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Abstract 

Simple presentation graphics are intuitive and easy-to-use, 
but show only highly aggregated data and present only a 
very limited number of data values (as in the case of bar 
charts). In addition, these graphics may have a high degree 
of overlap which may occlude a significant portion of the 
data values (as in the case of the x-y plots). In this paper, we 
therefore propose a generalization of traditional bar charts 
and x-y-plots which allows the visualization of large 
amounts of data. The basic idea is to use the pixels within 
the bars to present the detailed information of the data 
records. Our so-called pixel bar charts retain the 
intuitiveness of traditional bar charts while allowing very 
large data sets to be visualized in an effective way. We show 
that, for an effective pixel placement, we have to solve 
complex optimization problems, and present an algorithm 
which efficiently solves the problem. Our application using 
real-world e-commerce data shows the wide applicability 
and usefulness of our new idea. 

1.  Introduction 
Because of the fast technological progress, the amount of 
data which is stored in computers increases rapidly. 
Researchers from the University of Berkeley estimate that 
every year about 1 Exabyte of data is generated, with 
99.997% available only in digital form. Today, computers 
typically record even simple transactions of everyday life, 
such as paying by credit card, using the telephone and 
shopping in e-commerce stores. This data is collected 
because business people believe that it is a potential source 
of valuable information and could provide a competitive 
advantage.  
Finding the valuable information hidden in the data, 
however, is a difficult task. Visual data exploration 
techniques are indispensable to solving this problem. In 
most data mining systems, however, only simple graphics, 
such as bar charts, pie charts, x-y plots, etc., are used to 
support the data mining process. While simple graphics are 
intuitive and easy-to-use, they either:  

- show highly aggregated data and actually present only a 
very limited number of data values (as in the case of bar 
charts or pie charts), or  

- have a high degree of overlap which may occlude a 
significant portion of the data values (as in the case of x-
y plots). 

The usefulness of bar charts is especially limited if the user 
is interested in relationships between different attributes 
such as product type, price, number of orders, and 
quantities. The reason for this limitation is that multiple bar 

charts for different attributes do not support the discovery 
and correlation of interesting subsets, which is one of the 
main tasks in mining customer transaction data. 
For an analysis of large volumes of e-commerce transactions 
[Eic 99], the visualization of highly aggregated data is not 
sufficient. What is needed is to present an overview of the 
data but at the same time show the detailed information for 
each data item. 
In this paper, we describe a new visualization technique 
called pixel bar chart. The basic idea of pixel bar charts is to 
use the intuitive and widely used presentation paradigm of 
bar charts, but also use the available screen space to present 
more detailed information. By coloring the pixels within the 
different bars according to the values of the data records, 
very large amounts of data can be presented to the user. To 
make the display more meaningful, two parameters of the 
data records are used to impose an ordering on the pixels in 
the x- and y-directions. Pixel bar charts can be seen as a 
generalization of bar charts. They combine the general idea 
of x-y plots and bar charts to allow an overlap-free, non-
aggregated display of multi-attribute data.  
Since pixel bar charts use each pixel to present one data 
value, they belong to pixel-oriented techniques. Other pixel-
oriented techniques include the spiral technique [KK 94], 
the recursive pattern technique [KKA 95], and the circle 
segments technique [AKK 96].  Other classes of information 
visualization techniques include geometric projection 
techniques (e.g. [Ins 85, ID 90]), icon-based techniques 
(e.g., [PG 88, Bed 90]), hierarchical techniques (e.g.,     
[LWW 90, RCM 91, Shn 92]), graph-based technique (e.g., 
[EW 93, BEW 95]), which in general are combined with 
some interaction techniques  (e.g., [BMMS 91, AWS 92, 
ADLP 95]) and sometimes also some distortion techniques 
[SB 94, LRP 95]. 

2. From Bar Charts to Pixel Bar Charts 
A common method for visualizing large volumes of data is 
to use bar charts. Bar charts are widely used and are very 
intuitive and easy to understand. Figure 1 illustrates the use 
of a regular bar chart to visualize customer distribution in an 
e-commerce sales transaction. The height of the bars 
represents the number of customers for 12 different product 
categories.  
Bar charts, however, require a high degree of data 
aggregation and actually show only a rather small number of 
data values (only 12 values are shown in Figure 1). 
Therefore, for data exploration of large multidimensional 
data, they are of limited value and are not able to show 
important information such as:  



 
 

- data distributions of multiple attributes 
- local patterns, correlations, and trends 
- detailed information, e.g., each customer’s profile  

2.1 Basic Idea of Pixel Bar Charts 
Pixel bar charts are derived from regular bar charts (see 
Figure 1a). The basic idea of a pixel bar chart is to present 
the data values directly instead of aggregating them into a 
few data values. The approach is to represent each data item 
(e.g. a customer) by a single pixel in the bar chart. The 
detailed information of one attribute of each data item is 
encoded into the pixel color and can be accessed and 
displayed as needed.  
One important question is: how are the pixels arranged 
within each bar? Our idea is to use one or two attributes to 
separate the data into bars (dividing attributes) and then use 
two additional attributes to impose an ordering within the 
bars (see Figure 2 for the general idea). The pixel bar chart 
can therefore be seen as a combination of the traditional bar 
charts and the x-y diagrams. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Now, we have a visualization in which one pixel 
corresponds to one customer. If the partitioning attribute is 
redundantly mapped to the colors of the pixels, we obtain 
the regular bar chart shown in Figure 1a (Figure 1b shows 
the equal-height-bar-chart" which we will explain in the 
next section). Pixel bar charts, however, can be used to 
present large amounts of detailed information. The one-to-
one correspondence between customers and pixels allows us 
to use the color of the pixels to represent additional 
attributes of the customer for example, sales amount, #of 
visits, or sales quantity.  
In Figure 3a, a pixel bar chart is used to visualize thousands 
of e-commerce sales transactions. Each pixel in the 
visualization represents one customer. The number of 
customers can be as large as the screen size (about 1.3 
million). The pixel bar chart shown in Figure 3a uses 
product type as the dividing attribute and number of visits 
and dollar amount as the x and y ordering attributes. The 
color represents the dollar amount spent by the 
corresponding customer. High dollar amounts correspond to 
bright colors, low dollar amounts to dark colors. 

2.2 Space-Filling Pixel Bar Charts 
One problem of traditional bar charts is that a large portion 
of the screen space can not be used due to the differing 

heights of the bars. With very large data sets, we would like 
to use more of the available screen space to visualize the 
data. One idea that increases the number of displayable data 
values is to use equal-height instead of equal-width bar 
charts. In Figure 1b, the regular bar chart of Figure 1a is 
shown as an equal-height bar chart. The area (width) of the 
bars corresponds to the attribute shown, namely the number 
of customers.  
If we now apply our pixel bar chart idea to the resulting bar 
charts, we obtain space-filling pixel bar charts which use 
virtually all pixels of the screen to display customer data 
items. In Figure 3b, we show an example of a space-filling 
pixel bar chart which uses the same dividing, ordering, and 
coloring attributes as the pixel bar chart in Figure 3a. In this 
way, each customer is represented by one pixel.   
Note that pixel bar charts generalize the idea of regular bar 
charts. If the partitioning and coloring attributes are 
identical, both types of pixel bar charts become scaled 
versions of their regular bar chart counterparts. The pixel bar 
chart can therefore be seen as a generalization of the regular 
bar charts but they contain significantly more information 
and allow a detailed analysis of large original data sets.  

2.3 Multi-Pixel Bar Charts 
In many cases, the data to be analyzed consists of multiple 
attributes. With pixel bar charts we can visualize attribute 
values using multi-pixel bar charts which use different color 
mappings but the same partitioning and ordering attributes. 
This means that the arrangement of data items within the 
corresponding bars of multi-pixel bar charts is the same, i.e., 
the colored pixels corresponding to the different attribute 
values of the same data item have a unique position in the 
bars. In Figure 4, we show an example of three pixel bar 
charts with product type as the dividing attribute and 
number of visits and dollar amount as the x and y ordering 
attributes. The attributes which are mapped to color are 
dollar amount spent, number of visits, and sales quantity.   
Note that the pixels in corresponding bars in multiple bar 
charts are related by their position, i.e., the same data record 
has the same relative position within each of the 
corresponding bars. It is therefore possible to relate the 
different bar charts and detect correlations. 

3. Formal Definition of Pixel Bar Charts 
In this section we formally describe pixel bar charts and the 
problems that need to be solved in order to implement an 
effective pixel placement algorithm. 

3.1 Definition of Pixel Bar Charts 
For a general definition of pixel bar charts, we need to 
specify the:  

- dividing attributes (for between-bar partitioning) 
-     ordering attributes (for within-bar ordering) 
-     coloring attributes (for pixel coloring). 

 
In traditional bar charts there is one dividing attribute which 
partitions the data into disjoint groups corresponding to the 
bars. In space-filling bar charts, the bars correspond to a 
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Figure 2: A Pixel Bar Chart 
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Figure 3: Pixel Bar Charts 
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 partitioning of the screen according to the horizontal axis 
(x).  

We may generalize the definition of space-filling pixel bar 
charts by allowing more than one dividing attribute, i.e. one 
for the horizontal axis (Dx) and one for the vertical axis (Dy). 

Next, we need to specify an attribute for ordering the pixel 
in each pixel bar. Again, we can do the ordering according 
to the x- and the y-axis, i.e., along the horizontal (Ox) and 
vertical (Oy) axes inside each bar.   
 
 
 
 
 
 
 
 
 
 
 
Finally, we need to specify an attribute for coloring the 
pixels. Note that in multi-bar charts we may assign different 
attributes to colors in different bar charts, which enables the 
user to relate the different coloring attributes and detect 
partial relationships among them. Note that the dividing and 
ordering attributes have to stay the same in order to do that. 
 
Let DB = {d1, …, dn} be the data base of n data records, each 

consisting of k attribute values { }i
k

i
i aad ,,1 K= , l

i
l Aa ∈ , 

where Al is the attribute name of value al.  Formally, a pixel 
bar chart is defined by a five tuple:  

<Dx, Dy, Ox, Oy, C > 

where Dx, Dy, Ox, Oy, C ∈  {Al, …, Ak ,} ⊥∪ 1 and Dx/Dy are 
the dividing attributes in x-/y-direction, Ox/Oy are the 
ordering attributes in x-/y-direction, and C is the coloring 
attribute.  
The multi-pixel bar charts of sales transactions shown in 
Figure 4, for example, are defined by the five-tuple 

<product type, ⊥ , no. of visits, dollar amount, C> 

where C corresponds to different attributes, i.e., number of 
visits, dollar amount, quantity. 

3.2 Formalization of the Problem 
The basic idea of pixel bar charts is to produce dense pixel 
visualizations which are capable of showing large amounts 
of data on a value by value basis without aggregation. The 
specific requirements for pixel displays are: 

- dense display, i.e., bars are filled completely  
- non-overlapping, i.e. no overlap of pixels in the 

display 
- locality, i.e., similar data records are placed close to 

each other  
- ordering, i.e., ordering of data records according to Ox, 

Oy .  
To formalize these requirements we first have to introduce 
the screen positioning function  

IntIntAAf k ×→××K1: , 

which determines the x-/y-screen positions of each data 
record di, i.e., ),()( yxdf i =  denotes the position of data 
record di on the screen, and xdf i ).(  denotes the x-
coordinate and ydf i ).(  the y-coordinate. Without loss of 
generality, we assume that Ox = A1 and Oy = A2. The 
requirements can then be formalized as: 
1. Dense Display Constraint 
The dense display constraint requires that all pixel rows 
(columns) except the last one are completely filled with 
pixels.  For equal-width bar charts, the width w of the bars is 
fixed. For a partition p consisting of |p | pixels, we have to 
ensure that  

  ),()(:/..1,..1 jidfwithdwpjwi íí =∃=∀=∀  

For equal-height bar charts of height h the corresponding 
constraint is 

  ),()(:..1,/..1 jidfwithdhjhpi íí =∃=∀=∀  

2. No -Overlap Constraint 
The no-overlap constraint means that a unique position is 
assigned to each data record. Formally, we have to ensure 
that two different data records are placed at different 
positions, i.e.,  

)()(:, jiji dfdfjiDBdd ≠⇒≠∈∀ . 

                                                             
1 The element ⊥  is used if no attribute is specified. 
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Figure 7:  Ordering attributes on x- and y-axis 
(e.g., Ox  = Dollar Amount, Oy=Quantity) 
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Figure 6:  Dividing attributes on x- and y-axis 
(e.g., Dx = Product Type,  Dy= Region) 
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Figure 5:  Dividing attribute on x-axis  
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3. Locality Constraint 
In dense pixel displays the locality of pixels plays an 
important role. Locality means that similar data records are 
placed close to each other. The partitioning in pixel bar 
charts ensures a basic similarity of the data records within a 
single bar. In positioning the pixels within the bars, 
however, the locality property also has to be ensured. For 
the formalization, we need a function sim(di, dj) →  [0…1]  
which determines the similarity of two data records and the 
inverse function of the pixel placement function f -1, which 
determines the data record for a given (x,y)-position on the 
screen. The locality constraint can then be expressed as 
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Note that in general it is not possible to place all similar 
pixels close to each other while respecting the dense display 
and no-overlap constraints. This is the reason why the 
locality constraint is  formalized as a global optimization 
problem. 

4. Ordering Constraint 
The last constraint which is closely related to the locality 
constraint is the ordering constraint. The idea is to enforce a 
one-dimensional ordering in x- and y-direction according to 
the specified attributes Ox = A1 and Oy =A2. Formally, we 
have to ensure  

xdfxdfaanji ji
ji ).().(:..1, 11 >⇒>∈∀  

ydfydfaanji ji
ji ).().(:..1, 22 >⇒>∈∀  

Note that ordering the data records according to the attribute 
and placing them in a row-by-row or column-by-column 
fashion may easily fulfill each one of the two constraints. 
Ensuring both constraints at the same time may be 
impossible in the general case. We can formalize the 
constraint as an optimization problem: 
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Note that there may be a trade-off between the x- and the y-
ordering constraint. In addition, the optima for the locality 
and the ordering constraints are in general not identical. This 
is due to the fact that the similarity function may induce a 
different optimization criterion than the x-/y-ordering 
constraint. For solving the pixel placement problem, we 
therefore have to solve an optimization problem with 
multiple competing optimization goals. The problem is a 
typical complex optimization problem which is likely to be 

NP-complete and can therefore only be solved efficiently by 
a heuristic algorithm. 

3.3 The Pixel Placement Algorithm 
For the generation of pixel bar charts, we have to: (1) 
partition the data set according to Dx and Dy; (2) determine 
the pixel color according to C2; and (3) place the pixels of 
each partition in the corresponding regions according to Ox, 
Oy. 
The partitioning according to Dx and Dy and the color 
mapping are simple and straightforward to implement, and 
therefore do not need to be described in detail here. The 
pixel placement within one bar, however, is a difficult 
optimization problem because it requires a two -dimensional 
sort. In the following, we describe our heuristic pixel 
placement algorithm which provides an efficient solution to 
the problem. The basic idea of the heuristic pixel placement 
algorithm is to partition the data set into subsets according to 
Ox and Oy, and use those subsets to place the bottom- and 
left-most pixels. This provides a good starting point which is 
the basis for the iterative placement of the remaining pixels. 
The algorithm works as follows: 
1. For an efficient pixel placement within a single bar, we 

first determine the one-dimensional histograms for Ox 
and Oy, which are used to determine the α-quantiles of 
Ox and Oy. If the bar under consideration has extension w 
x h pixels, we determine the www )1(,,1 −K -
quantiles for the partitioning of Ox, and the 

hhh )1(,,1 −K - quantiles for the partitioning of Oy. 
The quantiles are then used to determine the partitions 
X1, …,Xw of Ox and Y1, …,Yh of Oy. The partitions X1, 
…,Xw  are sorted according to Oy and the partitions Y1, 
…,Yh according to Ox.   

2. We can start now to place the pixel in the lower-left 
corner, i.e., position (1,1), of the pixel bar:  
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Next we place all pixels in the lower and left pixel rows 
of the bar. This is done as 
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3. The final step is the iterative placement of all remaining 
pixels. This is done starting from the lower left to the 
upper right. If pixels at positions (i-1, j) and (i, j-1) are 
already placed, the pixel at position (i, j) is determined 
as 

                                                             
2  We use a color map, which maps high data values to bright 

colors and low data values to dark colors. 
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Because we have placed the data in a data structures as 
introduced in step 1, the pixel to be placed at each 
position can be determined in O(1) time if 

∅≠∩ jYiX . If ∅=∩ jYiX , we have to iteratively 
extend the partitions Xi and Yj and consider  

jYXXd iis ∩∪∈ + )( 1 . 

If this set is still empty, we have to consider 
)()( 11 ++ ∪∩∪∈ jjiis YYXXd  

and so on, until a data point to be placed is found. Note 
that this procedure is quite efficient due to the data 
structure used.  

4.  The Pixel Bar Chart System 
To analyze large volumes of transaction data with multiple 
attributes, pixel bar charts have been integrated with a data 
mining visualization system [HDHDB 99]. The system uses 
a web browser with a Java activator to allow real-time 
interactive visual data mining on the web.  

4.1 System Architecture and Components 
The pixel bar chart system connects to a data warehouse 
server and uses the database to query for detailed data as 
needed. The data to build the pixel array is kept in memory 
to support real-time manipulation and correlation. As 
illustrated in Figure 8, the pixel bar chart system architecture 
contains three basic components: 
1. Pixel array ordering and grouping 

A pixel array is constructed from the pixel bar chart 
five tuple specification. One pixel represents one data 
record, i.e., a customer. The partitioning algorithm 
assigns each data record to the corresponding bar 
according to the partitioning attribute(s). The pixel 
placement implements a simplified version of the 
heuristic algorithm presented in subsection 3.4. 

2. Multiple linked pixel bar charts 
In multi-bar charts, the position of the pixels belonging 
to the same data record remains the same across multi-
pixel bar charts for correlation. The colors of the pixel 
correspond to the value of the selected attributes. 

3. Interactive data exploration 
This system provides simultaneous browsing and 
navigation of multiple attributes.  

4.2 Interactive Data Analysis 
Interactivity is an important aspect of the pixel bar chart 
system. To make large volumes of multi-attribute datasets 
easy to explore and interpret, the pixel bar chart system 
provides the following interaction capabilities: (1) visual 
querying; (2) layered drill-down; (3) multiple linked 
visualizations; and (4) zoom. 

The attributes used for partitioning (Dx, Dy), ordering (Ox, 
Oy), and coloring (C) can be selected and changed at 
execution time. For identifying correlations, a subset of data 
items in a pixel bar chart can be selected to get the pixels 
corresponding to related attribute values highlighted within 
the same display. A drill-down technique allows the viewing 
of all related information after selecting a single data item.  
When multi-bar charts are presented, pixels reside at the 
same location across all the charts with different attributes. 
In addition to discovering correlations and patterns, the user 
may select a single data item to relate all its attribute values. 

5.  Application and Evaluation 
The pixel bar chart technique has been prototyped in several 
e-commerce applications at Hewlett Packard Laboratories. It 
has been used to visually mine large volumes of sales 
transactions and customer shopping activities at HP 
shopping web sites. 

5.1 Customer Analysis 
The pixel bar chart system has been applied to customer 
buying patterns and behaviors. In Figure 9, the pixels of the 
bar chart represent customers making transactions on the 
web. In the resulting pixel bar chart, customers with similar 
purchasing behaviors (i.e., product type, geographical 
location, dollar amount, number of visits, and quantity) are 
placed close to each other. A store manager can use the 
visualization to rapidly discover customer buying patterns 
and use those patterns to target marketing campaigns.  
Figure 9 shows the four attributes of 106,199 customer 
buying records. The four pixel bar charts of Figure 9 are 
constructed as follows: (1) Product types is the dividing 
attribute Dx;  (2) Dollar amount is the x-ordering attribute 
Ox, Region is y-ordering attribute Oy for 10 United States 
region; and (3) Region, dollar amount, number of visits 
and quantity are the four coloring attribute C. The user 
may observe the following facts:  
a) Region attribute  
There are 10 different colors to represent 10 different 
regions (labeled 1-10 in Figure 9a) in the United States. The 
colored wave indicates the number of customers in each 
region. Region 9 (largest area) is found to have the largest 
number of customers. Region 7 (smallest area) has the least 
number of customers across all product types. 
b) Dollar amount attribute 
Product type 5 has the most top dollar amount sales  (blue & 
brown). Types 6 and 7 have a very small variance across all 
regions (solid blue/brown). 
c) Number of visits attribute 
The blue color distribution in product type 4 indicates that 
customers of this product type come back more often than 
customers of other product types.  
d) Quantity attribute 
The green color of product type 6 indicates that in this 
category all customers bought the same number of items 
across all regions. It is also obvious that product type 4 
customers have the largest quantities.  



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: System Architecture & Components 

Figure 9: Multi-Pixel Bar Chart for Mining 106,199 Customer Buying Transactions 
(Dx= Product Type, Dy= ⊥ , Ox=dollar amount, Oy=region, C) 
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Figure 10: Multi-Pixel Bar Chart for Mining 405,000 Sales Transaction Records 
(Dx= Product Type, Dy= ⊥ , Ox=no. of visits, Oy= dollar amount, C) 
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By relating the multiple pixel bar charts of Figure 9, the user 
may observe that the top dollar amount customers come 
back more frequently and purchase larger quantities.  

5.2 Sales Transaction Analys is 
One of the common questions electronic store managers ask 
is how to use the customer purchase history for improving 
product sales and promotion. Product managers want to 
understand which products have the top sales and who are 
their top dollar amount customers. 
While regular bar charts provide aggregated information on 
the number of customers by product type (Figure 1), the 
corresponding pixel bar charts include important additional 
information such as the dollar amount distribution of the 
sales. 
Figure 10 illustrates an example of a multi-pixel bar chart of 
405,000 multi-attribute web sales transactions. The dividing 
attribute (Dx) is again product type; the ordering attributes 
are number of visits and dollar amount (Ox and Oy). The 
colors (C) in the different bar charts represent the attributes 
dollar amount, number of visits, and quantity. The following 
information can be obtained: 

a) Product type 7 and 10 have the top dollar amount 
customers (dark colors of bar 7, 10 in Figure 10a).  

b) The dollar amount spent and #of visits are clearly 
correlated, i.e. for product type 4 (linear increase of 
dark colors at the top of bar 4 in Figure 10b). 

c) Product types 4 and 11 have the highest quantities sold 
(dark colors of bar 4 and 11 in Figure 10c). 

d) By clicking on a specific pixel (A), we may find out 
that customer A visited 25 times, bought 500 items, 
and spent $345,000 on product type 5. 

It is further interesting that there are clusters of darker colors 
in bar 4 of Figure 10c, which means that there are certain 
ranges of dollar amount sales for which the quantity tends to 
be higher than in other segments. This observation is 
unexpected and may be used to identify the clusters of sales 
transactions and make use of the information to further 
increase the sales. Note that the information mentioned 
above cannot be detected by regular bar charts. 

6.  Conclusion 
In this paper, we presented pixel bar charts, a new method 
for visualiz ing large amounts of multi-attribute data. The 
approach is a generalization of traditional bar charts and x-y 
diagrams, which avoids the problem of losing information 
by aggregation or overplotting. Instead, pixel bar charts map 
each data point to one pixel of the display. For generating 
the pixel bar chart visualizations, we have to solve a 
complex optimization problem. The pixel placement 
algorithm is an efficient and effective solution to the 
problem. We apply the pixel bar chart idea to real data sets 
from an e-commerce application and show that pixel bar 
charts provide significantly more information than regular 
bar charts.  

Acknowledgements 
Thanks to Sharon Beach of HP Laboratories for her 
encouragement and suggestions, Shu F. W. and Brain O. from 
HP Shopping for providing suggestions and data. and Graham 
P. of Agilent Laboratories for his review and comments.  

References 
[ADLP 95] Anupam V., Dar S., Leibfried T., Petajan E.: ‘DataSpace: 
3-D Visualization of Large Databases’, Proc. Int. Symp. on Information 
Visualization, Atlanta, GA, 1995, pp. 82-88. 
[AKK 96] Ankers M., Keim D. A., Kriegel H.P.: ‘Circle Segments: A 
Technique for Visually Exploring Large Multidimensional Data Sets’, 
VISUALIZATION ‘96, HOT TOPIC SESSION, San Francisco, CA, 1996.  
[AWS 92] Ahlberg C., Williamson C., Shneiderman B.: ‘Dynamic 
Queries for Information Exploration: An Implementation and Eval-
uation’, Proc. ACM CHI Int. Conf. on Human Factors in Computing, 
Monterey, CA, 1992, pp. 619-626. 
[Bed 90] Beddow J.: ‘Shape Coding of Multidimensional Data on a 
Mircocomputer Display’, Proc. Visualization ‘90, San Francisco, CA, 
1990, pp. 238-246. 
[BEW 95] Becker R. A., Eick S. G., Wills G. J.: ‘Visualizing Network 
Data’, IEEE Transactions on Visualizations and Graphics, Vol. 1, 
No. 1, 1995, pp. 16-28. 
[BMMS 91] Buja A., McDonald J. A., Michalak J., Stuetzle W.: 
‘Interactive Data Visualization Using Focusing and Linking’, Proc. 
Visualization ‘91, San Diego, CA, 1991, pp. 156-163. 
[Eic 99] Stephen G. Eick: Visualizing Multi-dimensional Data with 
ADVISOR/2000 , Visualinsights, 1999. 
[EW 93] Eick S., Wills G. J.: ‘Navigating Large Networks with Hier-
archies’, Proc. Visualization ‘93, San Jose, CA, 1993, pp. 204-210. 
[HDHDB 99] Hao M, Dayal Umesh.U, Hsu M., D'eletto B., Becker J.‘A 
Java-based Visual Mining Infrastructure and Applications‘, IEEE 
InfoVis99, San Francisco, CA. 1999. 
[ID 90] Inselberg A., Dimsdale B.: ‘Parallel Coordinates: A Tool for 
Visualizing Multi-Dimensional Geometry’, Proc. Visualization ‘90, San 
Francisco, CA, 1990, pp. 361-370. 
[Ins 85] Inselberg A.: ‘The Plane with Parallel Coordinates, Special 
Issue on Computational Geometry’, The Visual Computer, Vol. 1, 
1985, pp. 69-97.  
[KK 94] Keim D. A., Kriegel H. P.:‘VisDB: Database Exploration 
using Multidimensional Visualization’, Computer Graphics & Ap-
plications, Sept. 1994, pp. 40-49.  
[KKA 95] Keim D. A., Kriegel H. P., Ankerst M.: ‘Recursive Pattern: 
A Technique for Visualizing Very Large Amounts of Data’, Proc. Vi-
sualization ‘95, Atlanta, GA, 1995, pp. 279-286.  
[LWW 90] LeBlanc J., Ward M. O., Wittels N.: ‘Exploring N-Dimen-
sional Databases’, Proc. Visualization ‘90, San Francisco, CA, 1990, 
pp. 230-237. 
[LRP 95] Lamping J., Rao R., Pirolli P.: ‘A Focus + Context 
Technique Based on Hyperbolic Geometry for Visualizing Large 
Hierarchies’, Proc. ACM CHI Conf. on Human Factors in Computing 
(CHI95), 1995, pp. 401-408. 
[PG 88] Pickett R. M., Grinstein G. G.: ‘Iconographic Displays for 
Visualizing Multidimensional Data’, Proc. IEEE Conf. on Systems, 
Man and Cybernetics, IEEE Press, Piscataway, NJ, 1988, pp. 514-519. 
[RCM 91] Robertson G., Card S., Mackinlay J.: ‘Cone Trees: Animated 
3D Visualizations of Hierarchical Information’, Proc. ACM CHI Int. 
Conf. on Human Factors in Computing, 1991, pp. 189-194. 
[SB 94] Sarkar M., Brown M.: ‘Graphical Fisheye Views’, Commu-
nications of the ACM, Vol.  37, No. 12, 1994, pp. 73-84. 
[Shn 92] Shneiderman B.: ‘Tree Visualization with Treemaps: A 2D 
Space-Filling Approach’, ACM Transactions on Graphics, Vol. 11, 
No. 1, 1992, pp. 92-99. 
 

 


