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Abstract Writing parallel programs that can take ad-
vantage of non-dedicated processors is much more dif-
ficult than writing such programs for networks of ded-
icated processors. In a non-dedicated environment such
programs must use autonomic techniques to respond to
the unpredictable load fluctuations that prevail in the

Norman W. Paton

School of Computer Science,
University of Manchester

Oxford Rd, Manchester M13 9PL, UK
E-mail: npaton@manchester.ac.uk

Jorge Buenabad-Chavez

Department of Computer Science
CINVESTAV-IPN

Av. IPN No. 2508 Col. San Pedro Zacatenco
Mexico, D.F. 07360. MEXICO

E-mail: jbuenabad@cs.cinvestav.mx

Mengsong Chen

School of Computer Science,
University of Manchester

Oxford Rd, Manchester M13 9PL, UK
E-mail: chenm@cs.man.ac.uk

Vijayshankar Raman

IBM Almaden Research Center,

650 Harry Road, San Jose CA 95120, USA
E-mail: ravijay@Qus.ibm.com

Garret Swart

IBM Almaden Research Center,

650 Harry Road, San Jose CA 95120, USA
E-mail: gswart@Qus.ibm.com

Inderpal Narang

IBM Almaden Research Center,

650 Harry Road, San Jose CA 95120, USA
E-mail: narang@us.ibm.com

Daniel M. Yellin

IBM T.J. Watson Research Labs,

P.O. Box 704, Yorktown Heights, NY 10598, USA
E-mail: dmy@Qus.ibm.com

Alvaro A.A. Fernandes

School of Computer Science,
University of Manchester

Oxford Rd, Manchester M13 9PL, UK
E-mail: alvaro@cs.man.ac.uk

computational environment. In adaptive query process-
ing (AQP), several techniques have been proposed for
dynamically redistributing processor load assignments
throughout a computation to take account of varying
resource capabilities, but we know of no previous study
that compares their performance. This paper presents
a simulation-based evaluation of these autonomic paral-
lelization techniques in a uniform environment and com-
pares how well they improve the performance of the com-
putation. Four published strategies are compared with a
new algorithm that seeks to overcome some weaknesses
identified in the existing approaches. In addition, we ex-
plore the use of techniques from online algorithms to pro-
vide a firm foundation for determining when to adapt in
two of the existing algorithms. The evaluations identify
situations in which each strategy may be used effectively
and in which it should be avoided.

1 Introduction

The cost of dedicating specific computing resources to
specific operations has always been high and it is now
becoming prohibitive, not because the hardware is be-
coming more expensive, but because the cost of man-
aging the hardware and assigning it functions has. The
lack of dedicated processing resources means that new
autonomic parallelization algorithms are needed; the old
approach of dividing up a problem at the start and keep-
ing that division until the end just doesn’t work well any
more. Instead, algorithms have to be structured so that,
for example, they can make use of any number of pro-
cessors at each stage and so that processors becoming
unavailable during a computation is no longer an error
condition, but a normal condition.

Some problems admit simple solutions in this con-
text, such as large-scale embarrassingly-parallel prob-
lems. In such problems, the macro problem can be split
into micro problems of arbitrary computational size and
small description size, each micro problem can be solved
independently, and the answers to the micro problems
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can be combined trivially into a solution for the macro
problem. These problems can be solved optimally by bal-
ancing the granularity overhead, the computing time lost
in making the micro problem smaller, and the resources
wasted when a processor is snatched in the middle of
solving a micro problem. Effort has more recently been
focusing on solving problems that don’t fit the embar-
rassing model, including problems in query processing.
For example, parallel query processing [8] is now well es-
tablished, with most major database vendors providing
parallel versions of their products. Such systems have
been shown to scale well to large numbers of parallel
nodes, but are normally deployed on dedicated hardware
and software infrastructures.

By contrast, distributed query processing (DQP) [19]
most commonly accesses existing data sources in situ,
but makes limited use of parallel query processing tech-
niques. Indeed, most DQP systems follow the wrapper-
mediator model, with query processing divided between
the mediator and the wrappers of the accessed resources
(e.g. [6,18]). More recently, however, internet (e.g. [4,
16]) and grid (e.g. [33,1,21,25]) query processing has
sought to evaluate fragments of a query on computa-
tional resources identified at query runtime, benefiting
from pipelined and/or partitioned parallelism to improve
performance. However, such query processors typically
have limited information about the nodes being used
and little opportunity to influence what other work they
carry out. Several different proposals have been put for-
ward that seek to take advantage of non-dedicated re-
sources to support scaleable query evaluation, but these
technologies have not yet been widely deployed in prac-
tice. One open issue is how best to take account of the
fact that using non-dedicated resources generally involves
working with partial or out-of date information on ma-
chine performance, loads or data properties. Such uncer-
tainty means that query optimizers may make decisions
on the basis of incorrect information, or that their plau-
sible decisions may rapidly be overtaken by events. This
has encouraged a number of researchers to investigate
the use of adaptive query processing (AQP) techniques
in distributed settings (e.g. [10,17,36,39]).

The potential of partitioned parallelism for providing
scaleable query processing over non-dedicated resources,
combined with the fact that load imbalance causes a
task that makes use of partitioned parallelism to perform
at the speed of the slowest participant, has led to sev-
eral proposals for adaptivity specifically aimed at main-
taining load balance (e.g. [13,32,28]). These approaches,
which are designed for use in open and unpredictable
environments, differ from most work on dynamic load
balancing for parallel databases (e.g. [27,7]) in changing
load balance within, rather than between, queries. How-
ever, these proposals were developed and evaluated in
very different architectural contexts (service-based grids,
stream query processors, and local area networks, re-
spectively), and thus it is not straightforward from the

original papers to ascertain how the approaches perform
relative to each other. This paper compares the above
approaches to balancing load for parallel stateful opera-
tors, and considers two additional approaches. The study
explores how the proposals perform in the same setting,
thus enabling direct comparison over a wider range of
conditions than were studied in the original papers.

The contributions of this paper are: (i) the proposal
of a novel approach to adaptive load balancing, based on
incremental replication of operator state; (ii) an evalua-
tion of existing approaches and the new approach to load
balancing for queries evaluated using partitioned paral-
lelism; (iii) an exploration of the use of techniques from
online algorithms [38] to determine when to adapt; and
(iv) a characterization of the trade-offs that affect the de-
sign of AQP systems. The paper is structured as follows.
Section 2 provides the technical context for the mate-
rial that follows, by describing the adaptivity approaches
evaluated. The evaluations are based on simulations of
the different approaches; Section 3 describes the simula-
tor and the experimental setup. Section 4 describes the
experiments conducted on the new and existing tech-
niques and discusses the results. Section 5 describes and
evaluates the use of techniques from online algorithms to
inform decision making in two of the techniques. Section
6 reviews the lessons learned. This paper extends the
results in [26] by including a new adaptive algorithm,
presenting the results of several additional experiments,
and exploring the application of techniques from online
algorithms in adaptive load balancing.

2 Adaptive Load Balancing

In AQP for load balancing, the problem to be solved is
as follows, illustrated for the case of a query involving a
single join. The result of a query A <t B is represented
as the union of the results of a collection of plan frag-
ments F; = A; 1 B;, for i = 1...P, where P is the level
of parallelism. Each of the fragments F; is executed on a
different computational node. The tuples in each A; and
B; are usually identified by applying a hash function on
the columns to be compared in the join, thereby ensur-
ing that each F; contains in A; all the tuples that match
tuples in B;. The time taken to complete the evaluation
of the join is max(evaluation_time(Fy)), for i = 1...P,
so any delay in the completion of a fragment delays the
completion of the join as a whole. As such, load balanc-
ing aims to make the values for evaluation_time(F;) as
consistent as possible, by matching the amount of work
to be done on each node to the capabilities of the node.

Load balancing is particularly challenging for state-
ful operators, such as hash-join, because maintaining a
balanced load involves ensuring that (i) the portion of
the hash table on each node reflects the required work
distribution, and (ii) changes in the work distribution
to maintain load balance are preceded by corresponding
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changes to the hash table on each node. In what follows,
we refer to the period during which a hash table is being
built by a join operator on the join attribute(s) of its
left operand as the build phase, and the subsequent pe-
riod when it is being looked up for each of the tuples in
its right operand as the probe phase. Assume that tuples
from A have been used to build the hash table and that
the probe phase involving B is underway. If a node N;
begins to perform less well (for example, because another
job has been allocated to it), maintaining load balance
involves reallocating part of the hash table from N; to
other nodes, and ensuring that future tuples from B are
sent to the appropriate node. As the hash table for A
on node N; may be large, these movements of state may
involve a significant overhead; the trade-offs associated
with dynamically balancing load for stateful operators
are studied in Section 4. We note that load balancing for
stateless operators, such as calls to external operations,
is more straightforward than for stateful operators, in
that there is no need to ensure that the state of the op-
erator is appropriately located before changing the flow
of data through parallel partitions, as discussed in [13].

A popular approach to implementing parallel query
evaluation uses one of the flavors of the exchange oper-
ator [14] to distribute tuples between parallel plan frag-
ments. Each exchange operator has producer and con-
sumer components, such that each producer is config-
ured to send data to one or more consumers. In essence,
each exchange operator reads tuples from its children,
and redirects each tuple to a single parent on the ba-
sis of a hash function applied to the join attributes. As
an even distribution of tuples over plan fragments may
lead to load imbalance, exchange may deliberately send
tuples to parent nodes unevenly, using a distribution pol-
icy to capture the preferred proportion of tuples to be
sent to each of the parents. Such versions of exchange are
used in several of the AQP strategies described below.
Figure 1 illustrates a parallel plan for A 1 B; the dot-
ted lines delimit plan partitions, which are allocated to
different nodes. As such, the join is run in parallel across
two nodes. Each arrow between a pair of partitions repre-
sents communication between an exchange producer and
an exchange consumer. The exchange producers on the
scan nodes use the same hash function and share a distri-
bution policy, which ensures that tuples with matching
join attributes are sent to the same machine for further
processing. The distribution policy is represented in the
figure by the proportion of data sent to each parent node
(0.8 and 0.2, respectively).

The adaptive strategies are described based on the
specific approaches they take to: (i) monitoring — the
collection of information about the progress of a query
or about the environment; (ii) assessment — the analysis
performed on the monitoring information to identify a
problem that suggests that adaptation may be beneficial,
and (iii) response — the reaction that is taken with a view
to addressing the problem that has been detected.
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Fig. 1 Example parallel execution plan.

Five adaptivity strategies are compared, and are char-
acterized in Table 1 and below by the nature of their re-
sponse. We avoid using the original names of the propos-
als in the paper, as in several cases we have modified the
proposal in a way that eases comparison. For example,
changes include using adaptivity techniques in different
architectural contexts, and either changing or providing
missing values for properties such as the thresholds at
which adaptive behavior is initiated.

Adapt-1: Sibling-based data redistribution: when a load
imbalance is detected, this approach relocates portions
of the hash table from more highly loaded to less highly
loaded nodes. An example of before and after states for
an adaptation using Adapt-1is given in Figure 2. The ex-
ample shows query evaluation taking place on four nodes,
nl to n4, for the query A <t B. The distribution policy
of the exchange_producer indicates the relative sizes (in
terms of numbers of tuples) of the subsets of A and B
that should be sent to each of the parent nodes. In the
example, in the initial state on the left, 80% (denoted
by 0.8) of the data should be sent to node n& and 20%
(denoted by 0.2) of the data should be sent to n4 for
joining. If this allocation is found to be distributing work
between the nodes in a way that leads to load imbalance,
then the distribution policy is updated, and hash table
state is transferred between the sibling join fragments.
In the figure, the new distribution policy sends 40% of
the data to n8 and 60% of the data to n4, as a result
of which part of the existing hash table containing the
operator’s state has had to be moved from n8 to n4.

In the original paper [32], the reallocation is carried
out using an operator known as Flux. This behavior
can be broken down into monitoring, assessment and re-
sponse components as follows:
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Strategy | Source Summary of Adaptation

Adapt-1 32 Redistribute operator state between sibling join nodes.
Adapt-2 13 Redistribute operator state from caches in exchanges.
Adapt-3 | this paper | Replicate operator state on demand.

Adapt-4 | [26 Maintain redundant operator state based on runtime load.
Adapt-5 | [28 Run redundant copies of late fragments.

Table 1 Summary of key properties of algorithms.
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Fig. 2 An example of an adaptation in Adapt-1, where changes in the distribution policies of exchange producers lead to
reallocation of hash table data from n8 to n4.

— Monitoring: query fragments are monitored to iden- bution differs from the current distribution by more

tify the amount of contention for the computational
resource on each node and the rate at which data is
being processed by the fragment. The contention on
a node is 0.5 if it is being used half the time, and 2
if 2 jobs are seeking to make full use of the resource
at the current time.

Assessment: distribution policies are computed based
on the current level of contention in relation to the
amount of work allocated. That is, for a fragment on
node n:

proposed_distribution(n) =
if contention(n) < 1 then 1
else 1/contention(n)

where contention(n) is the level of contention on node
n. In essence, given the level of contention for a node,
the definition assumes that if the contention is less
than 1, then this level of contention comes from the
query being evaluated, and that the complete resource
on that node is available for query processing; in con-
trast, if the contention is greater than 1, then the as-
sumption is that the query will be able to access the
resource with equal rights to the other sources of con-
tention !. The proposed_distribution values are nor-
malized to sum to 1, and where the proposed distri-

than a threshold (0.05 in the experiments), a response
is scheduled.

Response: Each table is considered to consist of a
number of fragments (50 in the experiments) which
are the unit of redistribution; the number of table
fragments must be larger than the parallelism level,
but each should also be large enough to represent
a potentially worthwhile adaptation. Partitions are
sorted into two lists: producers and consumers, based
on how much work they need to lose or gain, re-
spectively, to conform to the proposed_distribution.
Fragments are then transferred from each partition
in the producer list to the corresponding partition in
the consumer list until the change required is smaller
than a table fragment. The redistribution steps in
this and subsequent strategies (Adapt-2 and Adapt-3)
are modeled as taking place in parallel. The resulting
data distribution gives rise to a new distribution pol-
icy for upstream exchange operators. Thus the load is
rebalanced by (i) redistributing operator state among
the siblings in a way that reflects their throughput;
and (ii) updating the distribution policies of the up-
stream exchange operators so that subsequent tuple
routing reflects the revised data distribution.

! Different heuristics can be used for deriving a
proposed_distribution. For example, OGSA-DQP [13] uses uses the contention directly. The approach described in the
rate(p)/contention(n), where rate(p) is the current rate at text performed better in the experiments than these ap-
which the partition p is processing tuples, whereas Flux [32] proaches.
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Experiments on the sensitivity of the strategies to the
number of fragments in a table and the threshold that
defines the minimum change in distribution policy are
described in Appendix A.

Adapt-2: Cache-based data redistribution: when a load
imbalance is detected, in this approach the portion of the
hash table allocated to each node is modified by send-
ing table fragments from caches on upstream (i.e., an-
cestor) exchanges [13]. The caches are maintained by a
fault-tolerance technique that allows a query to recover
from node failures, as described in [34]. In this fault tol-
erance scheme, each time an exchange sends data from
a producer machine to a consumer machine, a cache at
the producer stores this data until it has been fully pro-
cessed by the consumer, at which point it is removed
from the cache. If the consumer machine fails, then all
unprocessed data associated with the machine can be re-
sent to a dynamically identified replacement. The adap-
tive technique that makes use of these caches can be
captured by monitoring, assessment and response com-
ponents as follows:

— Monitoring/Assessment: as in Adapt-1.

— Response: as Adapt-1, except that table fragments
that are added to hash tables on specific nodes are
assigned from caches in upstream exchanges rather
than from sibling partitions.

The principal performance differences between Adapt-
2 and Adapt-1 are: in Adapt-1, when work is to be trans-
ferred from a poorly performing node, this node must be
used as the source of operator state that is to be relo-
cated elsewhere, whereas in Adapt-2 the state is obtained
from (potentially different) upstream nodes; and Adapt-2
has the overhead of maintaining a cache.

To limit the frequency of re-adapting, we adopt a
heuristic from Flux [32] in both Adapt-1 and Adapt-2, as
follows: when an adaptation has taken place, if it took
time ¢ to relocate data for use in the hash joins, then no
further adaptation is allowed until a further time ¢ has
passed.

Adapt-3: Replicate on demand: this approach is a mod-
ification to Adapt-1; as in Adapt-1, the detection of load
imbalance may lead to the locations of hash table frag-
ments being updated to support the use of a revised
distribution policy. However, unlike Adapt-1, table frag-
ments are not moved from one node to another (deleting
them from their original location), but are replicated as
required to support the preferred distribution policy. As
a result, during the evaluation of a query in an unstable
environment, portions of the hash table are replicated,
allowing an increasing proportion of the changes between
distribution policies to go ahead without the need to re-
locate data. Because replicating table fragments at hash
table build time could lead to a requirement to update
numerous replicated fragments, replication takes place

only at hash table probe time. Although hash table frag-
ments are replicated, each probe takes place to only one
of the replicas, selected on the basis of the load balance,
so no duplicates answers are produced. This algorithm
can be characterized in terms of its monitoring, assess-
ment and response behavior as follows:

— Monitoring: as in Adapt-1, except that assessment
only takes place if the hash join is in the probe phase.

— Assessment: as in Adapt-1.

— Response: as in Adapt-1, each table is considered to
consist of a number of fragments, which are the unit
of redistribution. Partitions are sorted into two lists:
producers and consumers, based on how much work
they need to lose or gain, respectively, to conform to
the proposed_distribution computed during Assess-
ment. Fragments are then transferred from each par-
tition in the producer list to the corresponding par-
tition in the consumer list until the change required
to move closer to the proposed_distribution is smaller
than a fragment. Where a replica has previously been
created that avoids the need to transfer data from the
producer to the consumer, this replica is used and
no hash table data needs to be copied. Where no
such replica exists, table fragments are copied from
the producer to the consumer nodes as required to
match the proposed_distribution, and each such copy
is recorded in a replica table.

Adapt-4: Redundant data maintenance: in this approach,
hash tables are replicated on nodes in such a way that
both hash table building and probing avoids the use of
heavily loaded nodes, adapting a technique originally
proposed for use with distributed hash tables [35]. Each
hash table bucket is randomly assigned to three nodes
(i.e. each value that can be produced by the hash func-
tion applied to the join attribute is associated with a
bucket, and each such bucket is associated with three
computational nodes). At hash table build or probe time,
whenever a tuple is to be hashed, it is sent to the two
most lightly loaded of the three candidate nodes for the
relevant bucket (i.e. the two with the lowest level of con-
tention).

When the hash table is being constructed, this be-
havior distributes the hash table over the three nodes
in a way that guarantees that every tuple can be found
on exactly two of the three nodes associated with the
relevant bucket. The tuples that hash to a bucket are
allocated to the nodes associated with that bucket in a
ratio that reflects the loads on the respective machines
as the hash table is being built. Each stored tuple has
an extra field that distinguishes the node of its replica
tuple.

When the hash table is being probed, each tuple is
sent to two of the three machines associated with its
bucket. The two probes are designated as primary and
secondary — the primary probe is that to the most lightly
loaded of the three candidate nodes, and the secondary
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probe is that to the second most lightly loaded of the
candidates. Where the probe matches tuples, the join
algorithm generates a result from the primary probe un-
less the matching tuple is stored only on the other two
nodes; this result production rule avoids the production
of duplicate answers.

The dynamic behavior of the algorithm ensures that
work is allocated to the most lightly loaded nodes, as
tuples are being processed, both at probe time and at
build time.

— Monitoring: any change to the level of contention on
a node is monitored.

— Assessment: no additional assessment is conducted.

— Response: the rank order of nodes used by the algo-
rithm is updated by sorting the nodes according to
their current levels of contention.

The monitoring, assessment and response components
here essentially update state that is used by the intrin-
sically adaptive algorithm to determine the routing of
tuples to different nodes. This algorithm is able to react
at a finer grain than Adapt-1 to Adapt-3, because there
is no need to relocate hash table state in response to
load imbalances. However, this capability is obtained at
the cost of maintaining replicas of all hash table entries,
and doubling the overall number of builds and probes.
As a result, this approach will be slower than Adapt-1 to
Adapt-3 where no load imbalance occurs, and has signif-
icant space overheads.

In relation to the wider AQP literature, Adapt-4 es-
sentially adapts continuously through query evaluation,
a property shared with several other adaptive operators,
such as Eddies [2] and XJoin [37]. By contrast, Adapt-1 to
Adapt-3 and Adapt-5 have a standard evaluation phase,
which is interrupted by adaptation, after which standard
evaluation continues, a characteristic shared with several
other adaptive techniques, such as POP [24] and Tukwila
[17].

Adapt-5: Redundant fragment evaluation: when a plan
fragment F; is slow to start producing tuples, this ap-
proach runs a redundant copy of F;, F/, on a lightly
loaded node; whichever of F; or F/ is first to start to
produce data is then used as the preferred source of re-
sults [28].

— Monitoring: the time of completion of plan fragments
is monitored.

— Assessment: whenever a plan fragment completes,
the running of redundant plan fragments is consid-
ered. In the experiments, each time a plan fragment
completes, all incomplete fragments are identified as
candidates for redundant evaluation by the response
component. That is, the assessment component sim-
ply identifies all siblings of a completed fragment as
candidates for redundant execution. This is a more
aggressive policy for scheduling redundant evalua-
tions than the one in the original paper [28], where

candidates for redundant execution were only identi-
fied when they had taken twice as long as the fastest
partition. However, in most cases, this latter policy
reacts too slowly to compete with the other adaptiv-
ity strategies.

— Response: in the experiments, if nodes are available
that are not already running part of the same query,
and that have a level of contention of less than 1, then
a candidate plan fragment is chosen at random for
redundant execution on each of the available nodes.
In the experiments, suitable nodes were always made
available. The running of such redundant fragments
can, of course, slow down the existing fragments by
increasing the load on shared resources such as the
network or disks.

If this strategy was used directly on query execution
plans that used exchange to redistribute data before ev-
ery join, it would be unlikely to be effective. This is
because exchange operators essentially synchronize the
evaluation of their parent nodes. For example, a hash
join cannot enter its hash table probe phase until the
hash table build phase has completed. However, it cannot
complete the build phase until the upstream exchange on
the build input has completed, and thus all sibling parent
join nodes tend to move from the build to probe phases
at much the same time. The same sort of argument can
be broadened to other operators and landmarks in the
evaluation of a query.

To get around this problem, which results from ex-
changes redistributing tuples before and after each join
in a multi-join query, Adapt-5 executes plans with less
tightly coupled partitions. The resulting advantage is
that individual query partitions complete at more widely
differing times, and are easier to allocate redundantly to
other available nodes. The disadvantage is that the al-
location of data to joins is less targeted than when ex-
changes are used, and thus additional work is carried out,
as detailed in [28]. In essence, this additional work results
from more tuples that do not match being compared on
each node, as the benefit of the hash-based redistribution
used in exchange nodes has been lost.

The approach is as follows. In parallel query pro-
cessing with exchange, a hash function is used in tuple
distribution to ensure that matching tuples are always
sent to the same node. Thus, assuming a perfect hash
function and no skew, for A 1 B and a level of paral-
lelism P, |A|/P tuples will be joined with |B|/P tuples
on each node. If; instead of redistributing using a hash
function, tuples are allocated to specific nodes in the
order in which the data is read, then in A < B, it is
necessary to ensure that every tuple from A is matched
with every tuple in B on some node. If there are 4 nodes,
this can be done, for example, by joining |A|/2 A tuples
with |A|/2 B tuples on each of the 4 nodes, or by joining
|A|/4 A tuples with every B tuple on every node. The
most appropriate allocation strategy depends on the rel-
ative sizes of A and B, as discussed more fully in [28].
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Fig. 3 Example query plan in Adapt-5.

As such, Adapt-5, like Adapt-2 and Adapt-3, accepts some
overhead to facilitate the chosen adaptivity strategy. An
example query plan for two joins, where the joins are
parallelized over two nodes, is illustrated in Figure 3.

This approach can be considered to combine some
measure of fault tolerance with adaptation, in that a
query may complete even when nodes running parti-
tions fail. The other approaches do not provide this ca-
pability in themselves, although fault tolerance schemes
have been proposed in association with Adapt-1 [31] and
Adapt-2 [34].

3 Simulation Model

The paper compares the adaptivity strategies from Sec-
tion 2 by simulating query performance. We use simu-
lation because this allows multiple strategies to be com-
pared in a controlled manner with manageable develop-
ment costs; the authors have previously participated in
the implementation and evaluation of strategies Adapt-2
and Adapt-5 (as reported in [13,28], respectively). How-
ever, such implementation activities involve substantial
development effort, yield results that are difficult to com-
pare due to the use of diverse software stacks, and re-
strict experiments to the specific hardware infrastruc-
tures available. We see the simulation studies as comple-
menting and extending existing evaluations of the adap-
tive systems, by allowing comparisons of techniques that
had previously been studied largely in isolation.

3.1 Modeling Query Evaluation

The simulation depends on a model of the cost of per-
forming primitive tasks. We use a cost model as no indi-
vidual directly simulated property, such as the amount of
network traffic, can be used to compare the effects of the
different techniques on response time. For example, eval-
uations involving Adapt-4 send the same amount of data

when evaluating a query, no matter how much imbalance
there is, although, of course, response times are affected
by such imbalances. A cost model consists of a collection
of cost functions and parameters. The parameters char-
acterize the environment in which the tasks are taking
place and the tasks themselves. The properties used in
the cost model in the simulations are described in Ta-
ble 2; these parameters are ball park numbers obtained
from the execution times of micro-benchmark queries.
The cost functions used in the simulations are based on
those in [30].

The simulator emulates the behavior of an iterator-
based query evaluator [15]. In the iterator model, each
operator implements an open(), next() and close() inter-
face, in which a single call to open initializes the opera-
tor, each call to next() returns the next tuple in the result
of the operator, and a single call to close() reclaims the
resources being held by the operator. The iterator model
is pull-based, in that data is fetched from a child node
to its parent on demand. This means that the schedul-
ing and interaction of nodes within the query evaluator
is supported directly by the operation call graph, with
any additional complexities encapsulated within the im-
plementations of the operators.

In this setting, the top level loop of the simulator,
in which each iteration represents the passing of a unit
of time, asks the root operator of a plan for the number
of tuples it can return in the available time; this num-
ber is determined by how rapidly the operator itself can
process data and the rate at which its children can sup-
ply data. The operator computes, using the cost model,
the number of tuples it can potentially consume from its
operands, and then asks each of these operands for that
number of tuples. The child operator then indicates how
many tuples it can return up to the number requested,
based on its ability to process tuples and the speed of its
children. Each operator, in carrying out work, adds to
the level of contention that exists for the resources that
it uses, and computes the amount of work that it is able
to do in a time unit taking into account the contention
for the resources it must use.

Three operators are used in the experiments, namely
scan, hash_join and exchange. scan simulates the reading
of data from the disk and the creation of data structures
representing the data read; hash_join simulates a main-
memory hash join, where the hash table is built for the
left input; and ezchange simulates the movement of tu-
ples between operators on different nodes, as discussed in
Section 2. In fact, exchange departs to some extent from
the pull-based approach of the iterator model, in that
exchange reads from its children into caches on the pro-
ducer node as quickly as it can, and transfers data from
the producer cache to the consumer cache as quickly as
it can, until such time as either the exchange producer or
consumer cache is full. As such, exchange, which is typi-
cally implemented using multiple threads, can be seen as
pushing data across machine boundaries, within an over-
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Table 2 Cost model parameters.

all evaluation strategy in which results are pulled from
the root. The simulator models the filling and emptying
of caches on exchange.

Description Value | Unit
Time to probe hash table le-7 S
Time to insert into hash table le-5 S
Time to add a value to fixed-size buffer le-6 S
Time to map a tuple to/from disk/network format | le-6 s
CPU time to send/receive network message le-5 S
Size of a disk page 2048 bytes
Seek time/Latency of a disk 5e-3 s
Transfer time of a disk page le-4 s
Size of a network packet 1024 bytes
Network latency Te-6 S
Network bandwidth 1000 | Mb/s
Size of the exchange producer cache 10000 | tuples
Size of the exchange consumer cache 20000 | tuples
Size of the disk cache 50 Mb
Name | Query Result Size | Tuple Size
(SF 1) (bytes)
QI P PS 800,000 295
Q2 S PS 800,000 299
Figure 4 illustrates some of the properties tracked by Q3 O L 6,000,000 53
Q4 NS PS 800,000 102

the simulator during the evaluation of an example join
query (Q1 from Table 3) in which node 1 stores the data,
and node 2 both runs the join and conveys the results
to the calling program. The time axis is in tenths of a
second. In the parallel algebra, the query is implemented
as:

exchanges

(join(exchangey(scan(P)), exchanges(scan(PS)))).

The query consists of two scans both running on node 1,
each feeding into exchange operators which in turn are
the operands of the hash join running on node 2, the
results of which are passed onto a root exchange. The
first graph shows the total number of tuples produced
by each operator over time. The first operators to pro-
duce data (scan(P) and its parent exchange; which both
start producing data at time 0) are slightly out of step in
their rate of production because the exchange caches the
data it has read from the scan, which is only recorded
as output from the exchange when it is extracted by the
hash join for insertion into the hash table. This is re-
flected in the level of contention for the disk accessed by
scan(P), which is read at full speed into the exchange
cache (which can store the entire table); there is then
a gap in disk activity while the remainder of the hash
table is populated from the cache. A similar process
is followed from time point 27 for the probe phase of
the hash join, with the other scan operator (scan(PS))
feeding an exchange (exchanges), which in turn fills its
cache, after which scanning proceeds at the rate the join
consumes the tuples. The output counts for exchanges,
exchanges and the join are superimposed in the graph,
as they all produce data at the same rate. This is less
than the throughput of the disk, which explains the re-
duction in the level of contention for the disk after time
point 40. The level of contention for the compute re-
source on which the join runs (node-2) is greater than

Table 3 Queries used in experiments.

1 during the probe phase because threads for the two
active exchanges (exchanges) and (exchanges) compete
with the join for access to the CPU.

3.2 Experiment Setup

The configurations used are as follows. A single network
(modeled as an Ethernet) and type of (single core) com-
puter are used throughout, with physical properties as
described in Table 2. There is assumed to be sufficient
main memory in all computers to support the caches de-
scribed in Table 2 and to hold join hash tables; moving
to multi-pass hash joins would require some changes to
all of Adapt-1 to Adapt-4. All queries are assumed to
run over cold configurations (the caches are assumed to
start empty). The joins are generally bottlenecks in the
queries, and thus the queries are CPU-bound.

The queries used in the experiments are described in
Table 3, which makes use of the relations from Table 4;
queries make use of the TPC-H database (www.tpc.org)
using scale factor 1 to give a database of approximately
1Gb — we have run experiments on databases with dif-
ferent sizes, but database size does not affect the con-
clusions of the paper so no such figures are presented.
All joins are equijoins on foreign keys. In Q1 and Q2, all
attributes of the base tables are included in the query
results. In all other queries, to prevent the shipping of
the result from becoming a very significant portion of the
cost, scan operators project out tuples that are around
25% of the sizes of the tuples in the base tables.
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Fig. 4 Inside plan evaluation. In all cases, the horizontal axis is time from the start of evaluation in tenths of a second.
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contention for the resource.

Name Short | Cardinality | Tuple Size
Name | (rows) (bytes)
Supplier S 10,000 159
Part P 200,000 155
PartSupp | PS 800,000 144
Orders (0] 1,500,000 104
Lineltem | L 6,001,215 | 112
Nation N 25 128

Table 4 Tables from TPC-H.

The following features characterize the environments
in which the experiments are conducted. All of Adapt-1
to Adapt-4 are run in a shared nothing configuration —
when queries are parallelized over n machines, the data
in each table is uniformly distributed over all n machines,
and all joins are run over all n machines. Following [28],
when evaluating Adapt-5 we use a shared disk to store
the complete database — data is accessed through a sep-
arate node representing a Storage Area Network (SAN)
with the same computational capabilities as the other
machines, but with a virtual disk the performance of
which improves in proportion to the level of parallelism
being considered in the experiment. This allows compar-
isons to be made across consistent hardware platforms in
the experiments, but may be felt to underestimate the
performance that can be expected from current SANs.
[28] exploits a SAN to avoid depending on potentially
unreliable autonomous nodes for data storage.

Where there is more than one join, left deep trees are
used as this reduces the challenge of coordinating adap-
tations across many joins running at the same time; all
joins are equijoins, ordered in a way that minimizes the
sizes of the intermediate results produced. In adaptiv-
ity experiments, the simulator has monitor, assess and
response components as described in Section 2. Moni-
tor events are created, and thus potentially responded
to, at each clock tick in the simulator; each clock tick
represents 0.1s.

The following forms of load imbalance are considered:

1. Constant: A consistent external load exists on one or
more of the nodes throughout the experiment. Such
a situation represents the use of a machine that is
less capable than advertised, or a machine with a
long-term compute-intensive task to carry out. In the
experiments, the level of the external load is varied in
a controlled manner; the level represents the number
of external tasks that are seeking to make full-time
use of the machine.

2. Periodic: The load on one or more of the machines
comes and goes during the experiment. In the experi-
ments, the level, the duration and the repeat duration
of the external load are varied in a controlled manner;
the duration of the load indicates for how long each
load spike lasts; and the repeat duration represents
the gap between load spikes.
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Fig. 5 Experiment 1 — Response times for Q1 for different
levels of parallelism.

3. Poisson: The arrival rate of jobs follows a Poisson
distribution [20]; the Poisson distribution expresses
the probability of a number of events occurring in a
fixed period of time where these events occur with a
known average rate, and are independent of the time
since the last event. As such, the Poisson distribu-
tion can be used to model things like the number of
times a server is accessed in any one hour, when the
average number of requests per day is known. In the
experiments, the average number of jobs starting per
second is varied in a controlled manner, and in each
clock tick a random number of jobs from the Poisson
distribution with the given average are simulated as
having started. The duration of each job started is
held constant within an experiment.

In this paper, all processes are assumed to be running
with the same priority, and external loads (i.e. those that
do not result from query evaluation) affect only CPU
— only the amount of query evaluation taking place af-
fects levels of contention for disk and network resources.
This is because the adaptivity techniques being evalu-
ated seek to overcome load imbalance in stateful opera-
tors, and the simulated joins, being main-memory hash
joins, suffer from load imbalance principally as a result
of changing levels of contention for the computational re-
sources on which they are running. The simulation does
not model monitoring overheads; this is because sev-
eral authors have recently reported results on the cost
of query monitoring (e.g. [5,12,22]), indicating that dif-
ferent approaches can provide suitable information with
modest overheads.

4 Evaluating the Adaptive Strategies

This section explores the extent to which adaptive strate-
gies from Section 2 are successful at improving query
performance in the presence of load imbalance. The ex-
periments seek to determine: (i) the extent to which the
strategies Adapt-1to Adapt-5 are effective at overcoming
the consequences of load imbalance; (ii) the kinds of load
imbalance that the different strategies are most effective
at responding to; and (iii) the circumstances under which
the costs of adaptation are likely to be greater than the
benefits. It may be useful to refer to Table 1 when read-
ing the experiments, as a reminder as to which strategy
is which.

Experiment 1: Overheads of different strategies. This
experiment involves running query @1 for all five adap-
tivity strategies with variable parallelism levels and no
external load. As such, there is no systematic imbalance,
and the experiment simply measures the overheads as-
sociated with the different techniques.

Figure 5 shows the response times for Q1 for paral-
lelism levels 1 to 12 for each of the strategies from Section
2 compared with the case where adaptivity is disabled
(No Adapt). No figures are given for Adapt-4 for paral-
lelism levels less than three as it needs at least 3 nodes to
support redundant hash table construction. The follow-
ing observations can be made: (i) As there is no imbal-
ance in the experiments, Adapt-1, Adapt-2 and Adapt-3
are close to the No Adapt case; (ii) The overheads for
maintaining a cache in exchange operators for Adapt-2
are modest; (iii) The overheads associated with dupli-
cate hash table stores and probes in Adapt-4 are up to
around 30%, although their absolute value reduces with
increasing parallelism; (iv) The additional work carried
out by Adapt-5 to ease the running of redundant plan
fragments can be substantial, although there is no such
overhead for parallelism level of 1. At a parallelism level
of 1, Adapt-5 performs well because it also avoids the
overheads of exchange. At higher levels of parallelism,
however, the amount of redundant work carried out is
significant, with the overhead for Adapt-5 often being
around 50% compared with the No adapt case. The ir-
regular results for the evaluation strategy associated with
Adapt-5 for larger numbers of processors in Figure 5 are
facets of the algorithm used to subdivide the workload;
this algorithm selects a workload allocation that mini-
mizes the number of comparisons made by the joins.

The overall story regarding overheads associated with
Adapt-5 bears further comment, however. Although the
results in Figure 5 are broadly consistent with figures
presented in [28], the overall strategy assumes that in-
put data can be pre-clustered on join attributes, thereby
significantly reducing the number of comparisons carried
out by many queries while still accommodating the re-
dundant evaluation of plan fragments for adaptivity. As
such, the overhead associated with Adapt-5 depends on
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Fig. 6 Experiment 2 — Response times for Q1 running on
three nodes for different levels of constant imbalance on one
of the nodes.

the contribution that clustering makes to the overall per-
formance of a query. These issues are discussed more fully
in [28], and are not considered further here. In essence,
as we do not model data as clustered in the experiments,
the overheads associated with Adapt-5 should be taken
to be pessimistic. This affects the overall response times
for queries using Adapt-5, but not the overall behavior of
the associated adaptivity strategy, which is the principal
concern of this paper.

Experiment 2: Effectiveness of different strategies in
the context of constant imbalance. This experiment in-
volves @1 being run with a parallelism level of 3, where
an external load is introduced that affects one of the &
nodes being used to evaluate the join.

Figure 6 illustrates the results for strategies Adapt-1
to Adapt-5. The increasing level of imbalance simulates
the effect of having 0 to 6 other jobs competing for the
use of one of the compute nodes.

The following observations can be made: (i) Where

adaptivity is switched off, performance deteriorates rapidly,

reflecting the fact that partitioned parallelism degrades
in line with the performance of the least-effective node.
Times obtained in the absence of adaptivity are referred
to as the base case in what follows?. (i) All of Adapt-
1 to Adapt-3 consistently improve on the base case, in
particular in the context of higher levels of imbalance.

2 We note that when an external load of level L is imposed
in the base case, response times increase by less than a factor
of L. This is because the thread in which the join is running,
which is the bottleneck, is not the only thread used for query
evaluation running on the loaded node (other threads support
scan and exchange operators). As a result, as illustrated in
Figure 4, the level of contention for compute resources in each
node is greater than 1 in the base case, and thus the effect
of adding (say) an external load of level 1 is more to increase
the level of contention from 2 to 3 (i.e. by 50%) than from 1
to 2 (i.e. by 100%).

We observe that which is the most/least effective varies
during the experiment. This is because the timing and
effect of an adaptation in these strategies depends on
the precise load at a point in time, and small changes in
the timing or nature of an adaptation can lead to signifi-
cant changes in behavior. For example, both Adapt-1 and
Adapt-2 can adapt close to the end of the build phase,
thereby selecting a load balance that may not be espe-
cially effective for the probe phase. However, because the
external load is consistent throughout the experiment,
the principal adaptations take place early in the evalua-
tion of the query. At this point, the hash table has only
been partially populated, so the cost of adapting early
in the evaluation of a query is not high. (iii) Adapt-4 has
overheads in the base case of around 30%, but performs
increasingly well as the level of imbalance grows. Given
constant imbalance with level of parallelism 3, Adapt-4
essentially runs the join on the two more lightly loaded
nodes throughout. As a result, Adapt-/ is effective when
the reduced level of parallelism compensates for the de-
lays resulting from imbalance in the base case. (iv) In
Adapt-5, although the running of redundant partitions
starts with lower levels of constant imbalance, the redun-
dant plan fragment only generates results early enough
to be chosen in preference to the original when the level
of imbalance is quite large (4 and above in this case).
Note that the decision as to whether to use the orig-
inal fragment or the replacement is made as soon as
either starts to produce data, and not when the frag-
ment completes its evaluation. This explains why the
response time with level of contention & is higher than
that for level of contention 4. With level of contention
3, although a redundant fragment is run, it starts pro-
ducing data after the original fragment. The redundant
fragment would have completed before the original frag-
ment, but is halted because the fragment that is allowed
to continue is the one that starts producing data first.
Comparing Adapt-5 in Figure 6 with the other strategies,
we see that running of redundant plan fragments can be
effective, providing comparable performance to Adapt-1
to Adapt-4 for higher levels of imbalance, although over-
all it can be seen to be the least effective of the strategies.

Experiment 3: Effectiveness of different strategies in
the context of periodic imbalance. This experiment in-
volves )1 being run with a parallelism level of 3, where
an external load is introduced that affects 1 of the 3
nodes exactly half the time (i.e. duration and repeat du-
ration are both the same), or in which jobs arrive fol-
lowing a Poisson distribution.

Figure 7(a) illustrates the results for strategies Adapt-
1to Adapt-5. The increasing level of imbalance simulates
the effect of having 0 to 6 other jobs competing for the
use of one of the compute nodes in periodic load spikes
of length 1 second. Each load spike is short compared
with the runtime of the query, and thus might be con-
sistent with, for example, interactive use of the resource
in question. The following observations can be made: (i)
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Fig. 7 Experiment 3 — Response times for Q1 running on
three nodes for different levels of periodic imbalance on one
of the nodes: (a) duration and repeat duration = 1s; (b) du-
ration and repeat duration = 5s; (c) following a Poisson dis-
tribution where each job has a duration of 1s.

As the net external load is half that stated (because it
is only present half the time), the impact on the base
case is less, and thus the challenge set to the load bal-
ancing strategies is greater, in that overheads are more
likely to counterbalance benefits than in Experiment 2.
(ii) Neither Adapt-1 nor Adapt-2 perform very well in this
case. As the load on each node changes multiple times
during the evaluation of the query, costly rebalancing
(and thus movement of operator state) is judged to be
required quite frequently (in this experiment, other than
in the base case, these strategies typically adapt 5 or 6
times during the evaluation of a query, with the costs of
adaptations typically between 0.2 and 1.5 seconds). For
the most part, adaptations take longer where there are
higher levels of periodic load, because the levels of imbal-
ance are greater, and thus higher proportions of the op-
erator state need to be relocated. As a result, the portion
of each load spike for which a just-completed adaptation
is likely to be effective is often quite small. In addition,
the heuristic that avoids frequent rebalancing may pre-
vent rebalancing for longer than the duration of a load
spike. As a result, these strategies rarely improve signif-
icantly on the base case in this experiment. In addition,
neither Adapt-1 nor Adapt-2 assume knowledge of the
input cardinalities, and thus could initiate an expensive
adaptation close to the end of query evaluation. (iii) Pe-
riodically both Adapt-1 and Adapt-2 return significantly
poorer results than the base case. This is because they
adapt multiple times during a run, with few of the adap-
tations providing lasting benefit, and subsequent adapta-
tions undoing the effects of previous ones. Furthermore,
because the external load changes throughout the experi-
ment, adaptations take place during the hash table probe
phase. At this point, the hash table is fully populated, so
the cost of adapting later in the evaluation of a query is
higher than during the hash table build phase. Adapt-3
is largely protected from such extreme behavior, as any
decision to undo a previous adaptation only requires a
change to the distribution policy, with no need to move
operator state. (iv) Adapt-4 copes well with the unstable
environment, and provides good performance for higher
levels of imbalance. In general, Adapt-4 provides quite
predictable behavior; it essentially runs the join on the
two more lightly loaded nodes when there are high levels
of imbalance. However, where there is no external imbal-
ance, the random allocation of work to two buckets from
three can create some variability between runs, which ex-
plains why Adapt-/ is slightly slower for imbalance level
5than 6. (v) The net load imbalance was never sufficient
to cause Adapt-5 to replace a late-completing partition
in this experiment.

Figure 7(b) illustrates the same experiment as Fig-
ure 7(a), except that duration and repeat duration have
both been increased to s, i.e., the external load changes
a small number of times during the evaluation of each
query. The observations made for Figure 7(a) essentially
apply here too; Adapt-1 and Adapt-2 do harm as often



Autonomic Query Parallelization

13

14

T
I No Adpt
I Adapt-1
[ Adapt-2
121 | ] Adapt-3
[ Adapt-4
I Adapt-5

10

sk
| ‘
47 “ |‘ ||
0 ‘
2 3 4 5 6

Number of processors with constant external load

(a)
[ ] No‘Ade

I Adapt-1
7k [ Adapt-2
[ ]Adapt-3
[ Adapt-4
I Adapt-5
6L
5 6

2 3 4
Number of processors with variable external load

(b)

Fig. 8 Experiment 4 — Response times for Q1 running on
six nodes for increasing numbers of nodes with (a) constant
and (b) periodic external load.

Time (s)

N
T

as good, and in several cases commit significant effort
to ineffective adaptations. Overall, Adapt-3 is the most
effective strategy in this case.

Figure 7(c) illustrates response times where the av-
erage number of jobs starting per second is varied, and
a random number of jobs belonging to the Poisson dis-
tribution is started every clock tick. In essence, this dis-
tribution leads to increasingly frequent job start (and
end) events, but with few of the substantial changes in
load that characterize Figures 7(a) and (b). Overall, the
adaptive strategies perform similarly to their position for
constant external load in Experiment 2, except that the
somewhat less stable environment periodically leads to
less than productive adaptations for Adapt-1 and Adapt-
2.

Experiment 4: Effectiveness of different strategies in
the context of variable numbers of machines with exter-
nal load. This experiment involves () being run with a

parallelism level of 6, with the external loads from Exper-
iments 2 and 3 being introduced onto increasing numbers
of nodes.

Figure 8(a) illustrates the position for a constant load
of level 6 being introduced to increasing numbers of ma-
chines. The following observations can be made: (i) In
the base case, the performance is consistent even though
the number of loaded machines increases; this reflects the
fact that partitioned parallelism can’t improve on the
speed of the slowest node, so all that changes in this ex-
periment is the number of slowest nodes, until all nodes
are equally slow. (ii) Adapt-1 to Adapt-3 perform well
when the number of loaded machines is small, and rather
better than in Experiment 2 (Figure 6). This is because
in this experiment, the parallelism level is greater (at
6) than that used in Experiment 2 (at 3), which means
that the hash tables on each node are smaller, which in
turn means that the cost of moving fractions of hash
tables to counter imbalance is reduced. (iii) Adapt-1 to
Adapt-3 perform less well as the number of loaded ma-
chines increases; this is because, although there contin-
ues to be imbalance, encouraging adaptation, the total
available resource with which to absorb the imbalance
is reduced. (iv) Adapt-4 also performs well with smaller
numbers of highly loaded machines, but rather less well
as the number of loaded machines increases. This is be-
cause the chances of the “best two from three” nodes
hosting a hash table bucket being lightly loaded reduces
as the number of lightly loaded nodes reduces. (v) By the
time all six nodes are loaded, there is a similar pattern
to that obtained for no imbalance in Experiment 2 (Fig-
ure 6), as in fact, there is no imbalance, it’s just that all
the machines are equally slow! (v) Adapt-5 adapts, run-
ning redundant requests that are subsequently chosen in
preference to their counterparts running on loaded ma-
chines, where there are 1 to 5 loaded machines. However,
the overheads associated with the strategy are such as to
provide no overall benefit compared with the No Adapt
case.

Figure 8(b) explores a similar space, but with peri-
odic rather than constant load on an increasing number
of machines. The periodic load on each machine involves
a duration and repeat duration of Is, where the load on
the mth machine is introduced after m — 1 seconds, so
that the load builds over time. The principal differences
from the case of constant load are: (i) Adapt-1 to Adapt-
& are more consistently ineffective as the ratio of loaded
to unloaded machines increases, reflecting the fact that
although the environment is unstable, it is increasingly
difficult to offload work to resources in a way that pays
off. As in Experiment 3, Adapt-1 to Adapt-3 adapt mul-
tiple times, and the precise timings of such adaptations
relative to load changes affects how much benefit is de-
rived. Thus their response times do not follow a regu-
lar curve as the number of loaded machines increases.
(ii) Adapt-5 never successfully adapts, and thus remains
slower than the base case throughout.
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the benefits of each strategy. The experiment involves
Q@1 to @4 from Table 3, and both constant and periodic
loads selected from those used in Experiments 2 and 3.
The results are presented in Figure 9.

It can be observed that while there are minor varia-
tions between the queries (for example, the overheads of
Adapt-5 compared with the base case differ from query
to query), the overall pattern with respect to overheads
and the behavior of the strategies is broadly consistent
with the findings from the previous experiments. We note
that the external load, at level 2, is quite low, which
explains the modest improvements in performance from
the adaptive strategies relative to the base case in Figure

9(b).

Experiment 6: Effectiveness of different strategies for
different input table size ratios. This experiment involves
applying the strategies to a single join query A,_jcf: <
B, _right, where r — operand represents a ratio of the left
and right input sizes, where each A-tuple is 155 bytes and
each B-tuple is 155 bytes. The results are presented in
Figure 10. The size ratios can be interpreted as follows.
Tables A and B are taken to have base sizes of 10,000
tuples. The ratios represent the multipliers applied to the
base sizes to give the actual table sizes used in the joins.
Thus, with a ratio of 175 : 25, the left hand input A, _jc ¢
has size 175 x 10000 and the right hand input B, _;ign¢
has size 25 x 10000. The join selectivity (the portion
of the cartesian product that appears in the result) is
constant at 5.0 x 107% throughout. These settings mean
that the total number of input tuples read is the same
in every case, but that the result is larger where the
ratios are more similar. As such, the main focus in this
experiment is not on absolute response times, but on
relative response times.

The following can be observed: (i) Where there is no
external load, in Figure 10(a), the total response times
for the ratio 175 : 25 is greater than that for 25 : 175 (re-
spectively for 150 : 50 and 50 : 150). This is because the
ratios of input sizes lead to a corresponding ratio in the
numbers of hash table inserts and probes, and the for-
mer are more expensive than the latter, following the cost
model parameters in Table 1. (ii) Where there is no exter-
nal load, the overhead for Adapt-4 reduces as the relative
size of the left hand input reduces. As for point (i), this
relates to the relative numbers of hash table inserts and
probes; Adapt-4 carries out redundant hash table inserts
and probes on each input tuple, and the overhead re-
sulting from this redundancy is greatest where there are
more hash table inserts than probes. (ili) Where there is
periodic imbalance, in Figure 10(c), Adapt-1 to Adapt-3
generally perform less well where there are more hash
table inserts than probes; this is because these strategies
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depend on relocating portions of the hash table during
load balance, and large hash tables are costly to relocate.

Experiment 7: Resource usage of different strategies.
Adaptive load balancing seeks to reduce response times
by matching the work that needs to be done to the ca-
pabilities of the available resources. However, adapting
to load imbalance necessarily involves work being done
(such as relocating hash table state) in addition to that
required for query evaluation, thereby affecting through-
put for multiple tasks in loaded environments. This ex-
periment compares the amount of resource used by the
adaptive techniques when evaluating ()1 using constant,
periodic and Poisson loads from Experiments 2 and 3. In
all cases, the additional amount of work done is reported
when adapting to high levels of imbalance, so that signifi-
cant amounts of adaptation may be required. The results
are presented in Figure 11, which shows the amount of
work carried out by the different strategies relative to
the base case, so 1.0 represents no additional work.

The following can be observed: (i) None of Adapt-1 to
Adapt-4 create any additional disk traffic. This is to be
expected, as the join algorithms in the experiments are
main-memory hash joins. (ii) Adapt-1 to Adapt-3 han-
dle both constant and Poisson imbalance effectively, by
carrying out changes to distribution policies and hash
tables early during evaluation when there is little hash
table state to relocate. As a result, in Figure 11(a) and
(c) the increase in compute and network activity is by
small amounts compared to the base case. (iii) Adapt-
1 to Adapt-3 adapt several times in response to peri-
odic imbalance in Figure 11(b), which leads to additional
work being done in a setting that is challenging for these
strategies. Adapt-3, as well as doing less additional work
than Adapt-1 and Adapt-2, has the more beneficial effect
on response times. (iv) Adapt-4 carries out significant
amounts of extra work, the levels of which are essen-
tially independent of the level or nature of the imbal-
ance. (v) The additional work carried out by Adapt-5 is of
two forms — that resulting from the extra work required
to provide loosely coupled fragments, and that resulting
from the running of redundant fragments where there is
imbalance. The former is greater than the latter in this
experiment. In all of Figure 11(a) to (c¢), redundant frag-
ments are run, and in both (a) and (c) the redundant
fragment runs to completion and is used to compute the
result.

5 Exploiting Techniques from Online Algorithms

Several of the algorithms evaluated in Section 4, in par-
ticular Adapt-1 and Adapt-2, may perform costly adap-
tations in response to transient imbalances. In essence,
this is because the decision to adapt is taken on the ba-
sis of a snapshot of an environment for which there is no
reliable way of predicting future trends. Many computa-
tional systems operate in comparably uncertain settings,
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Fig. 11 Experiment 7 — Level of resource usage for adaptive
strategies relative to no adaptation. (a) Constant imbalance
of level 6, as in Figure 6. (b) Periodic imbalance of level 6
for duration and peak duration = 1s, as in Figure 7(a). (c)
P(oi)sson imbalance for 6 new jobs per second, as in Figure
7(c).

and the term online algorithm has been coined to refer
to a solution to a problem where a sequence of requests
is processed as each request arrives without knowledge
of future requests [23]. Examples include paging in vir-
tual memory systems [11,29], finding routes in networks,
cache memory management [9] and dynamic selection of
component implementations [38]. In essence, such sys-
tems must make decisions as to which configuration to
use in future on the basis of previous performance. The
term competitive algorithm is used of algorithms that
seek to make decisions online that can be characterized
by how well they compete with an optimal offline algo-
rithm. One such algorithm is that of [38], which dynami-
cally selects between implementations of components; we
have modified this algorithm with a view to improving
the decision as to when to change the distribution policy
in Adapt-1 and Adapt-2, and what to change it to.

5.1 Online algorithms for decision making in adaptive
systems

In adaptive systems, adaptivity involves some change in
system configuration with a view to improving perfor-
mance. We illustrate this approach to adaptivity with
the adaptive component problem [38], which was moti-
vated by the increasing use of components, such as web
services, to develop distributed applications. In an unpre-
dictable environment, it may be impossible to determine
statically which implementation of a component should
be used in a given context. Hence adaptive components
have multiple implementations, each optimized for re-
quest sequences with particular properties. Internally, an
adaptive component monitors the current workload and
adaptively switches to the implementation best suited
to the workload. Adaptation takes place when the cost
associated with the current configuration is greater than
the cost associated with a different configuration by some
factor. In [38], the Delta algorithm, determines when to
switch between two configurations, and is 3-competitive
(i.e., no worse than three times as slow as the optimal of-
fline algorithm). Figure 12 describes a simplified version
of Delta that suffices to motivate the approach followed
in Section 5.2.

In the figure, the system can operate under two dif-
ferent configurations, conf! and conf2. Only one config-
uration can be active at any time, but the cost of pro-
cessing each request is derived for both configurations,
and thus a cost model is required for each configura-
tion. A cost model is also required that can be used
to predict the cost of switching between configurations:
switch_cost is the round-trip switching cost, that is, the
cost of changing from conf1 to conf?2 and back again. A
change of configuration occurs when the cost incurred by
the active configuration (conf! in Figure 12) is greater,
by switch_cost or more, than the cost incurred by the
alternative configuration had it been active.
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ConflCost = 0;

Conf2Cost = 0;

TimeToSwitch = False;

while (not TimeToSwitch)
Process next request r;
ConflCost = ConflCost + Cost(r, confl);
Conf2Cost = Conf2Cost + Cost(r, conf2);
if (ConflCostl - Conf2Cost) >= switch_cost

TimeToSwitch = True;

endif

endwhile

SwitchToConf2;

Fig. 12 The Delta algorithm; conf1 is active.

start_time = now();
count = 0;
current_dp = ... ;
TimeToSwitch = False;
while (not TimeToSwitch)
count = count + 1;
Process next portion of query;
Compute proposed_distributioncount;
Preferred—dp n in 1..length(proposed_distribution) [1’1]:
SUM ¢ in 1..count(proposed_distributiont[n])/count;
period = now() - start_time;
delay = accum_delay(current_dp, preferred_dp, period);
if delay >= switch_cost
TimeToSwitch = True;
endif
endwhile
Switch to use preferred_dp;

Fig. 13 Revised Delta (from Figure 12) for load imbalance.

proc accum-_delay(current_dp, preferred_dp, period)
df j in l..length(current_dp) [-]] = 0? %o delay fraction
for i in 1..length(current_dp)
if current_dpli] > preferred_dp[i] % causing delay
dffi] = (current_dpli]-preferred_dpli]) /preferred_dpli];
else
dffi] = 0; % not causing delay
endif
endfor
return max(df)*period;

Fig. 14 Computing the accumulated delay.

5.2 Adapting Delta for use with Adapt-1 and Adapt-2

We have taken Delta as a starting point for the design
of variants of Adapt-1 and Adapt-2. Both Adapt-1 and
Adapt-2 use exchange operators to distribute tuples be-
tween parallel plan fragments, and revise the distribu-
tion policy in the light of runtime performance, as de-
scribed in Section 2. The idea behind the revised ver-
sions of Adapt-1 and Adapt-2 is that adaptation takes
place only when evidence has been accumulated that the
consequences of ongoing imbalance are great enough to
motivate incurring the costs associated with adapting. In
particular, adaptation takes place when processing the
backlog of work assigned to a node is predicted to take
at least switch_cost, assuming that the throughput on

the node continues as before. The switch_cost is the cost
incurred to relocate hash table data to reflect the re-
vised distribution. The revised version of Delta is listed
in Figure 13.

Revised Delta first computes the preferred distribu-
tion as the average of the proposed_distributions (as de-
fined in the description of Adapt-1 in Section 2) since the
start of an operation or the last adaptation. The aver-
age proposed distribution is referred to as the preferred
distribution policy (preferred_dp); it is computed over
a time period represented by 1..count, where each entry
in l..count represents a moment during query evalua-
tion where the collection of the monitoring information
required to compute a proposed_distribution took place.

As the preferred_dp is the average of previous pro-
posed distributions, it can be computed efficiently and
incrementally. During operation evaluation, pre ferred_dp
is updated at each monitoring point (every 0.1s in the
simulation) to take account of the proposed_distribution
at that point, and used to compute both the switch_cost
and the accumulated delay resulting from the use of the
current distribution policy over the period 1..count.

The accumulated delay is computed as described in
Figure 14, which estimates the level of the delay that
will result from continuing with current_dp compared
with changing to preferred_dp. In essence, the value of
the ith entry in current_dp represents the fraction of the
work that is currently assigned to the ith node. By con-
trast, the value of the ith entry in preferred_dp repre-
sents the fraction of the work that would have been as-
signed to that node using the strategy represented by
preferred_dp. Where current_dpfi] is less than or equal to
preferred_dp[i], the node is able to evaluate all the work
assigned to it, and thus does not contribute to any delay
in the completion of the operator. By contrast, where
current_dpfi] is greater than preferred_dpfi], more work
was assigned to a node than it was able to process, and
thus the node is contributing to sub-optimal performance
from the operator. Where this is the case, the difference
between the distribution policies for the ith node repre-
sents the portion of the work that the node was unable
to evaluate using the current distribution policy.

For example, if current_dp[i] is 0.5 and preferred_dp[i
is 0.2, then the fraction of the total work assigned to the
node that it cannot process is 0.3. This difference is re-
ferred to here as the inappropriate assignment level. This
leaves open the question as to how much delay will be
incurred by the ith node if evaluation continues using
current_dp. This is referred to as the delay fraction (df in
Figure 14), and can be estimated by dividing the inap-
propriate assignment level for node i by preferred_dpli].
For the example, this gives (0.3/0.2) = 1.5. That is, the
delay resulting from the use of current_dp instead of pre-
ferred_dp is an additional 1.5 times what it would have
taken using preferred_dp. Thus the result of accum_delay
is the product of the largest delay fraction and the period
for which inappropriate load balance has been in place.
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Tuples Processed | Backlog

Count | N1 N2 Total | N1 N2 | accum_delay
1] 20 50 70 30 0 1.50

2| 20 50 140 60 0 3.00

31 20 50 210 90 0 4.50

4| 20 50 280 | 120 0 6.00

5| 20 50 350 | 150 0 7.50

6 | 20 50 420 | 180 0 9.00

71 20 50 490 | 210 0 10.50

8| 20 50 560 | 240 0 12.00

9| 20 50 630 | 270 0 13.50

10 | 20 50 700 | 300 0 15.00

Table 5 A sample of accumulated delay for 2-level paral-
lelism with current_dp = [0.50 0.50] and preferred_dp =
[0.20 0.80]. The workload is equally divided between the two
nodes ([0.50 0.50]), but node N1 is not able to cope with its
portion of work, assuming that 100 tuples are available for
processing for each count.

We use the delay fraction of the node with the largest
delay fraction because this node will finish last, thereby
showing how long the accumulated delay will actually
be.

Table 5 illustrates how delay accumulates over time.
In the table, we assume that the current_dp = [0.50 0.50],
whereas the more suitable preferred_dp = [0.20 0.80].
Further, we assume that each Count represents a time
period t, that 100 tuples are available to be processed in
each period ¢, and that N2 is able to process 80 tuples
in that period. From the preferred_dp, it follows that
N1 can process only 20 of the 50 tuples assigned to it
by current_dp in time ¢, and thus that it accumulates a
backlog of 30 tuples for each t. As NI can only process
20 tuples in time ¢, after a single ¢ it will take 1.5 % ¢
to clear its backlog, a delay that will grow linearly while
the relative performance of N1 and N2 stays the same.
Note that N2 can process all of the 50 tuples assigned
to it by current_dp, with additional spare capacity, so it
does not accumulate any backlog.

Another aspect of the Revised Delta algorithm in Fig-
ure 13 is that the switch_cost between configurations is
variable, as it depends on the amount of data that needs
to be relocated for use in the hash joins (switch_cost in
Delta is fixed). This means that many adaptations are
likely to occur when switch_cost is relatively low even
though there is little problem with the current distri-
bution. For this reason we retain the minimum thresh-
old values on adaptation sizes from Section 2 in both
Adapt-1 and Adapt-2; this means that the revised ver-
sions are guaranteed not to adapt more frequently than
their original counterparts. In essence, an additional hur-
dle has been introduced before adaptation can take place.
This hurdle ensures that the problem with the current
distribution policy is known to have been sustained to
the extent that, if applied to the same amount of data
to which it has already been applied, a change to the
preferred_dp will lead to improved response times, even
after taking into account the cost of relocating the hash
table.
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Fig. 15 Experiment 8 — Response times for Q1 for different
levels of constant imbalance.

5.3 Experiments

This section compares the performance of Adapt-1, Adapt-
2 and the revised versions Adapt-1d and Adapt-2d.

Experiment 8: Effectiveness of revised Delta in the con-
text of constant imbalance. This experiment, like Experi-
ment 2, involves Q1 being run with a parallelism level of
3, where an external load is introduced that affects one
of the 4 nodes being used to evaluate the join.

The following can be observed from the results in
Figure 15: all adaptive strategies perform well compared
with the base case — this is to be expected, as the im-
balance to which a reaction is required is consistent and
present from the start, enabling adaptation to take place
before much operator state has accumulated. This pos-
itive result is to be expected; as load imbalance is con-
stant, the snapshots of performance used in Adapt-1 and
Adapt-2 are generally representative of ongoing behavior.
As a result, adapting to average and snapshot imbalance
levels leads to similar distribution policies.

Experiment 9: Effectiveness of revised Delta in the con-
text of periodic imbalance. This experiment, like Experi-
ment 3, involves @I being run with a parallelism level of
3, where an external load is introduced that affects 1 of
the 3 nodes exactly half the time (i.e. duration and re-
peat duration are both the same), or in which jobs arrive
following a Poisson distribution.

The following can be observed: (i) the rapid changes
in load in Figures 16(a) and (b) present a challenging
environment for algorithms that perform costly adapta-
tions, and none of the algorithms consistently improve
on the base case to a significant degree; (ii) in both Fig-
ure 16(a) and (b), the original versions usually perform
less well than those using the revised Delta algorithm to
decide when to adapt; this is because adapting to av-
erage levels of imbalance generally leads to fewer large-
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scale adaptations than in the originals, in which changes
in distribution policy tend to be significant and frequent;
(iil) in Figure 16 (c), all the adaptivity strategies improve
in the base case for higher levels of imbalance, although
the versions based on Delta generally out-perform their
counterparts, as would be expected — the average imbal-
ance levels that form the basis of the preferred distri-
bution policy should accurately reflect the average loads
resulting from the Poisson-based arrival rates for exter-
nal jobs.

Overall, the revised versions of Adapt-1 and Adapt-
2 have helped to reduce their weaknesses in unstable
settings, but more by avoiding extremes of behavior than
by providing fundamental changes in behavior across the
board.

6 Conclusions

This paper has compared techniques for balancing load
during the evaluation of stateful queries with partitioned
parallelism. Overall, the lesson is that, although the tech-
niques are sometimes effective, there are also circum-
stances in which they either make little difference or
make matters worse.

In essence, AQP strategies differ along the following
dimensions: (i) the overheads associated with a strategy
whether or not it is required; (ii) the cost of carrying out
an adaptation; (iii) the stability of the property to which
the adaptation is responding — an adaptation can only
be beneficial if the cost of carrying out the adaptation is
outweighed by its lasting benefits.

The strategies are compared in terms of overheads
and adaptation cost in Figure 17. In essence, Adapt-1 to
Adapt-3 have low overheads (because plans essentially
evaluate in the normal way in the absence of imbalance),
but have high adaptation costs because moving parts
of hash tables around is expensive. However, Adapt-3
has lower maximum adaptation costs because the use of
replication means that the same hash table state will
never be moved repeatedly to the same node. By con-
trast, Adapt-4 has significant overheads because it main-
tains replicated hash table entries, which in turn allow
individual adaptations to be made at minimal costs. The
costs and overheads of Adapt-5 are more difficult to pin
down. The overheads take the form of additional work in
query plan fragments, which vary from query to query,
and the costs are in terms of resources to run redun-
dant fragments, which also increase the total load on the
system.

Another property that is relevant to the effectiveness
of adaptation is the stability of the property to which
adaptivity is responding. Some adaptive strategies focus
significant attention on ensuring that they adapt only
when there is significant evidence that the problem to
which a response is being made is great enough to im-
ply that adaptation will be beneficial. For example, both
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Fig. 17 Trade offs involved in the techniques.

POP [24] and Rio [3] adapt when the selectivity of an op-
erator moves outside a range for which a plan is expected
to be effective. As the actual selectivity of a predicate can
be computed based on accumulating evidence, the pro-
cessing of small numbers of tuples with atypical selectiv-
ities is unlikely to lead to a proposal to reoptimize — as
such, the selectivity is reasonably stable. However, even
when adapting to changes in predicate selectivities, it is
possible for an adaptive strategy to do more harm than
good because adaptations react to transient effects; POP
has a threshold that limits the number of times it will
adapt to limit these potentially harmful consequences.

Unfortunately, load imbalance is not intrinsically sta-
ble. Events over which a query processor has no control
can lead to substantial changes in the load on a resource
without warning. Thus, techniques with high adaptation
costs, such as those that move portions of a hash ta-
ble around when seeking to restore balance (Adapt-1 to
Adapt-3), are likely to perform poorly where the load
changes rapidly. Adapt-4, was designed to overcome this
weakness. However, although Adapt-4 provides depend-
able performance in unstable environments, it has signif-
icant overheads, and thus loses out where there is little
imbalance.

Adapt-5 has significant overheads in the absence of
suitably clustered source data, and adapts only after im-
balance has caused complete phases of plan execution to
be delayed (e.g., the construction of a hash table). This
means that Adapt-5 is only likely to improve on Adapt-1
to Adapt-3 where there is high external load or in con-
texts where Adapt-1 to Adapt-3 struggle — for example,
when load changes rapidly. However, an advantage of the
fact that Adapt-5 responds only at certain landmarks in
query evaluation is that it responds to the consequences
of sustained imbalance rather than the potentially tran-
sient presence of an imbalance.

The algorithms based on Delta also respond to the
consequences of sustained imbalance by accumulating
evidence that change is necessary. The variants of Adapt-
1 and Adapt-2 that adopt this principle were developed
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Fig. 18 Sensitivity to Imbalance Threshold — Response
times for Q1 running on three nodes with an imbalance level
of 5 and varying imbalance threshold: (a) constant imbalance;
(b) periodic imbalance with duration and repeat duration =
1s.

with a view to reducing the consequences of hasty adap-
tations in unstable environments. Like Adapt-3, which
was designed for the same purpose, they helped to reduce
the effects of worst-case scenarios, without significantly
widening the range of circumstances in which Adapt-1
and Adapt-2 perform well.

Appendix A: Sensitivity Analysis

The adaptivity strategies Adapt-1, Adapt-2 and Adapt-3
are associated with parameters that influence their be-
havior, as described in Section 2. To ensure that the re-
sults reported in the paper are not sensitive to small
changes in these parameters, tests have been performed
that vary these parameters systematically.
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The imbalance threshold is the smallest change in the
distribution policy for which an adaptation is considered
(this has been set to 0.05 in the experiments). Figure
18 shows the effect of varying this threshold for Adapt-1
and Adapt-2.

In Figure 18(a), for constant imbalance, the adaptive
strategies improve significantly on the No Adapt case for
a wide range of imbalance thresholds, until the thresh-
old is such as to block adaptation completely. With con-
stant imbalance, in both Adapt-1 and Adapt-2, adapta-
tion takes place a small number of times, and a plausible
distribution policy can be identified early in query evalu-
ation. Thus, as long as the threshold is not so large as to
prevent the use of this policy, the adaptivity strategies
perform well.

In Figure 18(b), for periodic imbalance, the adaptive
strategies struggle to cope with the unstable environ-

ment, until the threshold is such as to block adaptation
completely. With periodic imbalance, adaptation takes
place regularly, and higher imbalance thresholds help to
reduce the negative consequences of snap decisions to
adapt. However, high thresholds can lead to missed op-
portunities when adaptation is beneficial, as illustrated
in Figure 18(a), so the threshold has been kept quite low
in the experiments.

The number of fragments indicates the number of
groups into which each table is divided, where the groups
are the unit of redistribution. Thus the number of table
fragments indicates the granularity at which data may be
redistributed. The number of table fragments has been
set to 50 in the experiments. Figure 19 shows the effect
of varying this threshold for Adapt-1 and Adapt-2.

In Figure 19, where there are small numbers of table
fragments, this can reduce the numbers of adaptations
that take place. This is problematic in the case of con-
stant imbalance in Figure 19(a), and beneficial in the
case of variable imbalance in Figure 19(b). With larger
numbers of fragments, although specific results vary, the
overall behavior of the algorithms remains broadly con-
sistent.

Overall, the sensitivity analysis illustrates that ex-
treme values for the control parameters can restrict the
number of adaptations that take place, but that the be-
havior of the algorithms remains broadly consistent for
a range of other values. We note that both Adapt-1 and
Adapt-2 perform costly adaptations in response to po-
tentially transient effects, and thus that some variation
is expected in measurements as parameters are altered,
even where this does not follow a regular pattern.
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