§ to be a sub-
set of the binary hypercubf@, 1}¢ allows us to exploit the
combinatorial structure of the class of experts in a transpa
ent way. Arguably, the most interesting examples of online
linear optimization fit in the present framework.

3 Relation to previous work
Whend = N andwv(1),...,v(N) are the standard basis

vectors, then the model is identical to the adversarial ban-

dit problem introduced by Auer et al. [2], who proved a re-
gret bound of the order of nNV In N that holds not only in
expectation but also with high probability. A well-studied
instance of our general framework is thath planningprob-
lem, in whichd is the number of edges of a fixed graph
andwv(1),...,v(N) represent all paths between two fixed

problem at hand. Even though the existence of such a func-
tion is guaranteed, its construction may be a nontrividt tas
in some applications.

In this paper we take an approach similar to that of Dani,
Hayes, and Kakade [7]. Like [7], we construct unbiased es-
timates of each loss componéht, i = 1, ..., d and define
an exponentially weighted average forecaster based oe thes
estimates. The main difference is in tagplorationpart of
the algorithm. Following Awerbuch and Kleinberg [3], Dani,
Hayes and Kakade construcbarycentric spannerf the set
S and ensure exploration by mixing the exponential weights
with the uniform distribution on spanners. Instead, we use
a mixing term derived from the uniform distribution ougr
This allows us to achieve an expected regret bound of the
order of Bv/ndIn N whenever the smallest eigenvalue of a
certain matrix associated withis not too small. The largest
part of our efforts is dedicated to show that this smallest
eigenvalue can indeed be handled by exploiting the combina-
torial structure of the class of experts in a number of irgkere

ing cases. Note that, as shown in [7], the boshg'nd In |S|

vertices of the graph. At each time instance the forecasteris not improvable in general wheh C {0,1}<.
chooses a path and suffers a loss that is the sum of the losses
over the individual edges of the chosen path. Takimoto and4  The forecasting strategy

Warmuth [19] and Kalai and Vempala [14] exhibit compu-
tationally efficient forecasters in the “full-informatibocase,

Our algorithm @MBAND (see figure) maintains a weight

that is, when the forecaster has access to the losses over ewector defined, at each tinte by w; ; = exp(—n Em—) for

ery edge of the graph.

The partial information setting considered in this paper
was first studied by Awerbuch and Kleinberg [3] who proved
a regret bound of the order/? for the restricted model of
oblivious opponent. McMahan and Blum [16], achieved a
regret bound of the order af*/* for the general model.

Both [3] and [16] study the somewhat more general frame-

work of online linear optimizationintroduced by Kalai and
Vempala [14]. Gyorgy et al. [10] considered the problem of
path planning in a less demanding partial information frame

i=1,...,d, whereL;; = ¢1; + --- + {, is a cumulative
pseudo-loss (defined below) and> 0 is a fixed parameter.
These weights define corresponding weigiatsc R over
the elements of in the obvious way

I I wt,i .

i:v;(k)=1

wy (k)

LetW, = YN w, (k) and letg; (k) = w; (k) /W ;. At each
time ¢, COMBAND playsv(K;) € S, whereK, is drawn

work, when the loss of every edge on the chosen path isfrom the distributiorp;,—1 = (1—7+)¢:—1 +~yponl,... N.



Algorithm CoMBAND Thus, the success of the forecaster crucially depends on the

ParametersAction setS C {0, 1}, prior distributiony value of the smallest nonzero eigenvalyg,, of u's corre-
overS, mixing coefficienty > 0 lation matrix) . In Section 6 we work out various examples
Initialization gy = uniform distribution onS in which B/dAnmin = O(1). So in all these cases we obtain
Fort=12,... E [Ln -~ Ln(k)} —0 (B\/ndlnN) . )
1. Letpir = (1 —7)g—1+7H
Draw actionK; fromp;; Rewriting the above condition @, = Q(B/d), and ob-
Incur and observe co&t(K,) = ejv(Kt) serving thatM has trace bounded bi, reveals that we
LetP,_, = E[V VT} whereV has lawp, achieve (2) whenever the eigenvaluesibfiend to be equal.

~ i Bound (2) improves on the bound of Dani, Hayes, and
- Letly = 6(K) Py v(Ky) - Kakade [7] by a factor of/d and on the bound of Aber-
. Update probsg; (k) oc qi—1(k) exp(—n:(k)) for nethy, Hazan, and Rakhlin [1] by a factor @{/In(n/N).}
alk=1,...,N. Computationally, both GMBAND and GEOMETRICHEDGE
face the problem of sampling from distributions defined over
S. In many cases this can be done efficiently, as we dis-
cuss in Section 6. The algorithm of [1], instead, works in a
completely different way. It performs a randomized gratlien

SEOIEEAEN

Here 1 is any prior distribution on{1,..., N} andvy > 0
is a parameter. In all of our applications we chogs&

b? the qniform distribution, although in principle diffexe descent in the convex hull &, translating each point, in
distributions are also allowed. The vector of pseudo-losse the convex hull into a distribution oves. This is done in

£ = (Zt,la o ,Zﬁ,d) is defined by such a way that sampling; from this distribution ensures
£ = 0K P v(Ky) (1) E[e] v(K;)] = EtT?:_t. The efficiency of this procedure de-
pends on the specific choice&f(for the path planning prob-

+ i 1 - .. . .
whereP is the pseudo-inverse of thex d correlation ma- o efficient procedures exist). Moreover, in order to guar-

tix E[V V'] for V. e S distributed according tg; ;. antee a good regret, gradient descent is implemented using a
(Throughout the paper, we use an index= 1,..., N and self-concordantunction tailored to the problem. Even if the
its corresponding elementk) € S interchangeably.) existence of such a function is guaranteed, its constmictio

As we said in the previous sectionO®BAND can be  may be a non-trivial issue in some applications.
viewed as a variant of the METRICHEDGE algorithm of
Dani, Hayes and Kakade. The only substantial difference isg  proof of Theorem 1
that we perform exploration by drawing actions from a dis-
tribution . over the entire sef (Step 1 in figure) instead of  Before proving Theorem 1, we state and prove some auxil-
drawing from a spanner. This fact gives us a finer control iary results.
on the loss estimates ; in which the factod| P;*, || occurs

. . n

—see (1) above. Indeed, while [7] only achie\lgs” || < let M — E[V VT]. ThenM M+v — v for all v € {0, 1}
d/~ due to the mix of the barycentric spannersin we such tha®{V = v} > 0
can afford the more detailed boufi®," ;|| < 1/(yAmin), - '
wherel,,,i, is the smallest nonzero eigenvalue of the correla- proof: To prove the statement we show that forale R?
tion matrix of the initial sampling distribution. In concrete such that\/ = = 0 and for allv € {0, 1}¢ such thafP{V =

cases, the computation of tight lower bounds\an, allows v} > 0, it must be the case that' v = 0. Pick anyz € R?
us to obtain better regret bounds. An additional feature, eX such thatM = = 0. This impliesz ™ M & = 0. Using the

Lemma 2 LetV be a random vector with rangg, 1} and

ploited to derive an even tighter estimate |6r;;| —see (4), definition of M we obtain

is that we assume a reference coordinate systei fainich . T 2

the definition of B = maxy, [|v(k)||, relies on. In [7], on U=z Mz= Z (z'v) P{V = v}
the contrary, actions were defined in terms of the nonorthog- ve{0,1}4

onal basis provided by the spanner, and this is why the cor-

. ~ But then it must be the case that v = 0 for all v such that
responding bound off, ;| is worse. P{V = v} > 0. -

For ComBAND we prove the following regret bound.

Theorem 1 LetS C {0,1}? and letM = E[V V' "] where
V € Sis a random vector distributed according to an ar-
bitrary distribution . with supportS. If COMBAND is run
with parametersS, 1, andy = B A(gﬁ where Corollary3 P, P'v =wvforalltandallv € S.

N =[S/, Amin is the smallest nonzero eigenvalueldf and Proof: Weyl's inequality implies that\;(F;) > v Ai(M),
B > |v|, for all v € S, then its expected regret after where \;(F;) is thei-th largest eigenvalue o, = (1 —
steps satisfies 7)Q: + v M and);(M) is thei-th largest eigenvalue d¥/.

LetQ, =E[V VT] whereV has lawg;. Note thatQ, is
always positive semidefinite since it is a convex combimatio
of positive semidefinite matricagk)v (k).

-~ B !In all applications of Section 8p N = O(v/dInd). Hence
E [Ln— La(k)] < 2B 1) ndln N _ _ f
k:Hll,é.l.).(,N (k)| < \/(d)\min + ) nam the improvement on [1] is at least by a factordSf*\/In(n/d).




Therefore the null space & is included in the null space of
M. This, together with Lemma 2 and the positive semidefi-
nitess of@,, implies the claimed statement. [ |

Proof of Theorem 1: Let E; be the expectation operator
conditioned on the first — 1 random drawsx, ..., K;_ 4
(i.e., expectation w.r.t. the distributign_,). For allk =

N let ¢,(k) = £ v(k) so thatE, £,(K,)v(K;)
P14 Let alsol (k) = Z:v(k:). Hence, by Corollary 3,

E, £, = £,. An adaptation of the proof of [7, Theorem 3.3]
then gives

£ S () — La(h)
t=1

under the conditiom |¢,(k)| < 1 for all t and. In order to
enforce this condition we write

1
<N Bnt Bdgn (3)
n

6 (k)| = |v(k) "] = €(K)|v(k) T PE v(Ky)]
B?
+ 2 v
<B ||Pt—1|| IE??””” < Mot (Po1) 4)

wherel,in (P;—1) is the smallest nonzero eigenvalud?f ;,
and we used;(K;) < Band|jv||> = |v|, < B. Let
Amin = Amin(M). By Weyl's inequality, Ain (Pi—1) >
~ Amin, Which in turn implies that, (k)| < B/(¥ Amin)-
Hence we choosg = 'Y)\min/B2 and (3) becomes
B?lnN
<

E|>_6(Ki) = La(k)| < —
=1 Y Amin
Lettingy = B, /% finally yields

- B
E Zét(Kt) — Ln(k)| < 23\/(d)\min +
t=1

which ends the proof of Theorem 1.

+ '7(B + d/\min)n

1) ndln N

6 Applications

In order to apply Theorem 1 to concrete clasSese need
to find lower bounds on the smallest eigenvalig, =
Amin (M) of the linear transformation

N
M =" v(k)o(k)T (k)
k=1

restricted to the vector spadé spanned by the elements
v(1),...,v(N) of S. Sinceu has suppors, Lemma 2 im-
plies that this smallest eigenvalue is strictly positivehu¥
we want to bound

Amin = mn z ' Mz.

zel : ||lz|=1
In all of our examples we assumaés uniform over the index

set{1,..., N}. Itis convenient to consider a random vector
V., uniformly distributed oveS. Then we have
Amin = mn Ez'VV'g
zel:|z|=1

Sincex ' VV 'z = (VTa;)2 we have the following lemma.

Lemma 4

Amin = E[(vT2)’].

min
zeU: ||z||=1

In what follows we write anye € U asx = fo:l a(k)v(k)
where we let) ", a(k) = a.

6.1 A multitask bandit problem

In this first example we consider the case when the decision
maker acts inn games in parallel. For simplicity, assume
that in each one of the: games, the decision maker selects
one of R possible actions (a possibly different action in each
game). After selecting the: actions, only the sum of the
losses suffered in the games is observed.

Proposition 5 For the multitask bandit),,;, = 1/R.

In this caseB = m,d = mR, B/d\min = 1, andN = R™.
Therefore the optimal regret bound (2) holds and becomes

E [Ln = La(k)] < 2m*V2nRInER.

Thus, when playingn games in parallel, the price of get-

ting information about the sum of the losses in spite of the

losses suffered separately in each game is just a factor of

m in the regret bound. In this special caseMBAND can

be implemented efficiently since it suffices to sample astion

independently in each one of tligames.

Proof: We can write the elements 6fC {0, 1}¢ as vectors
v(k) € {0 1} k = 1,..., R™, with components; ; (k),

j=1...,mi=1,. R These vectors satisfy

R
> wjilk) =
=1

foreachj = 1,...,mandk =1,...,N = R™. Accord-
ing to Lemma 4, we want to lower bou (Vch)QI] uni-
formly overx in the span ofS, whereV is uniformly dis-
tributed overS. We denote the components ¥f by V; ;,
j=1,...,m,i=1,..., R and the corresponding compo-
nents ofz by z; ;. We calculate

(5)

E[(VT2)’] = var [V 7a] + B2 [V a]

wherex = Zszl a(k)v(k) is such that|xz| = 1. By (5),

foreachj =1,...,m,
R N R N
Z Za Zvﬂ(kz) = Za(k) =«
i=1 k=1 i=1 k=1
Thus
. m R m 1 R m
EV m:ZZx”EV”:ZEZxN—Ea



On the other hand, since ttievectors(Vj 1, . ..,
independent fof = 1,...,m,

ZVAR Zx” i

Vi r) are

VAR[V Tz]

R
E z5,i Vi
1=1

with equality whenevett = 0.

6.2 Perfect matchings: learning permutations

Consider the complete bipartite graff, ,, and letS con-
tain all perfect matchings. Thug, = m? (the number of
edges ofK,, ,), S hasN = m! members, and3 = m.
Eachv(k) € S may be represented by am x m permuta-
tion matrix [v; ;(k)] . thatis, a doubly stochastic zero-
one matrix such thaE}”:l v j(k) =1foralli =1,...,
andd ", v; j(k) = 1forallj = 1,...,m. Online learn-
ing of perfect matchings (or, equivalently, permutationa}
considered by Helmbold and Warmuth [11] who introduced a
computationally efficient forecaster with good regret basin
in the full-information setting. Here we show thab®-
BAND performs well for this problem and point out that it
has a computationally efficient implementation. The next
proposition shows that the terpy,;,, in Theorem 1 is suf-
ficiently large.

Let [V;;] . be chosen uniformly at random from the

collection|v; ;(k)], . . k=1,...,N, representing a ran-
dom permutation (i.e., perfect matching).

m

Proposition 6 For the perfect matchings ol ,,, .,

1
)\min:—-
m—1

It follows from the proposition thaB /d A, < 1, and there-
fore the optimal bound (2) holds and it takes the form

E {Zn - Ln(k)} < 2m?*y/2nln(m!) .

The fact that ©MBAND can be implemented efficiently fol-
lows from a beautiful and deep result of Jerrum, Sinclair,
and Vigoda [13] who were the first to describe a polynomial-
time randomized algorithm for approximating the permanent
of a matrix with non-negative entries. To see the connegtion
observe that the sum of the weights, = Z}f:’lmt(k) is
just the permanent of a matrix with entriesp(—n Ly (i ;).

,7€{1l,...,m} Wherezt(i,j) is the estimated cumulative

loss of edggi, j). The algorithm of Jerrum, Sinclair, and
Vigoda is based on random sampling perfect matchings from
the (approximate) distribution given by th& (k) which is
exactly what we need to draw a random perfect matching ac-
cording to the exponentially weighted average distributio
Proof: By Lemma 4, we need a lower bound for

2

E[(VT:B)Q] =E Xm: Zm: Vij®i;

i=1 j=1

wherez = 371, a(k)v(k) is such thaly ", 22, = 1.
Observe that for any fixed

m N

S o=l va = a=a

j=1 k=1 k=1

and similarly, for any fixed, Y7, z;; = Yp_, ar = .
Since

1

if i =4 andj = j,

P{Vij=1,Viy=1}= ﬁ if i # 4’ andj # 5/,
0 otherwise
we have
m 2
E[(VTm)Q} —E |3 iy

ij=1

m

Z Z wijxy g P{Viy =1, Vi =1}

i,j=14,j'=1
—Z _122 D Ty Ty
=14 i Ei g A

3,7=1
=D DD DD DRI

Lj=1d" il i g A

The second term on the right-hand side may be written as

m m m
E E § Li,j it 5 = E E Li,j Lit,j"

VAR SV IRV 5 B,j=14,5'=1

m m m m 1 m
2
=D g = Y > wig Tir g+ > @i

5,j=1j'=1 B,j=14=1 4,j=1
2 2
m m
(5) (5
7,j=1 =1 j=1
m m 2
j=1 \i=1
N 2 N 2
= <mZa(k)> —2m (Z a(k)) +1
k=1 k=1



Summarizing, we have that for atl =

> asy a(k)v(k) such

that||z| = 1,
Ty 1 1 2 9
E[(V w) }_m—i_m(m—l) ((ma) 2ma —i—l)
1 m—2 5
m—1 -1
which is at least /(m — 1) with equality whenevex = 0.
|

6.3 Spanning trees
Next we consider an online decision problem in which, at

each time instance, the decision maker chooses a spanmng

tree in a graph ofn. nodes. The loss of a spanning tree is the
sum of the losses over the edges of the tree. Such a proble
is meaningful in certain mobile communication networks, in

which a minimum-cost subnetwork is to be selected at each

Proof: Since||x| = 1, we have

E[(VTm)Q}:Ol-FCQ Z iZ?i.ij—FCg Z ZCZ'IJ'

I, ik
d
201—03+(CQ—03) Z .”L'ixj-i-CginfL'j.

R i,j=1

Denote the summation over all pairs of adjacent edges by

Y :<§%f.

4,J 1]
[(VTCB) :| = Cl — Cg + (CZ - CS)Am + C’3

and let

With this notation, we have

E B . (7)

n?\Iext we need an appropriate estimatedgy. By the Cauchy-

Schwarz inequality, and using the fact thjat| = 1,

time frame to assure connectedness of the whole network.

This problem fits in our general framework if we I§tbe
the family of all spanning trees of the complete grdph.
Thus,d = (}'), B =m — 1, and by Cayley's formula there
areN = m™~2 spanning trees.

In order to estimate\,,;, for this case, we start with a
general lemma that applies for all sufficiently “symmetric”
classesS. More precisely, we consider the case when the
elements of5 C {0, 1}¢ are the incidence vectors of certain
subsets of the edges of a complete graph (i.e.,d = (73)
in these cases). ffand; are distinct edges dk,,,, we write
i ~ j wheni andj are adjacent (i.e., they have a common
endpoint) and £ j wheni andj are disjoint.

We require thasS is sufficiently symmetric, so that ¥
is drawn uniformly at random fron§, then the probability
P{V; = 1, V; = 1} can take at most three different values

dependmg on whethér= j,i ~ j, ori 76 j.
In such cases, i = (xl, ..., rq) is any vector inR?,
then
d d
E[(VTa)| = ZZI 2 P{Vi=1,V; =1}

—Clzx + Oy Z x; x5+ C3 Z T; j

1,5 i i,J ity
where
¥ ey =1} Vi=1,...,d
Co @P{V,=1,V;=1} Vij=1,.. dsti~j
Cs WP{V,=1,V; =1} Vij=1,... dstidtj

are quantities independentof;.

This property is true for collection§ of “symmetric”
subsets ofi(,,,, such as spanning trees, balanced cuts, pla-
nar graphs, Hamiltonian cycles, cliques of a certain size, e
The following result provides a general lower bound for the
smallest eigenvalue of the associated matiix

Lemma 7 If (6) holds andx € R? has unit norm, then
(C2 = C5)°

E |:(VT£L‘)2:| 2 Cl — 03 — |Cg — C3|m — Cg

[Anm|

sz Z T,

Jiinvg

>

jiing

>

Gl gl

m — 2) Z xiwy+4 Z T

\/ 4,J 2invg 0,7 1198

The last equality holds because a pair of edges is counted
m — 2 times if they are adjacentr( — 2 is the number of
edges adjacent to both) addimes if they are not adjacent.
We may write the argument of the square root in (8) as

m—2) Z ziz; +4 Z T

i,jzinvg ij i

(m—6) Z xl:vj—i—élzgcl:vj—él

4,J 4]
<m|An|+ 4B
Thus, substituting (9) in (8), and usirg),, > 0, we get
|[Am| < v/m|An| + 4B, .

Solving the above fofA,,,| and overapproximating gives

|Am| < m+ 2By,

which, substituted into (7) yields

E[(VT2)?] > C1—~Cy~|Co—Cs| (m+2v/By ) +Cs B
Observing that

B, — 2|Cy — C3]v/ B,

IN

s.
i M&
I,

Zj x|

M=~

1

.
Il

(8)

9)

_ Gy — C31\? (Ca — C3)?
‘(VC3B”‘ VG )‘ &
(G- Cy)?

Y

C3



concludes the proof. |
Interestingly, the proof above does not use that fact that

Finding computationally efficient algorithms for genengti
random spanning trees has been an intensive area of research
Although some of these algorithms may be successfully used

x in the space spanned by the incidence vectots. ofhus,

the matrixE [V V' | is positive definite whenever the lower
bound of Lemma 7 is positive. This also implies that the
matrix P;, which is used to define the pseudo-losses (1), is
positive definite, and thuB;" can be replaced by, *.

Now we may use Lemma 7 to boung,;,, in the case of
spanning trees of the complete gralgh,. All we need is to
calculate the values @, C5, andC3. We do it by applying
the theory of electric networks.

Lemma 8 If V is the incidence vector of a uniform random
spanning tree of,,, then

]P){Vizl}:%
]P’{Vizl,ijl}:% if i~
]P’{Vizl,ijl}:% ifigty.

Proof: Since every spanning tree has— 1 edges,
P{Vi=1}+ - +P{Vy=1}=m -1

whered = ('y). By symmetryP{V; = 1} = 2/m for all
1 1,...,d. The other two cases can be handled by the
“Transfer Current” theorem of Burton and Pemantle [5], see
also Lyons and Peres [15], which implies that for any j,

whereY (i, j) is the voltage difference across the edge
when a unit current is imposed between the endpoints of
edgei. (For the basic notions of electric networks we re-
fer, e.g., to the books of Doyle and Snell [9] and Lyons and
Peres [15].)

First note that if and; are not adjacent thé¥i(i, j) = 0.
This is simply because, by symmetry, every vertex not be-
longing to edge has the same voltage, so there is no current
flowing through edgg. Thus,P{V; = 1,V; = 1} = 4/m?
in this case.

In order to address the case when edigasdj are adja-
cent,i ~ j, note that, by a result of Kirchoff (1847), the volt-
age difference between the endpoints efjuals the proba-
bility 2/m thati belongs to a random spanning tree (see, e.g.,
the remark to Corollary.4 in [15]). By the above considera-

tions, there is current flow only along paths of length two be- i

tween the endpoints of that is paths that go through edges
j ~ i. Hence the voltage difference between the endpoints
of j is half the voltage difference between the endpoints of
thatis|Y (i,75)] =1/m |

Corollary 9 For the spanning trees df ,,,,
1 17
~
Sinced = ('y) andB = m — 1, the inequality above implies
that B/(dA\min) < 7 whenever > 6, and therefore the op-

timal bound (2) holds. Sinc& = m™ 2, the performance
bound of @®MBAND in this case implies

E [Zn - Ln(k)} < 4m®*V/nnm

Amin >

form > 6.

in practical implementations, we are not aware of any algo-
rithm that guarantees an efficient implementation oM
BAND under all circumstances. Instead of surveying the vast
literature, we mention the celebrated method of Propp and
Wilson [17], who present an algorithm that, given a graph
with non-negative weights; ;) over the edges, samples a
random spanning tree from a distribution such that the prob-
ability of any spanning treé is proportional tow,; (k) =
(i.j)ek WG,j)- The expected running time of the algorithm
is bounded by the cover time of an associated Markov chain
that is defined as a random walk over the graph in which the
transition probabilities are proportional to the edge \liésg
If we apply Propp and Wilson’s algorithm with weights; ;

= exp(—n Ly, ) over the complete grapK,, then we
obtain an implementation of the exponentially weighted av-
erage forecaster. Unfortunately, there is no guarantde tha
the cover time is bounded by a polynomialnaf though in
practice we expect a fast running time in most cases. It is an
interesting open problem to find an efficient sampling algo-
rithm for all possible assignments of weights.

6.4 Cutsets

In this section we consider balanced cuts of the complete
graph Ks,,. A balanced cut is the collection of all edges
between a set of vertices and its complement. Thus, each
balanced cut ha® = m? edges and there a§ = ()
balanced cuts.

Our starting point in estimating,,;, is (7). First, we
computeCy, Cy, andCs.

Lemma 10 If V is the incidence vector of a uniform random
m-cut in Ko,,, then

m
FVi=l=g.=3
B R m(m —1) .
PVi=LVi=l =G nam_y "~
P{Vi=1,V; =1}
= 2m(m —1)° if il .

(2m —1)(2m — 2)(2m — 3)

Proof: The sample space is all choicesmfsubsets oPm
vertices (note that each-cut is counted twice). Fix an edge
(i—,i4). Then the number ofi-subsets that contain

and do not contair, is clearly ('~ ?). By symmetry, this

is also the number of:-subsets that contaiin. and do not
containi_. Therefore

P{V—l}—2><(2’:?:12)— m
o Gy 2m—1

Now fix two edges andj that share a vertex, say = j_.
The number ofn-subsets that contain = j_ and do not
contain neitheri;. nor j; is (*”'~%). This is the same as
the number ofn-subsets that do not contain = j_ and
contain bothi, andj,. Hence, ifi ~ j,

Gy

m—1/) _

)

m(m — 1)
(2m—1)(2m—-2) "

P{Vi=1,V; =1} =2x

2m
m



Finally, fix two disjoint edges andj. The number ofn-
subsets that contain., j; and do not contain neither nor

j—is (*”,)). By symmetry, this is also the number of-
subsets that contain , j_ and do not contain neitheér. nor

6.5 Hamiltonian cycles

In our next examples we consider the seof all Hamil-
tonian cycles inK,,, that is allN = (m — 1)!/2 cycles
that visit each vertex exactly once and returns to the atarti

J+» Which is the same as the number of those that containvertex. The corresponding randomized prediction problem

i_,j+ and noti, orj_, etc. Hence, fof /¢ j,
Crs)
)
B 2m(m — 1)?
- (2m—-1)(2m —2)(2m — 3)
concluding the proof. |

P{V,=1,V; =1} =4x

may be thought of as an online version of the traveling sales-
man problem. This problem is computationally notoriously
difficult and one cannot expect polynomial-time implemen-
tations. Nevertheless, we show that small regret bounds are
achievable by ©MBAND. To this end, we calculatg,,;,,.

Proposition 12 If m > 4, then for the class of all Hamilto-
nian cycles inK,,, Amin = 2/(m —

Now we may make use of the fact that each balanced cut hassinced = (m) N = (m —1)!/2, andB = m, we have

the same number of edges. ThusgiE Z,gf;) a(k)v(k) is
a linear combination of the incidence vectors of all balahce

cuts with |z|| = 1, we haved", z; = m?a wherea =
4 2

Z,g”:”l)a(k), which implies thatB,, = m*«

To computeA,,,, observe that for any flxeﬁ the number
of edges in any balanced cut adjacent is 2m if the cut
doesn’t contain and2(m — 1) otherwise, that is,
f2m—-1) ifvk)=1
] 2m if v;(k)=0

Jig~ k=1 Jigei k=1
N
=2ma — 2 Z a(k)v;(k) = 2ma — 2
k=1

Therefore, we have

A, = Z xixj:in Z xj:m3a2—2.

1,J 14~v] 7 Jigei
Substituting these values in (7), we have,fop> 2,
1 8m — 7

+

B[(VTe)] -1

4(2m —1)(2m — 3)

, m*(m —1)(2m? —2m — 1)
(2m—1)(2m —2)(2m —3)

The minimum is achieved far = 0, which proves the fol-

lowing.

Proposition 11 For the balanced cuts iy, if m > 2

then
1 &8qm — 7
+

4 42m-1)2m-3) "

In this case we havé = (*'), B = m?, andN = (*") <
4™, By Proposition 11 we clearly ha\B/(d/\mln ) < 2 for
allm > 2, and therefore the optimal bound (2) applies and it
takes the form

E [Zn - Ln(k)} < 2m™/*/6nnd.

In this case computationally efficient implementation®als

+ «

)\min =

exist. Such an implementation may be based on an algorithm

of Randall and Wilson [18] who, building on Jerrum and Sin-
clair [12], show how to sample efficiently spin configurason
of a ferromagnetic Ising model. The straightforward detail
are omitted.

2
B/(dAmin) = 1. Thus the optimal bound (2) applies achiev-

ing
E {Zn - Ln(k)} < 2m?y/nin(m!) .

Proof: Once again, our analysis is based on (7). First we
calculate the values of the constatts Cs, C5. Since each
Hamiltonian cycle has: edges, ifV is a random Hamilto-
nian cycle, ther’; = P{V; =1} = 2/(m — 1). Also, since
the degree of every vertex in a Hamiltonian cycle jdor
any two adjacent edges~ j, Co =P{V; =1,V; =1} =
1/(™;"). Onthe other hand, if £ j, then

P{Vi=1,V; =1} = P{V; = 1}P{V; = 1|V, = 1}

2 m—3

X
=1 (3) ~2(m—2) -
because there arg)') — 2(m — 2) — 1 edges ink,, that
are not adjacent toand all of them are equally likely to be
any of the remainingn — 3 edges of the cycld”. Thus,
Cs=4/(m—1)(m —2).
Now letx = fo:l a(k)v(k) be a linear combination

of the incidence vectors of all Hamiltonian cycles such that
|lz|| = 1. The crucial observation is the following: since ev-

eryv (k) hasm edges, and the degree of every vertex equals
2, we have

N
in = Za(k)

This implies that

d 2
= E z; | =m?a?
i=1

Observe that for any fixed, the number of edges in any
Hamiltonian cycle adjacent tois 4 if the cycle doesn’t con-
tain7 and2 otherwise, that is,

Z v (k)

2 f’l}i k)y=1
Z;,“Z‘(’f) :{ 1t ka§ —0
Thus,
N N
Z xj; = Za Z vy ( )=Za(k) (4 —2v;(k))
Jegni Jrgevi k=1
N
=4a—2 Z a(k)v; (k) = 4o — 2x;



Using this, we have

A, :in Z xj :in (4o — 2z;)

A Jigei

:4ma2—22xf=4ma2—2.

Substituting these values in (7), we have

E[(V e)’]
 2(m—4) 2 (2m?a? — 4ma® + 2)
 (m—1)(m —2) (m—1)(m —2)
2 4ma’ 2
= + > .
m—1 m-1"m-1

with equality achieved fop , a(k) = 0. ]
6.6 Stars

A star is a subgraph dk,,, which contains alln — 1 edges
incident on a fixed vertex. Thus, there awaifferent stars in
K,,. Consider the se&f of all stars and |eV be the incidence
vector of a random star, chosen uniformly.

Proposition 13 For the stars ink,,,
m—3 + 1
2(m—2) m’
Hered = (), N = m, andB = m — 1. Thus we have
B/(d\min) < % and the optimal bound (2) applies with

E [En - Ln(k)} <m*/3nlnm.

The implementation of GMBAND is trivially efficient in
this case.

Proof: Clearly,P{V; = 1} = 2/m,P{V; = 1,V; = 1} =
1/mifi~jandP{V; =1,V; =1} = 01if i % j. There-
fore,

)\min =

2 1
E[(VTe)’] == +—a,
m m
whereA,, = 3=, ;. zix;. Lete = 3310 | axvy, be such

that||z|| = 1. This means that
d

d m 2 m m
=3 (St?) =3 e 3l
=1

=1 k=1 k=1k'=1
Since
d .
k) (k) _J 1 if k4K
Z;”i Yi —{ m—1 ifk=F,
we have
m m 2
(m—2)> a} + (Zak> =1 (10)
k=1 k=1
Now

m ,

k) (k

= E apa E vg )UJ()
kk'=1 Q.5 1~

Observe that

{5

ij i 2

if k£ &/
if k=&,

SO

= (7)) et (o)

Expressing}_;" , a7 from (10), and substituting in the ex-
pression above, we obtain

2
_ m(m — 3) ma _ ~ m(m —3)
Ay = 2m—2) + <]; k) (2( 1) Am=—2) )

m(m — 3)
~2(m-2)
In conclusion,
2 m—3
o> 0 7
Amin 2 m + 2(m —2)
with equality for) ", a; = 0. |

6.7 m-sized subsets
ConsiderS to be the set of alb € {0,1}? suchthal (., v; =
m for some fixedn with 1 < m < d.

Proposition 14 For them-sized subsets,

m(d —m)
d(d-1)

Amin -

We haveB = m, N = (). Then
B d-1
AA\pin ~ d—m
Thus the optimal bound (2) applies whenewer= o(d). In
this case the regret bound has the form

E [En - Ln(k)} =0 (mwm) .

Note that also in this casedMBAND can be implemented
efficiently using dynamic programming (see, e.g., Takimoto
and Warmuth [19]).

Proof: Pickx € U such thaf|x| = 1. Note that

d N N
in = Za(k)Zvl(k) = mZa(k) =ma.
i=1 k=1 i=1 k=1
Since for any,
() _m
GRERE S

and for anyi # j

v s
P{Vl_lvvj—l}_ (d) - d(d—l)




we can write
d
E[(VTe)’| =33 wiay PV = 1,V; = 1}
i=1 j=1
d
_m 5 m(m—1) _
=gt dd—1) P
i=1 ©,J 1F£]
d
_(m m(m-1) 5 m(m—1)
- (d d(d—1) )Z}x M) ;w’
_(m m(m-1) mm—1) 5 4
- <d d(d—1) )+ dd—1) ¢
7m(d—m)+m3(m—1) 5 m(d—m)
Tdd-1 " dd-1) ¢ T dd—1)
with equality whenevetr = 0. |

7 Conclusions

In this work we have investigated the problem of bandit on-

line linear optimization when the action sgis a finite sub-
set of{0, 1}¢, the action vectors € S satisfy||v||, < B,

and the loss vectorg, satisfy [|£;|| ., < 1. Our setting is
a special case of both [1] and [7], as in these papeasd
£, need only satisfy the conditio|mf:v| < 1, which does

not refer to any system of coordinates. We take advantage[ll]
of the additional assumptions to prove better expected re-

gret bounds for several concrete choicesSof These im-

provements are obtained through a new randomized fore-

casting strategy, GMBAND, closely related to the BOMET-
RICHEDGE algorithm of [7].
Although the regret of GMBAND can not be improved

in general, in some interesting cases (like the path plapnin [13]
problem) @MBAND has a suboptimal performance because

a uniform initial sampling distributiomn: causes the small-
est nonzero eigenvaluk,,;, to get too small. In general,
1 can be chosen in order to maximi2g,;,, by solving a

semidefinite program. We conjecture that for the path plan-

ning problem this choice qgf is polytime computable, and
ComBAND, run with thisu, has optimal regreB/nd 1n |S|.
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