Visualizing Program Slices
ThomasBall (t bal | @ esearch. bel | -1 abs. com

Stephen G. Eick (ei ck@ esear ch. bel | -1 abs. com
October 1994

Appears in Proceedings of the 1994 |IEEE Symposium on Visual Languages, pp. 288-295, October 1994.

Copyright 00 1994 |IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted component of thiswork in other
works must be obtained from the IEEE.



Visualizing Program Slices

Thomas Ball & Stephen G. Eick
AT&T Bell Laboratories
1000 E. Warrenville Rd./Naperville, IL 60566
tball,eick@research.att.com

October 14, 1994

Abstract

Program slicing is an automatic technique for determining which code in a program
is relevant to a particular computation. Slicing has been applied in many areas, includ-
ing program understanding, debugging, and maintenance. However, little attention has
been paid to suitable interfaces for exploring program slices. We present an interface
for program slicing that allows slicing at the statement, procedure, or file level, and
provides fast visual feedback on slice structure. Integral to the interface is a global
visualization of the program that shows the extent of a slice as it crosses procedure
and file boundaries, and facilitates quick browsing of numerous slices.

This paper appears in the proceedings of the 1994 IEEE Symposium on Visual
Languages.

1 Introduction

Understanding the behavior of a large software system is a complex and daunting task.
Program slicing, an automated program decomposition proposed by Mark Weiser[13,
14], aids in this endeavor by reducing the amount of code to be examined at any point
in the process. Informally stated, a slice contains those components of a program that
can potentially affect some component of interest. A slice aids program understanding
by focusing attention on a smaller and relevant subprogram. Figure 1 shows a slice
of a simple function, link. The slice point is the statement ’return(y);’, which has
been highlighted. Statements in the slice are colored, while statements outside the
slice "z = y;,p[x] = y;’) are not.

Although a slice may reduce the amount of code a programmer must examine,
slices may be quite large and complicated, especially for large systems. Current slicing
interfaces, which are based on text browsers (such as shown in Figure 1) or syntax-
directed editors [1, 6, 12], are inadequate to the task of exploring slices. In these
interfaces, a slice is formed by selecting a statement or expression (the slice point)
and invoking a slice command. As a result, statements in the slice are highlighted or
colored. If the slice crosses procedure or file boundaries, additional browsers may be
opened or browser commands may be invoked to view other entities. Such interfaces



=|

static int
link (int =, int ¥)

if (rank([x] » rank[y])
i

int £t = x;

else if (rank[x] == rank[y])
rank[y] += 1;

—
| Pattern: |: WIIA'—

Figure 1: A simple slice

burden the programmer with the task of determining the extent of a slice and finding
interesting slice features. Determining code that lies outside of the slice is also difficult.
Navigation through a slice is cumbersome, especially when the slice crosses procedure
and file boundaries, which will be the rule for large programs. Simply put, browser-
based interfaces get in the way of program slicing rather than expedite it: it is difficult
to examine the many different slices of a program because so much effort is required
to see just one slice. The slice is, for the most part, invisible in such interfaces.

We have developed SeeSlice, an interactive slicing interface to address the above
problems. Our motivation for developing SeeSlice was the need to better visualize the
data generated by slicing tools (in particular, for a slicing tool we have built). We are
investigating how to apply slicing to large legacy systems to help programmers better
understand and comprehend their behavior.

SeeSlice uses a reduced visual representation of programs pioneered by Eick et. al[4]
that has been extended in several ways to support slicing. Figure 2 shows a snapshot
of SeeSlice’s main display. Files are displayed as columns that contain representations
of procedures. Procedures are displayed either in a open form in which each line of
code is displayed as a thin row (see the first procedure in the first file, gpt.c), or in a
closed form that hides their underlying code (see the first procedure in the second file).
A slice is formed with respect to a code entity simply by pointing at it with the mouse.
The statements, procedures and files in the slice are immediately colored. The slice is
dynamically updated to track the mouse, making patterns and shared slice structure
apparent. A source browser may be opened to view the actual code.

The SeeSlice interface facilitates slicing by making slices fully visible to the user,
even as they extend across many procedures and files. The global hierarchical overview
of a program, combined with a highly interactive interface, allows the user to quickly
examine many slices, find interesting slice features, and browse through a slice.

Section 2 introduces program slicing and describes the tool we have built to find
slices. Section 3 describes the slicing interface and visualization. Section 4 steps



I
=
Edit MWidgetz |S5lice: Direction: | Backwards I:Il Level: |Comtext (=]

bh.c

aout.c

machine_aout.c
[E— .

| £— = -
= /= 3
]
(— - b -
= | |
= 7
= record_blocks
ﬁndJmciaudressesD
—= = = check_global_r
= 2 —
— T — el |
| —
E - record_fnct_name
i'_—_ = note_hidden_proc
= =
) — —— | =
ey =1
e = |z
| — —| 2
= - | =
T = read_proc = 1
= —_— E —

Figure 2: SeeSlice’s main display. Mouse indicates slice point

through an application of the slicing visualization to a program. Section 5 discusses
related work and Section 6 summarizes.

2 Program Slicing: Preliminaries

Slices are generally classified along two dimensions. First, a slice has a direction:
backwards or forwards. A backwards slice with respect to a component C identifies
those components that affect C, while a forward slice with respect to C' identifies those
components affected by C. Second, a slice can be computed by analyzing a program’s
source code (referred to as a static slice) or by analyzing one or more executions of a
program (a dynamic slice). Static and dynamic slices can be automatically constructed
by a variety of methods[14, 10, 7, 8]. All of these approaches involve examining a
program’s data and control dependences, for which we give informal descriptions (for
more rigorous definitions, see[5]).

Statement s is data dependent on statement r if r writes into a variable V' that s
subsequently reads from (with no intervening writes to V). In the function in Figure
1, the statement 'return(y);’ is data dependent on statement 'y = t;’, which is data
dependent on ’int t = x;’. Analyzing data dependences in the presence of pointers
and arrays is a difficult task given only a program’s source code (the problem is gen-
erally undecidable). However, the exact data dependences for a particular execution
of a program can be easily computed by examining the execution’s address trace (the
tradeoff is that not all dependences in the program may arise in a given execution).
Data dependences can span procedure and file boundaries.

Statement s is control dependent on statement r if r is a predicate that can control
whether or not s executes. Control dependences span statements from the same proce-



Figure 3: The program dependence graph of the function link from Figure 1.

int t = x; X =y, y =t; else if (rank[x] == rank[y]) \
SO 1
\\\‘ |‘ ‘,/’7 l| ‘\ A !
I (I ; ’
— o _ - /
\ g \\ rank[y]\ += 1 o
\ / S e -
N\ ;oo\ - -
plx] =vy; .
A
return (y);

dependence edges are solid and data dependence edges are dashed

dure but do not cross procedure or file boundaries. In Figure 1, the statement 'y = ¢;’ is
control dependent on its enclosing ¢ f conditional. The return statement is not control
dependent on either i f statement since it executes regardless of the control-flow path
through the procedure.

Combined, the data and control dependences form the edges of a directed graph
(the program dependence graph|5]) in which the vertices are the statements of the
program. The backwards or forwards slice with respect to a statement may be found by
backwards or forwards transitive closure in this graph, identifying the set of statements
in the slice. Figure 3 shows the program dependence graph of the function from Figure
1. The dashed curved edges are data dependences and the solid straight edges are
control dependences. The backwards closure from 'return(y);’ includes every vertex in
the graph except for 'z = y;’ and ’'p[z] = y;’, which corresponds to the slice shown in
Figure 1.

We have constructed a tool for building the dynamic program dependence graph
of a program’s execution. We use the QPT instrumentation tool to generate program
traces[2, 9]. QPT instruments an executable file with code to generate a trace of
interesting events (such as the addresses written to and read from). This trace is piped
to a trace analyzer that extracts the dynamic data and control dependences. Since QPT
instruments executable files, dependences are found between machine instructions. The
symbol table in an executable file allows us to map the dependences between machine
instructions to dependences between their corresponding statements at the source level.
The result of the analysis is a statement-level dynamic dependence graph. Performing
the execution analysis at the object code level allows us to analyze programs written
in different languages.

3 Slicing Visualization and Interface

The SeeSlice interface displays a program in a compact representation. Programs are
organized into three levels: files (modules), procedures, and statements. Previous
slicing interfaces focus on slicing at the statement level. We believe that it should
be equal easy to slice at any level in the hierarchy (statements, procedures, files).

Control



Therefore, the reduced representation must clearly show these three levels of hierarchy.
In order to examine many slices, the interface must be highly interactive. Slicing
is accomplished simply by pointing at the representations of files, procedures, and
statements. The display is updated in real-time to show the slice associated with the
current mouse position, which allows the user to quickly examine many different slices
and find interesting patterns. We now describe the visual and interactive aspects of
the interface in greater detail.

3.1 Visualization

As shown in Figure 2, each file in a program is represented as a column of procedures
(the column may wrap around if the file is large), with the file’s name at the top of
the column. Procedures in a file are displayed in one of two forms: in closed form, a
procedure is a (partially filled) rectangle whose size encodes the number of lines in the
procedure (i.e., procedure record_blocks); in open form, each line of text in a procedure
maps to a line of pixels, with indentation and length reflecting that of the text (i.e.,
procedure find_proc_addresses). This reduced representation shows file and procedure
sizes, as well as the internal control structure of open procedures. The display also
shows the name of the procedure containing the slice point (check_global_regs) and
the names of the procedures one step away in the slice (i.e., procedure record_blocks).
Displaying more procedure names than this tends to clutter the display.

A slice that spans many procedures may contain relatively few statements in pro-
portion to the number of executed statements in those procedures. On the other hand,
we may encounter “heavy” slices that contain most of the executed code in each pro-
cedure. To distinguish these cases, there is an option to fill each closed procedure to
indicate the percentage of executed statements in the procedure that are in the slice.
By quickly scanning the display, a user can gauge the size of a slice (in terms of number
of statements) in addition to the number of procedures and files that it spans. In Fig-
ure 2, we immediately see that only a small amount of the executed code in procedure
record_blocks is in the slice.

Colors are used in the display to distinguish executed code from unexecuted code
(dark gray vs. light gray), and the code in a slice from the code outside a slice (color vs.
gray). Distinguishing executed code from unexecuted code in the display is necessary so
that it is clear which code can be sliced. Components in the slice are color-coded from
the rainbow scale by their shortest path distance to the slice point (in the dependence
graph), where red is the slice point and each color lower in the rainbow spectrum
represents one step away in the shortest path. This allows easy identification of the
immediate predecessors of the slice point. A closed procedure’s color is the “hottest”
color in the procedure. A file’s name is similarly colored.

3.2 Interaction

Figure 4 shows all the components of the slicing interface. Our interface supports
the continuous slicing of a program. Rather than require the user to invoke a slice
command for each desired slice, slicing continues until the user requests that it halt
(through a button click). Slicing is accomplished simply by pointing at an entity in the
reduced representation. Pointing to a closed procedure forms a slice with respect to all



I ]
=l| [=1o]

' Slice: | Full = | Direction: | Foruerds = | Levelt [Context =1 |

aout.c machine_inst.c

machine_aout.c
= B
S :

record_edgex
D linstruction
-——

LATTH

FIT T IT

—
[ —
I:I — switch_tbl_t

ﬁ read_aout_info

T

A [read_scut_info (char #full file name, char *eutput_file

ADDR new_prog_sntry; /* Bddress of _start r

text end = text start + text size;

| — VAl

Figure 4: The full SeeSlice interface. A forward slice on the assignment to text_start

the executed statements in that procedure (i.e., a transitive closure from all the vertices
representing statements in the procedure). Similarly, pointing to a file’s name forms a
slice with respect to all the statements in the file. If a procedure has been opened, then
slices may be taken with respect to the individual statements in that procedure. Figure
4 shows a forward slice on an assignment statement. Each time a slice is formed, the
previous slice is erased. However, a mouse drag disables erasure of the previous slice,
allowing the user to slice with respect to a set of program components.

A slider on the left of the main display scales the size of the closed procedures. When
browsing at the procedure level it is easier to identify patterns if all the procedures are
of equal size. Figure 5 shows an example of procedures scaled to reflect their true size
and Figure 6 shows an example of procedures scaled to nearly equal size.

The interface supports forward and backwards slicing (or both at the same time).
In addition, there are several filters for controlling the transitive closure. For example,
it is possible to restrict the slicing operation so that it does not propagate out of the
strongly-connected component containing the slice point. This is useful for identifying
recurrences (cycles) in the program’s computation that would not be apparent from a
simple backwards closure.

In a separate window on the left side of the display (see Figure 4) is a mouse-
sensitive color-selector with an associated slider. The slider controls how many steps
the transitive closure will expand for each slice operation. As the user will often be
interested in a small area around the slice point rather than points very far away, it
is not necessary to compute the full transitive closure for each slice operation. The
color selector represents the number of steps in the closure. Through this selector, the
user may selectively enable and disable slice colors, which is reflected in the reduced
representation.

To examine a particular slice, slicing can be turned off (which fixes the current slice).
Files and procedures not in the slice can be elided and those files and procedures in



= [-1o
Slices Direction; | Backwards =3 | Levels | Context = |
machine_aout.c
aout.c
gpt.c machine_inst.c
main I:I I |:|| |
— = = |_|
— I:I':' ———
— I:I — —
|:|
e —
— —
— . —
[— read_aout_ll%
e L
— record_fhct C—— ———lL |
note_hitde [ = ]
[ read_proc L=
ﬂ:' ——
— —
= = =
[— F— ——t
— — —
— — —
—
— —
— —
— —=

Figure 5: A backward slice on procedure read_proc in file aout.c

I
= [=]0

Slice: Directiont | Forwards I:Il Level: |Contaxt [=]

bb.c machine_ins trace.c profile_tra
aout.c machine_aou . i
gpt.c loop.c draw.c utilities.c machine_pro
O Whtesinsts = o= oQ =]
E 0 closeTfiles E'E O E =] E

g
o
g
E
o
&
o

oooaa

u}
o
£
'
%
[uf]
oo

1000000000000000000000000
u}
u}
oooooac

000000000gCooo0ooaa

00000000000000

ent_instn|

0000000000000000oa0an
000000Oo00000dcJ000000an

000000000000000000000000
I
1000000000000000000000000
u}
100000000000000000C000000000aa
g
]DDDDDDDDDDD@DDDDDD

Figure 6: A forward slice on procedure write_insts in file aout.c



the slice can be rearranged on the display, sorted by their dependence distance to the
slice point. This allows exploration of the source code near to the slice point with a
minimum of mouse motion, as files and procedures that are close to the slice point
(in terms of dependence distance) are now also spatially close to it. The order of
statements within a procedure is not altered.

To view the actual source code, a source browser may be opened (see Figure 4).
Lines of text in the browser are colored as in the reduced representation. The browser
view tracks the current mouse position in the reduced representation, allowing the
user to quickly move from the code in one file or procedure to the code in another.
If the user desires, the code within a file may be browsed through standard browser
commands and slices may be requested from the browser.

4 An Example

This sections shows how the slice visualization can be used to quickly find interesting
relationships between a program’s components. We applied the slicing tool to the QPT
profiling/tracing tool. QPT is written in the C language (about 12,000 lines of code
and 300 procedures, not including libraries). Figure 6 shows all the files and procedures
in the QPT program. QPT has three basic steps: (1) read in an executable file; (2)
determine points in the executable to add instrumentation code to; (3) write out the
instrumented executable file.

Slicing can be used to answer a number of questions about the relationships between
program components, such as:

e What groups of procedures and files participate in a computation?

e What code and variables are crucial to the computation of the program? (Chang-
ing such code and variables will affect the behavior of many parts of the program.)

e Does a file or procedure contain several independent computations or just one?

4.1 Highly interdependent and shared code

Slicing on the procedures in the file aout.c immediately reveals that there are five highly
interdependent procedures in the file (see Figure 5). A slice on any one of the five proce-
dures includes all five procedures. Furthermore, as Figure 5 shows, the backwards slice
with respect to these procedures is very small. However, a forward slice with respect
to these procedures includes almost all the procedures in the program. These five pro-
cedures (read_aout_info, find_proc_addresses, record_fnct_-name, note_hidden_proc,
read_proc) collaborate in reading in an executable file. Not surprisingly, most of the
program depends on the data structures initialized by these procedures.

4.2 Inter-file functionality

What are the functions of the other procedures in file aout.c? Figure 6 shows the
forward slice with respect to the first procedure in aout.c, write_insts. This forward
slice is small and spans four files. These procedures collectively output the instru-
mented executable file. The procedures that deal with the executable file format are in
aout.c, those that deal with machine-independent instrumentation are in prof_trace.c



and those that handle machine-dependent instrumentation are in machine_inst.c and
machine_prof trace.c. This is a natural organization for porting the QPT tool to dif-
ferent platforms, but one that makes it harder to discover the inter-file functionality.
The slice visualization makes this apparent immediately.

4.3 Important variables

If we examine the text of the procedure read_aout_info (see the browser in Figure 4),
we find that it initializes a number of global variables (text_start, text_size, data_start)
corresponding to the starting addresses and sizes of various segments in the executable
file. The size of the forward slice with respect to each variable’s definition will indicate
how crucial each variable is to the program’s computation. Figure 4 shows a forward
slice with respect to the variable text_start. Each procedure displayed with a name
directly references text_start. Other procedures in the slice are indirectly influenced
by the value of text_start. While only five files are shown in this figure, the forward
slice with respect to text_start influences most of the code in the program.

In this quick analysis (performed by slicing only on procedures and statements in
the file aout.c) we have learned the following:

e There are five highly interdependent procedures in the file that read the input to
QPT, on which most of the program is dependent.

e There is a set of interdependent procedures spanning four files that collectively
output the instrumented file.

e The variable text_start influences a large portion of the program.

5 Related Work

None of the program slicing systems that we are aware give the user a global overview
of a program or allow quick examination of many slices. These systems are based
around a text or syntax-directed browser and support slicing mainly at the statement
level. A few examples of such program slicers are the Wisconsin Program-integration
System[12], Spyder[1], and the Surgeon’s Assistant[6].

The SeeSlice display presented here is based on the previous work of Eick et. al
on the SeeSoft program visualization system[4]. In the SeeSoft display, each file of a
program is displayed in what we refer to here as open form, in which each line of a file
is mapped to a line in the display, with length and indentation reflecting that of the
underlying source text. A line’s color encodes an associated statistic (for example, a
count of how many times the line executed[3]). We found that the totally line-based
orientation of this display does not work well for slicing, as program abstractions such
as procedures are not visually apparent and cannot be pointed to or selected, and as
there is no way for the user to suppress or eliminate line-level detail when it is not
needed.

The problem of visualizing program slices is part of a larger program visualization
problem: How can visualization make the interdependencies and relationships between
program components apparent to the user? Two main challenges to visualization are
the huge number of such relationships and the fact that many of these relationships are
not necessarily localized in the code. Slicing eliminates relationships (and code) that



are not relevant to a point of interest, but still leaves us with the above challenges for
the remaining, relevant relationships. SeeSlice effectively shows what code is inside and
outside a slice in a global fashion, but does not provide direct assistant in navigating
through the dependence relationships in this code, as do other tools[11].

6 Summary

We have presented a visualization method and interface for querying and displaying
program slices. The SeeSlice tool allows a user to quickly request and examine many
different program slices. A reduced visual representation of a program that displays
the various levels of program hierarchy makes it possible to query, display, and browse
slices in a highly interactive fashion.

There are many different possible applications for SeeSlice. As part of a system
for program understanding and reverse engineering, the tool could be used to identify
related procedures and files and to extract and restructure code. Applied to debug-
ging, SeeSlice provides help in identifying code that contributes to anomalous program
behavior.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging with dynamic slicing
and backtracking. Software-Practice and Ezperience, 23(6):589-616, June 1993.

[2] T. Ball and J. R. Larus. Optimally profiling and tracing programs. In Confer-
ence Record of the Nineteenth ACM Symposium on Principles of Programming
Languages, (Albuquerque, NM), pages 59-70. ACM, Jan. 19-22 1992.

[3] S. G. Eick and J. L. Steffen. Visualizing code profiling line oriented statistics. In
Proceedings of Visualization 92, pages 210-217. IEEE Computer Society Press,
Oct. 19-23 1992.

[4] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr. Seesoft - a tool for visualizing
line oriented software statistics. IEEE Transactions on Software Engineering,
18(11):957-968, Nov. 1992.

[5] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems,
9(5):319-349, July 1987.

6 . B. Gallagher. Surgeon’s assistant limits side effects. oftware, 7:64 a
K. B. Gallagher. Surg ’ i limi ide eff IEEE S , 1:64, May
1990.

[7] S.Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs.
ACM Transactions on Programming Languages and Systems, 11(3):345-387, July
1989.

[8] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters,
29(10):155-163, Oct. 1988.

[9] J. R. Larus. Efficient program tracing. IEEE Computer, 26(5):52-61, May 1993.

10



[10]

[11]

[12]

[13]

[14]

K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software
development environment. Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments
(ACM SIGPLAN Notices), 19(5):177-184, May 1984.

S. P. Reiss. A framework for abstract 3d visualization. In Proceedings of the 1993
IEEE Symposium on Visual Languages, pages 108—115, Aug. 24-27 1993.

T. Reps. The wisconsin program-integration system reference manual: Release
2.0. Technical Report Unpublished report, University of Wisconsin, Madison, WI,
July 1993.

M. Weiser. Programmers use slices when debugging. Communications of the ACM,
25(7), July 1982.

M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352-357, July 1984.

11



