
*Presently with the Computer Science Institute, University of Constance, Constance, Germany
keim@informatik.uni-konstanz.de; (ming_hao, mhsu, dayal)@hpl.hp.com; julian@ladisch.de

Pixel Bar Charts: A New Technique for Visualizing Large
Multi-Attribute Data Sets without Aggregation

Daniel Keim*, Ming C. Hao, Julian Ladisch*, Meichun Hsu, Umeshwar Dayal

Hewlett Packard Research Laboratories, Palo Alto, CA

Abstract

Simple presentation graphics are intuitive and easy-to-use,
but show only highly aggregated data and present only a
very limited number of data values (as in the case of bar
charts). In addition, these graphics may have a high degree
of overlap which may occlude a significant portion of the
data values (as in the case of the x-y plots). In this paper, we
therefore propose a generalization of traditional bar charts
and x-y-plots which allows the visualization of large
amounts of data. The basic idea is to use the pixels within
the bars to present the detailed information of the data
records. Our so-called pixel bar charts retain the
intuitiveness of traditional bar charts while allowing very
large data sets to be visualized in an effective way. We show
that, for an effective pixel placement, we have to solve
complex optimization problems, and present an algorithm
which efficiently solves the problem. Our application using
real-world e-commerce data shows the wide applicability
and usefulness of our new idea.

1. Introduction
Because of the fast technological progress, the amount of
data which is stored in computers increases rapidly.
Researchers from the University of Berkeley estimate that
every year about 1 Exabyte of data is generated, with
99.997% available only in digital form. Today, computers
typically record even simple transactions of everyday life,
such as paying by credit card, using the telephone and
shopping in e-commerce stores. This data is collected
because business people believe that it is a potential source
of valuable information and could provide a competitive
advantage.
Finding the valuable information hidden in the data,
however, is a difficult task. Visual data exploration
techniques are indispensable to solving this problem. In
most data mining systems, however, only simple graphics,
such as bar charts, pie charts, x-y plots, etc., are used to
support the data mining process. While simple graphics are
intuitive and easy-to-use, they either:

- show highly aggregated data and actually present only a
very limited number of data values (as in the case of bar
charts or pie charts), or

- have a high degree of overlap which may occlude a
significant portion of the data values (as in the case of x-
y plots).

The usefulness of bar charts is especially limited if the user
is interested in relationships between different attributes
such as product type, price, number of orders, and
quantities. The reason for this limitation is that multiple bar

charts for different attributes do not support the discovery
and correlation of interesting subsets, which is one of the
main tasks in mining customer transaction data.
For an analysis of large volumes of e-commerce transactions
[Eic 99], the visualization of highly aggregated data is not
sufficient. What is needed is to present an overview of the
data but at the same time show the detailed information for
each data item.
In this paper, we describe a new visualization technique
called pixel bar chart. The basic idea of pixel bar charts is to
use the intuitive and widely used presentation paradigm of
bar charts, but also use the available screen space to present
more detailed information. By coloring the pixels within the
different bars according to the values of the data records,
very large amounts of data can be presented to the user. To
make the display more meaningful, two parameters of the
data records are used to impose an ordering on the pixels in
the x- and y-directions. Pixel bar charts can be seen as a
generalization of bar charts. They combine the general idea
of x-y plots and bar charts to allow an overlap-free, non-
aggregated display of multi-attribute data.
Since pixel bar charts use each pixel to present one data
value, they belong to pixel-oriented techniques. Other pixel-
oriented techniques include the spiral technique [KK 94],
the recursive pattern technique [KKA 95], and the circle
segments technique [AKK 96]. Other classes of information
visualization techniques include geometric projection
techniques (e.g. [Ins 85, ID 90]), icon-based techniques
(e.g., [PG 88, Bed 90]), hierarchical techniques (e.g.,
[LWW 90, RCM 91, Shn 92]), graph-based technique (e.g.,
[EW 93, BEW 95]), which in general are combined with
some interaction techniques (e.g., [BMMS 91, AWS 92,
ADLP 95]) and sometimes also some distortion techniques
[SB 94, LRP 95].

2. From Bar Charts to Pixel Bar Charts
A common method for visualizing large volumes of data is
to use bar charts. Bar charts are widely used and are very
intuitive and easy to understand. Figure 1 illustrates the use
of a regular bar chart to visualize customer distribution in an
e-commerce sales transaction. The height of the bars
represents the number of customers for 12 different product
categories.
Bar charts, however, require a high degree of data
aggregation and actually show only a rather small number of
data values (only 12 values are shown in Figure 1).
Therefore, for data exploration of large multidimensional
data, they are of limited value and are not able to show
important information such as:

- data distributions of multiple attributes
- local patterns, correlations, and trends
- detailed information, e.g., each customer’s profile

2.1 Basic Idea of Pixel Bar Charts
Pixel bar charts are derived from regular bar charts (see
Figure 1a). The basic idea of a pixel bar chart is to present
the data values directly instead of aggregating them into a
few data values. The approach is to represent each data item
(e.g. a customer) by a single pixel in the bar chart. The
detailed information of one attribute of each data item is
encoded into the pixel color and can be accessed and
displayed as needed.
One important question is: how are the pixels arranged
within each bar? Our idea is to use one or two attributes to
separate the data into bars (dividing attributes) and then use
two additional attributes to impose an ordering within the
bars (see Figure 2 for the general idea). The pixel bar chart
can therefore be seen as a combination of the traditional bar
charts and the x-y diagrams.

Now, we have a visualization in which one pixel
corresponds to one customer. If the partitioning attribute is
redundantly mapped to the colors of the pixels, we obtain
the regular bar chart shown in Figure 1a (Figure 1b shows
the equal-height-bar-chart" which we will explain in the
next section). Pixel bar charts, however, can be used to
present large amounts of detailed information. The one-to-
one correspondence between customers and pixels allows us
to use the color of the pixels to represent additional
attributes of the customer for example, sales amount, #of
visits, or sales quantity.
In Figure 3a, a pixel bar chart is used to visualize thousands
of e-commerce sales transactions. Each pixel in the
visualization represents one customer. The number of
customers can be as large as the screen size (about 1.3
million). The pixel bar chart shown in Figure 3a uses
product type as the dividing attribute and number of visits
and dollar amount as the x and y ordering attributes. The
color represents the dollar amount spent by the
corresponding customer. High dollar amounts correspond to
bright colors, low dollar amounts to dark colors.

2.2 Space-Filling Pixel Bar Charts
One problem of traditional bar charts is that a large portion
of the screen space can not be used due to the differing

heights of the bars. With very large data sets, we would like
to use more of the available screen space to visualize the
data. One idea that increases the number of displayable data
values is to use equal-height instead of equal-width bar
charts. In Figure 1b, the regular bar chart of Figure 1a is
shown as an equal-height bar chart. The area (width) of the
bars corresponds to the attribute shown, namely the number
of customers.
If we now apply our pixel bar chart idea to the resulting bar
charts, we obtain space-filling pixel bar charts which use
virtually all pixels of the screen to display customer data
items. In Figure 3b, we show an example of a space-filling
pixel bar chart which uses the same dividing, ordering, and
coloring attributes as the pixel bar chart in Figure 3a. In this
way, each customer is represented by one pixel.
Note that pixel bar charts generalize the idea of regular bar
charts. If the partitioning and coloring attributes are
identical, both types of pixel bar charts become scaled
versions of their regular bar chart counterparts. The pixel bar
chart can therefore be seen as a generalization of the regular
bar charts but they contain significantly more information
and allow a detailed analysis of large original data sets.

2.3 Multi-Pixel Bar Charts
In many cases, the data to be analyzed consists of multiple
attributes. With pixel bar charts we can visualize attribute
values using multi-pixel bar charts which use different color
mappings but the same partitioning and ordering attributes.
This means that the arrangement of data items within the
corresponding bars of multi-pixel bar charts is the same, i.e.,
the colored pixels corresponding to the different attribute
values of the same data item have a unique position in the
bars. In Figure 4, we show an example of three pixel bar
charts with product type as the dividing attribute and
number of visits and dollar amount as the x and y ordering
attributes. The attributes which are mapped to color are
dollar amount spent, number of visits, and sales quantity.
Note that the pixels in corresponding bars in multiple bar
charts are related by their position, i.e., the same data record
has the same relative position within each of the
corresponding bars. It is therefore possible to relate the
different bar charts and detect correlations.

3. Formal Definition of Pixel Bar Charts
In this section we formally describe pixel bar charts and the
problems that need to be solved in order to implement an
effective pixel placement algorithm.

3.1 Definition of Pixel Bar Charts
For a general definition of pixel bar charts, we need to
specify the:

- dividing attributes (for between-bar partitioning)
- ordering attributes (for within-bar ordering)
- coloring attributes (for pixel coloring).

In traditional bar charts there is one dividing attribute which
partitions the data into disjoint groups corresponding to the
bars. In space-filling bar charts, the bars correspond to a

dividing attribute

x - ordering attribute

y - ordering attribute

Figure 2: A Pixel Bar Chart

x - ordering attribute

y - ordering attribute

a) Equal-Width Bar Chart

b) Equal-Height Pixel Bar Chart a) Equal-Width Pixel Bar Chart

Figure 3: Pixel Bar Charts

Product Type
 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 10 11 12

c) Color=quantity

Product Type

$
A
m
o
u
n
t

Product Type

b) Color=number of visits

1 2 3 4 5 6 7 10 11 12

1 2 3 4 5 6 7 10 11 12

a) Color=dollar amount

Product Type

Figure 4: Multi-Pixel Bar Charts

low

high

Figure 1: Regular Bar Charts

b) Equal-Height Bar Chart

Product Type
 1 2 3 4 5 6 7 8 9 10 11 12

 partitioning of the screen according to the horizontal axis
(x).

We may generalize the definition of space-filling pixel bar
charts by allowing more than one dividing attribute, i.e. one
for the horizontal axis (Dx) and one for the vertical axis (Dy).

Next, we need to specify an attribute for ordering the pixel
in each pixel bar. Again, we can do the ordering according
to the x- and the y-axis, i.e., along the horizontal (Ox) and
vertical (Oy) axes inside each bar.

Finally, we need to specify an attribute for coloring the
pixels. Note that in multi-bar charts we may assign different
attributes to colors in different bar charts, which enables the
user to relate the different coloring attributes and detect
partial relationships among them. Note that the dividing and
ordering attributes have to stay the same in order to do that.

Let DB = {d1, …, dn} be the data base of n data records, each

consisting of k attribute values { }i
k

i
i aad ,,1 K= , l

i
l Aa ∈ ,

where Al is the attribute name of value al. Formally, a pixel
bar chart is defined by a five tuple:

<Dx, Dy, Ox, Oy, C >

where Dx, Dy, Ox, Oy, C ∈ {Al, …, Ak ,} ⊥∪ 1 and Dx/Dy are
the dividing attributes in x-/y-direction, Ox/Oy are the
ordering attributes in x-/y-direction, and C is the coloring
attribute.
The multi-pixel bar charts of sales transactions shown in
Figure 4, for example, are defined by the five-tuple

<product type, ⊥ , no. of visits, dollar amount, C>

where C corresponds to different attributes, i.e., number of
visits, dollar amount, quantity.

3.2 Formalization of the Problem
The basic idea of pixel bar charts is to produce dense pixel
visualizations which are capable of showing large amounts
of data on a value by value basis without aggregation. The
specific requirements for pixel displays are:

- dense display, i.e., bars are filled completely
- non-overlapping, i.e. no overlap of pixels in the

display
- locality, i.e., similar data records are placed close to

each other
- ordering, i.e., ordering of data records according to Ox,

Oy .
To formalize these requirements we first have to introduce
the screen positioning function

IntIntAAf k ×→××K1: ,

which determines the x-/y-screen positions of each data
record di, i.e.,),()(yxdf i = denotes the position of data
record di on the screen, and xdf i).(denotes the x-
coordinate and ydf i).(the y-coordinate. Without loss of
generality, we assume that Ox = A1 and Oy = A2. The
requirements can then be formalized as:
1. Dense Display Constraint
The dense display constraint requires that all pixel rows
(columns) except the last one are completely filled with
pixels. For equal-width bar charts, the width w of the bars is
fixed. For a partition p consisting of |p | pixels, we have to
ensure that

 ),()(:/..1,..1 jidfwithdwpjwi íí =∃=∀=∀

For equal-height bar charts of height h the corresponding
constraint is

 ),()(:..1,/..1 jidfwithdhjhpi íí =∃=∀=∀

2. No -Overlap Constraint
The no-overlap constraint means that a unique position is
assigned to each data record. Formally, we have to ensure
that two different data records are placed at different
positions, i.e.,

)()(:, jiji dfdfjiDBdd ≠⇒≠∈∀ .

1 The element ⊥ is used if no attribute is specified.

1 2 3

Product Type

Figure 7: Ordering attributes on x- and y-axis
(e.g., Ox = Dollar Amount, Oy=Quantity)

Product Type

1 2 3

Figure 6: Dividing attributes on x- and y-axis
(e.g., Dx = Product Type, Dy= Region)

1 2 3

Product Type

Figure 5: Dividing attribute on x-axis
(e.g., Dx = Product Type)

3. Locality Constraint
In dense pixel displays the locality of pixels plays an
important role. Locality means that similar data records are
placed close to each other. The partitioning in pixel bar
charts ensures a basic similarity of the data records within a
single bar. In positioning the pixels within the bars,
however, the locality property also has to be ensured. For
the formalization, we need a function sim(di, dj) → [0…1]
which determines the similarity of two data records and the
inverse function of the pixel placement function f -1, which
determines the data record for a given (x,y)-position on the
screen. The locality constraint can then be expressed as

min)),1(),,((

))1,(),,((
1

1 1
11

1

1

1
11

→+

++

∑ ∑
∑ ∑

−

= =
−−

=

−

=
−−

w

x

h

y

w

x

h

y

yxfyxfsim

yxfyxfsim

Note that in general it is not possible to place all similar
pixels close to each other while respecting the dense display
and no-overlap constraints. This is the reason why the
locality constraint is formalized as a global optimization
problem.

4. Ordering Constraint
The last constraint which is closely related to the locality
constraint is the ordering constraint. The idea is to enforce a
one-dimensional ordering in x- and y-direction according to
the specified attributes Ox = A1 and Oy =A2. Formally, we
have to ensure

xdfxdfaanji ji
ji).().(:..1, 11 >⇒>∈∀

ydfydfaanji ji
ji).().(:..1, 22 >⇒>∈∀

Note that ordering the data records according to the attribute
and placing them in a row-by-row or column-by-column
fashion may easily fulfill each one of the two constraints.
Ensuring both constraints at the same time may be
impossible in the general case. We can formalize the
constraint as an optimization problem:

min2)).,1().,(

).,1().,((

2)).1,().,(

).1,().,((

2
1

2
1

1

1 1 2
1

2
1

1
1

1
1

1

1

1 1
1

1
1

→+−

++−

++−

++−

−−

−

= =
−−

−−

=

−

=
−−

∑ ∑

∑ ∑

ayxfayxf

ayxfayxf

ayxfayxf

ayxfayxf

w

x

h

y

w

x

h

y

Note that there may be a trade-off between the x- and the y-
ordering constraint. In addition, the optima for the locality
and the ordering constraints are in general not identical. This
is due to the fact that the similarity function may induce a
different optimization criterion than the x-/y-ordering
constraint. For solving the pixel placement problem, we
therefore have to solve an optimization problem with
multiple competing optimization goals. The problem is a
typical complex optimization problem which is likely to be

NP-complete and can therefore only be solved efficiently by
a heuristic algorithm.

3.3 The Pixel Placement Algorithm
For the generation of pixel bar charts, we have to: (1)
partition the data set according to Dx and Dy; (2) determine
the pixel color according to C2; and (3) place the pixels of
each partition in the corresponding regions according to Ox,
Oy.
The partitioning according to Dx and Dy and the color
mapping are simple and straightforward to implement, and
therefore do not need to be described in detail here. The
pixel placement within one bar, however, is a difficult
optimization problem because it requires a two -dimensional
sort. In the following, we describe our heuristic pixel
placement algorithm which provides an efficient solution to
the problem. The basic idea of the heuristic pixel placement
algorithm is to partition the data set into subsets according to
Ox and Oy, and use those subsets to place the bottom- and
left-most pixels. This provides a good starting point which is
the basis for the iterative placement of the remaining pixels.
The algorithm works as follows:
1. For an efficient pixel placement within a single bar, we

first determine the one-dimensional histograms for Ox
and Oy, which are used to determine the α-quantiles of
Ox and Oy. If the bar under consideration has extension w
x h pixels, we determine the www)1(,,1 −K -
quantiles for the partitioning of Ox, and the

hhh)1(,,1 −K - quantiles for the partitioning of Oy.
The quantiles are then used to determine the partitions
X1, …,Xw of Ox and Y1, …,Yh of Oy. The partitions X1,
…,Xw are sorted according to Oy and the partitions Y1,
…,Yh according to Ox.

2. We can start now to place the pixel in the lower-left
corner, i.e., position (1,1), of the pixel bar:

{ } { }








==
∈∈

−
1

1
2

1

1 .min.min|)1,1(adaddf sYsdsXsds

Next we place all pixels in the lower and left pixel rows
of the bar. This is done as

{ } wiaddif s
iXsds ..1.min|)1,(2

1 =∀








=
∈

−

{ } hjaddjf s
jYsds ..1.min|),1(1

1 =∀








=
∈

−

3. The final step is the iterative placement of all remaining
pixels. This is done starting from the lower left to the
upper right. If pixels at positions (i-1, j) and (i, j-1) are
already placed, the pixel at position (i, j) is determined
as

2 We use a color map, which maps high data values to bright

colors and low data values to dark colors.

{ }

∅≠∩








+=
∩∈

−

jYiXif

adaddjif ss
jYiXsds 21

1 ..min|),(

Because we have placed the data in a data structures as
introduced in step 1, the pixel to be placed at each
position can be determined in O(1) time if

∅≠∩ jYiX . If ∅=∩ jYiX , we have to iteratively
extend the partitions Xi and Yj and consider

jYXXd iis ∩∪∈ +)(1 .

If this set is still empty, we have to consider
)()(11 ++ ∪∩∪∈ jjiis YYXXd

and so on, until a data point to be placed is found. Note
that this procedure is quite efficient due to the data
structure used.

4. The Pixel Bar Chart System
To analyze large volumes of transaction data with multiple
attributes, pixel bar charts have been integrated with a data
mining visualization system [HDHDB 99]. The system uses
a web browser with a Java activator to allow real-time
interactive visual data mining on the web.

4.1 System Architecture and Components
The pixel bar chart system connects to a data warehouse
server and uses the database to query for detailed data as
needed. The data to build the pixel array is kept in memory
to support real-time manipulation and correlation. As
illustrated in Figure 8, the pixel bar chart system architecture
contains three basic components:
1. Pixel array ordering and grouping

A pixel array is constructed from the pixel bar chart
five tuple specification. One pixel represents one data
record, i.e., a customer. The partitioning algorithm
assigns each data record to the corresponding bar
according to the partitioning attribute(s). The pixel
placement implements a simplified version of the
heuristic algorithm presented in subsection 3.4.

2. Multiple linked pixel bar charts
In multi-bar charts, the position of the pixels belonging
to the same data record remains the same across multi-
pixel bar charts for correlation. The colors of the pixel
correspond to the value of the selected attributes.

3. Interactive data exploration
This system provides simultaneous browsing and
navigation of multiple attributes.

4.2 Interactive Data Analysis
Interactivity is an important aspect of the pixel bar chart
system. To make large volumes of multi-attribute datasets
easy to explore and interpret, the pixel bar chart system
provides the following interaction capabilities: (1) visual
querying; (2) layered drill-down; (3) multiple linked
visualizations; and (4) zoom.

The attributes used for partitioning (Dx, Dy), ordering (Ox,
Oy), and coloring (C) can be selected and changed at
execution time. For identifying correlations, a subset of data
items in a pixel bar chart can be selected to get the pixels
corresponding to related attribute values highlighted within
the same display. A drill-down technique allows the viewing
of all related information after selecting a single data item.
When multi-bar charts are presented, pixels reside at the
same location across all the charts with different attributes.
In addition to discovering correlations and patterns, the user
may select a single data item to relate all its attribute values.

5. Application and Evaluation
The pixel bar chart technique has been prototyped in several
e-commerce applications at Hewlett Packard Laboratories. It
has been used to visually mine large volumes of sales
transactions and customer shopping activities at HP
shopping web sites.

5.1 Customer Analysis
The pixel bar chart system has been applied to customer
buying patterns and behaviors. In Figure 9, the pixels of the
bar chart represent customers making transactions on the
web. In the resulting pixel bar chart, customers with similar
purchasing behaviors (i.e., product type, geographical
location, dollar amount, number of visits, and quantity) are
placed close to each other. A store manager can use the
visualization to rapidly discover customer buying patterns
and use those patterns to target marketing campaigns.
Figure 9 shows the four attributes of 106,199 customer
buying records. The four pixel bar charts of Figure 9 are
constructed as follows: (1) Product types is the dividing
attribute Dx; (2) Dollar amount is the x-ordering attribute
Ox, Region is y-ordering attribute Oy for 10 United States
region; and (3) Region, dollar amount, number of visits
and quantity are the four coloring attribute C. The user
may observe the following facts:
a) Region attribute
There are 10 different colors to represent 10 different
regions (labeled 1-10 in Figure 9a) in the United States. The
colored wave indicates the number of customers in each
region. Region 9 (largest area) is found to have the largest
number of customers. Region 7 (smallest area) has the least
number of customers across all product types.
b) Dollar amount attribute
Product type 5 has the most top dollar amount sales (blue &
brown). Types 6 and 7 have a very small variance across all
regions (solid blue/brown).
c) Number of visits attribute
The blue color distribution in product type 4 indicates that
customers of this product type come back more often than
customers of other product types.
d) Quantity attribute
The green color of product type 6 indicates that in this
category all customers bought the same number of items
across all regions. It is also obvious that product type 4
customers have the largest quantities.

Figure 8: System Architecture & Components

Figure 9: Multi-Pixel Bar Chart for Mining 106,199 Customer Buying Transactions
(Dx= Product Type, Dy= ⊥ , Ox=dollar amount, Oy=region, C)

b) Color: dollar amount c) Color: no. of visits d) Color: quantity a) Color: region

 1 2 3 4 5 6 7 10 12 1 2 3 4 5 6 10 12 1 2 3 4 5 6 7 10 12 1 2 3 4 5 6 10 12

low

high

1

2

3

4

5

7
8

9

10

Figure 10: Multi-Pixel Bar Chart for Mining 405,000 Sales Transaction Records
(Dx= Product Type, Dy= ⊥ , Ox=no. of visits, Oy= dollar amount, C)

b) Color: no. of visits a) Color: dollar amount

 1 2 3 4 5 6 7 10 12 1 2 3 4 5 6 10 12 1 2 3 4 5 6 10 12

customer A
$345,000

low

high

customer A
25 visits

customer A
500 items

 c) Color: quantity

Pixel Bar Charts

A) Pixel Array B) Multi-pixel Bar Charts C) Interaction

 sorting linking exploring
 grouping coloring analyzing

Client

Server

By relating the multiple pixel bar charts of Figure 9, the user
may observe that the top dollar amount customers come
back more frequently and purchase larger quantities.

5.2 Sales Transaction Analys is
One of the common questions electronic store managers ask
is how to use the customer purchase history for improving
product sales and promotion. Product managers want to
understand which products have the top sales and who are
their top dollar amount customers.
While regular bar charts provide aggregated information on
the number of customers by product type (Figure 1), the
corresponding pixel bar charts include important additional
information such as the dollar amount distribution of the
sales.
Figure 10 illustrates an example of a multi-pixel bar chart of
405,000 multi-attribute web sales transactions. The dividing
attribute (Dx) is again product type; the ordering attributes
are number of visits and dollar amount (Ox and Oy). The
colors (C) in the different bar charts represent the attributes
dollar amount, number of visits, and quantity. The following
information can be obtained:

a) Product type 7 and 10 have the top dollar amount
customers (dark colors of bar 7, 10 in Figure 10a).

b) The dollar amount spent and #of visits are clearly
correlated, i.e. for product type 4 (linear increase of
dark colors at the top of bar 4 in Figure 10b).

c) Product types 4 and 11 have the highest quantities sold
(dark colors of bar 4 and 11 in Figure 10c).

d) By clicking on a specific pixel (A), we may find out
that customer A visited 25 times, bought 500 items,
and spent $345,000 on product type 5.

It is further interesting that there are clusters of darker colors
in bar 4 of Figure 10c, which means that there are certain
ranges of dollar amount sales for which the quantity tends to
be higher than in other segments. This observation is
unexpected and may be used to identify the clusters of sales
transactions and make use of the information to further
increase the sales. Note that the information mentioned
above cannot be detected by regular bar charts.

6. Conclusion
In this paper, we presented pixel bar charts, a new method
for visualiz ing large amounts of multi-attribute data. The
approach is a generalization of traditional bar charts and x-y
diagrams, which avoids the problem of losing information
by aggregation or overplotting. Instead, pixel bar charts map
each data point to one pixel of the display. For generating
the pixel bar chart visualizations, we have to solve a
complex optimization problem. The pixel placement
algorithm is an efficient and effective solution to the
problem. We apply the pixel bar chart idea to real data sets
from an e-commerce application and show that pixel bar
charts provide significantly more information than regular
bar charts.

Acknowledgements
Thanks to Sharon Beach of HP Laboratories for her
encouragement and suggestions, Shu F. W. and Brain O. from
HP Shopping for providing suggestions and data. and Graham
P. of Agilent Laboratories for his review and comments.

References
[ADLP 95] Anupam V., Dar S., Leibfried T., Petajan E.: ‘DataSpace:
3-D Visualization of Large Databases’, Proc. Int. Symp. on Information
Visualization, Atlanta, GA, 1995, pp. 82-88.
[AKK 96] Ankers M., Keim D. A., Kriegel H.P.: ‘Circle Segments: A
Technique for Visually Exploring Large Multidimensional Data Sets’,
VISUALIZATION ‘96, HOT TOPIC SESSION, San Francisco, CA, 1996.
[AWS 92] Ahlberg C., Williamson C., Shneiderman B.: ‘Dynamic
Queries for Information Exploration: An Implementation and Eval-
uation’, Proc. ACM CHI Int. Conf. on Human Factors in Computing,
Monterey, CA, 1992, pp. 619-626.
[Bed 90] Beddow J.: ‘Shape Coding of Multidimensional Data on a
Mircocomputer Display’, Proc. Visualization ‘90, San Francisco, CA,
1990, pp. 238-246.
[BEW 95] Becker R. A., Eick S. G., Wills G. J.: ‘Visualizing Network
Data’, IEEE Transactions on Visualizations and Graphics, Vol. 1,
No. 1, 1995, pp. 16-28.
[BMMS 91] Buja A., McDonald J. A., Michalak J., Stuetzle W.:
‘Interactive Data Visualization Using Focusing and Linking’, Proc.
Visualization ‘91, San Diego, CA, 1991, pp. 156-163.
[Eic 99] Stephen G. Eick: Visualizing Multi-dimensional Data with
ADVISOR/2000 , Visualinsights, 1999.
[EW 93] Eick S., Wills G. J.: ‘Navigating Large Networks with Hier-
archies’, Proc. Visualization ‘93, San Jose, CA, 1993, pp. 204-210.
[HDHDB 99] Hao M, Dayal Umesh.U, Hsu M., D'eletto B., Becker J.‘A
Java-based Visual Mining Infrastructure and Applications‘, IEEE
InfoVis99, San Francisco, CA. 1999.
[ID 90] Inselberg A., Dimsdale B.: ‘Parallel Coordinates: A Tool for
Visualizing Multi-Dimensional Geometry’, Proc. Visualization ‘90, San
Francisco, CA, 1990, pp. 361-370.
[Ins 85] Inselberg A.: ‘The Plane with Parallel Coordinates, Special
Issue on Computational Geometry’, The Visual Computer, Vol. 1,
1985, pp. 69-97.
[KK 94] Keim D. A., Kriegel H. P.:‘VisDB: Database Exploration
using Multidimensional Visualization’, Computer Graphics & Ap-
plications, Sept. 1994, pp. 40-49.
[KKA 95] Keim D. A., Kriegel H. P., Ankerst M.: ‘Recursive Pattern:
A Technique for Visualizing Very Large Amounts of Data’, Proc. Vi-
sualization ‘95, Atlanta, GA, 1995, pp. 279-286.
[LWW 90] LeBlanc J., Ward M. O., Wittels N.: ‘Exploring N-Dimen-
sional Databases’, Proc. Visualization ‘90, San Francisco, CA, 1990,
pp. 230-237.
[LRP 95] Lamping J., Rao R., Pirolli P.: ‘A Focus + Context
Technique Based on Hyperbolic Geometry for Visualizing Large
Hierarchies’, Proc. ACM CHI Conf. on Human Factors in Computing
(CHI95), 1995, pp. 401-408.
[PG 88] Pickett R. M., Grinstein G. G.: ‘Iconographic Displays for
Visualizing Multidimensional Data’, Proc. IEEE Conf. on Systems,
Man and Cybernetics, IEEE Press, Piscataway, NJ, 1988, pp. 514-519.
[RCM 91] Robertson G., Card S., Mackinlay J.: ‘Cone Trees: Animated
3D Visualizations of Hierarchical Information’, Proc. ACM CHI Int.
Conf. on Human Factors in Computing, 1991, pp. 189-194.
[SB 94] Sarkar M., Brown M.: ‘Graphical Fisheye Views’, Commu-
nications of the ACM, Vol. 37, No. 12, 1994, pp. 73-84.
[Shn 92] Shneiderman B.: ‘Tree Visualization with Treemaps: A 2D
Space-Filling Approach’, ACM Transactions on Graphics, Vol. 11,
No. 1, 1992, pp. 92-99.

