
Noname manuscript No.
(will be inserted by the editor)

High-MCC Functions in the Linux Kernel

Ahmad Jbara · Adam Matan · Dror G. Feitelson

the date of receipt and acceptance should be inserted later

Abstract McCabe’s Cyclomatic Complexity (MCC) is a widely used metric for the com-
plexity of control flow. Common usage decrees that functionsshould not have an MCC
above 50, and preferably much less. However, the Linux kernel includes more than 800
functions with MCC values above 50, and over the years 369 functions have had an MCC
of 100 or more. Moreover, some of these functions undergo extensive evolution, indicating
that developers are successful in coping with the supposed high complexity. Functions with
similarly high MCC values also occur in other operating systems and domains, including
Windows. For example, the highest MCC value in FreeBSD is 1316, double the highest
MCC in Linux.

We attempt to explain all this by analyzing the structure of high-MCC functions in Linux
and showing that in many cases they are in fact well-structured (albeit we observe some
cases where developers indeed refactor the code in order to reduce complexity). Moreover,
human opinions do not correlate with the MCC values of these functions. A survey of per-
ceived complexity shows that there are cases where high MCC functions were ranked as
having a low complexity. We characterize these cases and identify specific code attributes
such as the diversity of constructs (not only aswitch but alsoifs) and nesting that correlate
with discrete increases in perceived complexity.

These observations indicate that a high MCC is not necessarily an impediment to code
comprehension, and support the notion that complexity cannot be fully captured using sim-
ple syntactic code metrics. In particular, we show that regularity in the code (meaning repe-
titions of the same pattern of control structures) correlates with low perceived complexity.

Keywords Software Complexity· McCabe Cyclomatic Complexity· Linux Kernel ·
Perceived Complexity· Code Regularity

A. Jbara
School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel.
E-mail: ahmadjbara@cs.huji.ac.il

A. Matan
School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel.

D. G. Feitelson
School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel.
E-mail: feit@cs.huji.ac.il

2 Ahmad Jbara et al.

1 Introduction

Mitigating complexity is of pivotal importance in writing computer programs. Complex
code is hard to write correctly and hard to maintain, leadingto more faults [22,5]. As a
result, significant research effort has been expended on defining code complexity metrics
and on methods to combine them into effective predictors of code quality [31,9,32]. Indus-
trial testimony indicates that using complexity metrics provides real benefits over simple
practices such as just counting lines of code (e.g. [20,8,21,35]).

One early metric that has been used in many studies is McCabe’s Cyclomatic Complex-
ity (MCC) [25]. This metric essentially counts the number oflinear paths through the code
(the precise definition is given below in Section 2). In the original paper, McCabe suggests
that procedures with an MCC value higher than 10 should be rewritten or split in order to
reduce their complexity, and other somewhat higher thresholds have been suggested by oth-
ers (e.g. [28,40,41,44,7]). In general, proposed thresholds are typically well below 50, and
there appears to be some agreement that procedures with muchhigher values are extremely
undesirable.

Nevertheless, in the context of a study of Linux evolution, we have found functions with
MCC values in the hundreds [16]. This chance discovery led toa set of research questions:

1. What are the basic characteristics of high-MCC functions? Specifically,
1.1 How common are such high-MCC functions? In other words, are they just a fluke or

a real phenomenon reflecting the work practices of many developers?
1.2 What causes the high MCC counts? One may speculate that they are the result of

large flatswitch statements, that do not reflect real complexity. But if othermore
complex and less regular constructs are found this raises the question of how devel-
opers cope with them.

1.3 Does MCC correlate with other metrics, as has been shown in the past? Or does it
provide independent complexity information?

2. Do high-MCC functions evolve with time? If these functions are “write once” functions
that serve some fixed need and are never changed, then nobody except the original author
really needs to understand them. But if they are modified manytimes as Linux continues
to evolve, it intensifies the question of how do the maintainers cope with the supposedly
high complexity.

3. What influences the perception of complexity? Specifically,
3.1 Does a high MCC correlate with perceived complexity? In other words, does MCC

indeed capture the essence of complexity?
3.2 Can we find discrete elements of complexity? In other words, can we point out spe-

cific code attributes that, if present, make a function appear more complex? This is
an extremely important question with respect to complexitymetrics, as an affirma-
tive answer may indicate that complexity is an additive property of code attributes.

3.3 Is a visual representation of high-MCC functions betterthan code listings?
4. What other ingredients of complexity may be missing from MCC? In particular, in our

work we found that some high-MCC functions have a very regular structure. This raised
the question whether regularity may counteract the supposed complexity reflected by
the high MCC.

5. Are all the high-MCC functions we found really required, or can some of this code be
replaced or refactored? This issue reflects the tradeoff done by developers, where some-
times allowing additional code with high complexity metrics is nevertheless considered
better than trying to minimize it.

High-MCC Functions in the Linux Kernel 3

6. Are the high-MCC functions unique to Linux, or do they alsoappear in other operating
systems and domains?

7. Altogether, do the high-MCC functions indicate code quality problems with the Linux
kernel?

To gain insight into these issues we analyzed the functions in Linux kernel version 2.6.37.5
that have MCC≥100, which turn out to have MCC values ranging up to 587—way above
the scale that is considered reasonable. We also analyzed the evolution of all 369 functions
that had MCC≥100 in any of the Linux kernel versions released since the initial release of
version 1.0 in 1994 (more than a thousand versions). In addition we examined three other
operating systems and three systems from different domains— Windows Research Kernel,
OpenSolaris, FreeBSD, GCC, Firefox, and OpenSSL — and foundthat they also contain
similar high-MCC functions. The highest MCC values were 246, 506, 1316, 1301, 699, and
371 respectively.

In a nutshell, we found that (in Linux) the most common sourceof high MCC counts
is large trees ofif statements, although several cases are indeed attributed to largeswitchs.
33% of the functions do not change, but the others may change considerably. About 5% of
the functions exhibit extreme changes in MCC values that reflect explicit modifications to
their design, indicating active work to reduce complexity.We speculate that the ability to
work with these functions stems from the fact thatswitchs and large trees ofifs embody a
separation of concerns, where each call to the function onlyselects a small part of the code
for execution. This is especially true if they are nested in each other, rather than coming
one after the other, so this explanation is especially relevant for the deeply-nested functions.
On the other hand we also observed some cases of spaghetti-style gotos, which are not
directly measured by MCC. Such observations motivate studying alternative ways in which
code structure may be analyzed when assessing the resultingcomplexity. In particular, we
suggest code regularity as an important attribute that may compensate for complexity.

The remainder of the paper is structured as follows. In the next section we define MCC
and review its use. We characterize high-MCC functions in the Linux kernel in Section 3,
and their evolution in Section 4. Results of the survey of perceived complexity are presented
in Section 5, and the relationship with regularity in Section 6. Section 7 discusses the pos-
sibility of reducing high-MCC code. High-MCC functions in other operating systems and
domains are examined in Section 8. Discussion, significanceof our findings, and further re-
search directions are presented in Section 9. This paper is an extended version of a previous
conference paper [19]. The main additions are added experimentation (more subjects and
additional experiments), the definition of a metric for coderegularity and its effect, an ex-
amination of evidence for cloning, and showing that high-MCC functions exist also in other
operating systems and domains.

2 McCabe’s Cyclomatic Complexity

McCabe’s cyclomatic complexity (MCC) is based on the graph theoretic concept of cyclo-
matic number, applied to a program’s control-flow graph. Thenodes of such a graph are
basic blocks of code, and the edges denote possible control flow. For example, a block with
an if statement will have two successors, representing the “then” option and the “else” op-
tion. The cyclomatic number of a graphg is

V (g) = e−n+2p

4 Ahmad Jbara et al.

wheren is the number of nodes,e the number of edges, andp the number of connected com-
ponents. (In a computer program, each procedure would be a separate connected component,
and the end result is the same as adding the cyclomatic numbers of all of them.) McCabe
suggested that the cyclomatic number of a control-flow graphrepresents the complexity of
the code [25]. He also showed that it corresponds to the number of linearly independent code
paths, and can therefore be used to set the minimal number of tests that should be performed.

Another way to characterize the cyclomatic number of a graphis related to the notions of
structured programming, where all constructs have single entry and exit points. The control-
flow graph is then planar, and the cyclomatic number is equal to the number of faces of the
graph, including the “outside” area. McCabe also demonstrated a straight-forward intuitive
meaning of the metric: it is equal to the number of condition statements in the program plus
1 (if, while, etc.). If conditions are composed of multiple atomic predicates, we could also
count them individually; this is sometimes called the “extended” MCC [29]. Note that MCC
counts points of divergence, but not joins. It is thus insensitive to unconditional jumps such
as those induced bygoto, break, or return.

2.1 Thresholds on MCC

In principle MCC is unbounded, and intuition suggests that high values reflect potentially
problematic code. It is therefore natural to try and define a threshold beyond which code
should be checked and maybe modified. McCabe himself, in the original paper which in-
troduced MCC, suggests a threshold of 10 [25], and this is also the value used by the code
analysis tool sold by his company today [26]. The Eclipse Metrics plugin also uses a thresh-
old of 10 by default, and suggests that the method be split if it is exceeded [34]. VerifySoft
Technology suggest a threshold of 15 per function, and 100 per file [44]. Logiscope also
uses a threshold of 15 [41]. The STAN static analysis tool gives a warning at 15, and con-
siders values above 20 an error [27]. The complexity metricsmodule of Microsoft Visual
Studio 2008 reports a violation of the cyclomatic complexity metric for values of more than
25 [28]. The Carnegie Mellon Software Engineering Institute defined a four-level scale as
part of their (now legacy) Software Technology Roadmap [40]. High risk was associated
with values of MCC above 20, and very high risk with values larger than 50. Heitlager et al.
used these risk levels and suggested a complexity rating scheme based on the percentage of
LOC falling within each risk level [13].

All the above thresholds consider functions in isolation. VerifySoft also suggests a
threshold on the sum of all functions in the same file. An alternative approach is to con-
sider the distribution of MCC values. The Gini coefficient, used to measure inequality in
economics, was used by Vasa et al. to characterize the distribution of different metrics in-
cluding MCC [43]; he found that the distribution was highly skewed, as we do too. Stark et
al. propose a decision chart that plots the cumulative distribution function (CDF) of MCC
values on a logarithmic scale, and if the CDF falls below a certain diagonal line then the
project as a whole should be reviewed [42]; in brief, this line requires 20% of the functions
to have an MCC of 1, allows about 60% to be above 10, and dictates an upper bound of
90. However, it seems that this was not picked up by others, and using simple thresholds
remains the prevailing approach.

High-MCC Functions in the Linux Kernel 5

2.2 Critique of MCC and Correlation with LOC

It should be noted that MCC is not universally accepted as a good complexity metric, and it
has been challenged on both theoretical and experimental grounds.

Perhaps the most common objection to using MCC as a complexity metric is its strong
correlation with lines of code (LOC) [36,37,14]. This correlation has been demonstrated
many times, and indeed, we find that also in the Linux kernel the correlation coefficient of
MCC and LOC is a relatively high 0.88. But if we focus on only the high-MCC functions,
the correlation is much lower. We revisit this issue in Section 3.4.

Ball and Larus note that withn predicates there can be betweenn + 1 and 2n paths
in the code, so the number of paths is a better measure of complexity than the number of
predicates [3]. Others show that MCC only measures control flow complexity but not data
flow complexity and has additional deficiencies [36,37]. In particular, MCC is intrinsic to
code, so it does not admit the possibility that code fragments interact with each other to either
increase or decrease the overall complexity [45]. Finally,Nagappan et al. have shown that
while MCC is a good defect predictor for some projects, thereis no single metric (including
MCC) that is good for all projects [30].

There is, however, no other complexity metric that enjoys wider acceptance and is free
of such criticisms, so MCC remains widely used to this day. Oman’s ‘maintainability index’
includes MCC as one of its components [33], and Baggen et al. recently used thresholds on
MCC in the context of creating a certification mechanism for maintainability [2]. Curtis et
al. use a criterion of MCC above 30 to identify ‘highly complex components’, and find that
MCC is one of the four most frequent violations of good architectural or coding practice over
different languages [7]. The ‘weighted method count’ metric for object-oriented software is
usually interpreted as the sum of the MCC over all methods in aclass. Recently, Capiluppi
et al. used MCC to evaluate the change in complexity of successive revisions of the same file
in the Linux kernel [6], and Soetens et al. used it to check theassumption that refactoring
reduces complexity (as it turns out, most refactoring does not affect MCC) [38]. Thus, given
its wide use and availability in software development and testing environments, MCC merits
an effort to understand it better.

2.3 Distribution of MCC in Linux

Our research question 1.1 concerned the prevalence of high-MCC functions. In a previous
study of the Linux kernel we found that the distribution of MCC is very skewed, with many
thousands of functions with extremely low MCC and few functions with extremely high
MCC (the highest value observed was 620) [16]. In addition, we found that the distribution
has a heavy tail, namely one that decays according to a power law.

It is especially interesting to observe how this distribution has changed with time. Such a
study reveals two seemingly contradictory findings [16]. First, it was found that the absolute
number of high-MCC functions is growing with time: in version 1.0 in 1994 there were only
15 functions with MCC of 50 or more, and in 2008 there were morethan 400 such functions.
At the same time it was also found that the distribution as a whole is shifting towards lower
MCC values: In 1994 the median MCC was 4 and the 95th percentile was 20, but by 2008
the median was 2 and the 95th percentile was down to 13. This means that the number of
low MCC functions is growing at a higher pace than the number of high-MCC functions.

6 Ahmad Jbara et al.

In this paper we focus on the tail of the distribution, namelythe functions with the
highest MCC values. This is the interesting part of the distribution, because functions with
such high MCC values are thought to be too complex and should not exist.

3 Analysis of High-MCC Functions in Linux

When studying the evolution of the Linux kernel, and in particular how various code metrics
change with time, we found that some Linux kernel functions have MCC values in the
hundreds [16]. Here we focus on high-MCC functions in version 2.6.37.5, released on 23
March 2011, as well as on the evolution of high-MCC functionsacross more than a thousand
versions released from 1994 to 2011.

3.1 Data Collection

To calculate the MCC we use thepmccabe tool [4]. This tool also calculates the extended
MCC, i.e. it also counts instances of logical operators in predicates (&& and| |). We use
the extended version, in order to avoid the confounding effect of coding style (where a
programmer uses either nested conditionals or a logical operator to achieve the same effect).

Our scripts parse all the implementation files of each Linux kernel, and collect various
code metrics for functions with MCC above 100. However, in some cases the parsing is
problematic. In particular, the Linux kernel is littered with #ifdef preprocessor directives,
that allow for alternative compilations based on various configuration options [24]. As we
want to analyze the full code base and not just a specific configuration, we ignore such
directives and attempt to analyze all the code. As the resulting code may not be syntactically
valid, thepmccabe tool may not always handle such cases correctly. Consequently a small
part (around 1%) of the source code is not included in the analysis. (As a side note, the
conditional compilation itself may also add to the complexity of the code, but we discuss
this issue in another paper [17]).

3.2 Description of High-MCC Functions

The functions with MCC values of 100 or more in Linux kernel 2.6.37.5 have values rang-
ing up to 587. 104 of these functions come from thedrivers subdirectory, with others coming
from arch (12 functions),fs (12 functions),sound (5 functions),net (3 functions),lib (1 func-
tion) andcrypto (1 function). The sources of all 369 functions with MCC≥100 that ever
appeared in Linux are tabulated in Table 1. We manually examined a few of the top func-
tions in the drivers subdirectory and found them dominated by switch statements of symbolic
constants. These constants essentially representioctl codes for devices, different modes for
emulations, and usage tables of different human interface devices.

Our research question 1.2 concerns the origin of high MCC counts. A high MCC can
be the result of any type of branching statements:cases in a switch, if statements, or the
loop constructswhile, for, anddo. But in the high-MCC functions of Linux the origin is
usually multipleif statements orcases in aswitch statement, as shown in Fig. 1. These can
be nested in various ways. Somewhat common structures are a largeswitch with small trees
of ifs in many of itscases, or large trees ofifs andelses. Logical operators, which can also

High-MCC Functions in the Linux Kernel 7

Directory Subdirectory # high-MCC functions Comments
drivers staging 65 new drivers being staged into the system

media 35
video 25
sound 25
scsi 24
isdn 21
net 15
usb 14
char 14 character device drivers e.g. ttys and mice
gpu 11
block 9 block device drivers like IDE disks
others 27
total 285

arch m68k 6
sparc64 5
sparc 4
powerpc 4
parisc 4
x86 3
ia64 2
cris 1
mn10300 1
total 30

sound oss 18 cross platform Open Sound System
pci 2
isa 1
total 21

fs xfs 4
ext4 2
ncpfs 2
others 9
total 17

net ipv6 2
ipv4 2
core 2
802 1
atm 1
ieee80211 1
inet 1
total 10

others – 6

Table 1 Classification of the 369 high-MCC functions according to the directories that contain them.

be considered as branch points due to short-circuit evaluation, also make some contribution.
Loops are quite rare.

Apart from the highest-MCC function, which is an obvious outlier, the rest of the distri-
bution shown in Fig. 1 is seen to decline rather slowly. Indeed, in this version of Linux there
were 138 functions with MCC≥100, and 802 with MCC≥50. Thus high-MCC functions are
not uncommon (albeit they are a very small fraction of the total functions in Linux — those
with MCC of 50 or more constitute just 0.3%).

8 Ahmad Jbara et al.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

M
C

C

Function number

||
&&

case
while

for
if

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

if for while case && ||

T
ot

al
 fr

eq
ue

nc
y

Construct

Fig. 1 Distribution of constructs in high-MCC functions.

3.3 Visualization of Constructs and Nesting Structure

High-MCC functions are naturally quite long, and include very many programming con-
structs. As a result, it is hard to grasp their structural properties. To overcome this problem
and provide better insights into research question 1.2, we introduce control structure dia-
grams (CSD) to visualize the control structure and nesting.These are somewhat similar to
the diagrams used by Adams et al. [1] to visualize patterns ofusing the C preprocessor.

In these diagrams (for example Figure 2) the bar across the top represents the length of
the function, which starts at the left and ends at the right. Below this the nesting of different
constructs is shown, with deeper nesting indicated by a lower level. Each control type is
represented by a different shape and color. Each construct (except large loops) is scaled so
as to span the correct range of lines in the function. This helps to easily identify the dominant
control structures, which are possible candidates for refactoring.

Using the CSDs we easily observe each function’s nesting structure and regularity,
which may affect the perceived complexity of the code1. Some of the high-MCC functions
are relatively flat and regular. An example is shown in Fig. 2.This function starts with many
small ifs in sequence, and then has 9 largeifs with nested smallifs, two of which have large
else blocks with yet another level of nested smallifs. Despite the large number ofifs this
function is shallow and regular and does not appear complicated. Other functions, like that
shown in Fig. 3, include deep nesting and appear to be more complicated. Regularity and its
effect on perceived complexity are discussed in Section 6.

Recall that the high MCCs observed are predominantly due toif statements andcases in
switch statements. This means that the flow is largely linear, with branching used to select

1 Graphs for all functions analyzed are available atwww.cs.huji.ac.il/˜ahmadjbara/hiMCC.htm

High-MCC Functions in the Linux Kernel 9

mxl5005s.c:MXL_TuneRF

Legend: if else switch for whi le
goto

Fig. 2 A function that is a largely flat sequence ofifs.

the few pieces of code that should actually be executed in each invocation of the function.
Only a relatively small fraction of the functions include loops, and in most cases these are
small loops. Fig. 4 shows an example of a function that had relatively many loops, and even
in this case they can be seen to be greatly outnumbered byifs andcases.

While most practitioners typically limit themselves to using nested structured program-
ming constructs, some also usegoto. Thegoto instruction is one that breaks the function’s
structure and decreases code readability, in particular when backwards jumps occur between
successive constructs [10]. The CSD visualizes the source and destination points of eachgoto
and their relative locations within the code. Fig. 5 shows examples of two functions that use
goto. In the firstgotos are used only to break out of nested constructs in case of error, and
go directly to cleanup code at the end of the function. This isusually considered acceptable.
But the second usesgotos to create a very complicated flow of control, which is much more
problematic.

3.4 Correlation of MCC with Other Metrics

Research question 1.3 deals with the correlation of MCC withother metrics. Indeed, one
of the criticisms of MCC is that it does not provide any significant information beyond that
provided by other code metrics, notably LOC (lines of code).The claim is that longer code
naturally has more branch points, and thus LOC and MCC are correlated. Indeed, when
comparing the MCC and LOC of all the functions in the Linux kernel, a significant correla-
tion is observed (Fig. 6). The correlation coefficient is 0.88, and the regression line indicates
that on average there are 3.8 lines of code for every branch (unit of MCC). However, there

10 Ahmad Jbara et al.

init301.c:SiS_EnableBridge

Fig. 3 A function with irregular ifs and relatively deep nesting.

easycap_main.c:easycap_usb_probe

Fig. 4 A function with relatively many loops.

High-MCC Functions in the Linux Kernel 11

nfs4xdr.c:nfsd4_encode_fattr

x86_emulate.c:x86_emulate_insn

Fig. 5 Examples of functions using goto.

 0

 200

 400

 600

 800

 1000

 0 50
 100

 150
 200

 250
 300

LO
C

MCC

98

CC=0.88

Fig. 6 Correlation of MCC with LOC for all functions in Linux kernel2.6.37.5.

12 Ahmad Jbara et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500 600

LL
O

C

MCC

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500 600

P
LO

C
MCC

Fig. 7 Correlation of MCC with LLOC and PLOC.

is some variability, with a few functions where the LOC outstrips the MCC by a factor of 30
or more (to the left of the top line in the figure).

But if we focus on the high-MCC functions, the picture is somewhat different. The re-
sults are shown in Fig. 7, with a distinction between LLOC, the non-comment non-blank
lines of code, and PLOC, the total number of lines. The Spearman’s rank correlation coef-
ficients are 0.586 and 0.507, respectively, indicating a moderate degree of correlation; and
indeed some functions have a relatively low MCC but high LOC,or vice versa. We used
Spearman’s coefficient rather than Pearson’s because it is more sensitive to correlations
when the relationships are not linear.

Another question is whether MCC is correlated with other complexity metrics. As an
example, we checked the correlation of MCC with levels of indentation and nesting, based
on the premise that indentation reflects levels of nesting and higher complexity [15]. Note
that this has to be done carefully so as to avoid artifacts resulting from continuation lines
where indentation does not reflect the structure of the code.

The results are shown in Fig. 8. Obviously there is almost no correlation of MCC with
the average level of indentation or nesting in each function(verified by calculating the cor-
relation coefficient). This reflects our findings that high-MCC functions could be either flat
switchs and sequences ofifs, or else deep trees of nestedifs, so a high MCC can come with
either high or low nesting.

4 Maintenance and Evolution of High-MCC Functions

Linux is an evolving system [16]. It has shown phenomenal growth during the 17 years
till the time the kernel we studied was released in 2011: version 1.0 had 122,442 lines of
actual code, and version 2.6.37.5 had 9,185,179 lines, an average annual growth rate of
29%. This testifies to Lehman’s law of “continuing growth” of evolving software systems
[23]. Obviously, most of the functions in the current release didn’t exist in the first release—

High-MCC Functions in the Linux Kernel 13

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 200 300 400 500 600

A
ve

ra
ge

 in
de

nt
at

io
n

MCC

CC=0.041

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 200 300 400 500 600

A
ve

ra
ge

 n
es

tin
g

MCC

CC=0.032

Fig. 8 Correlation of MCC with indentation and nesting.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1.0 1.1 1.2 1.3 2.0 2.1 2.2 2.3 2.4 2.5 2.6

N
um

be
r

of
 fu

nc
tio

ns

Linux series

Fig. 9 The distribution of new high-MCC functions (defined as thosewith MCC>100) in Linux series. Note
that the duration of the 2.6 series is much longer than the previous ones.

they were added at some point along the way. And there were also functions that were part
of the kernel for some time and were later removed.

A function can achieve high MCC by incremental additions, orelse a new function may
already have a high MCC when it is added. In fact, this happened in all versions as shown
in Fig. 9. (The relatively large number of new functions withMCC above 100 introduced
during the 2.6 series is due to the length of this series, which was started in December
2003.) Regarding incremental growth, note that high-MCC functions are expected to be
hard to maintain. It is therefore interesting to investigate their trajectory and check how
often they are changed, and this was our research question 2.We did this for all Linux
functions that achieved an MCC of 100 or more in any version ofthe kernel. There were
369 such functions.

To get an initial insight about the evolution of high-MCC functions, we calculate the
coefficient of variation (CV) of the MCC of each function in different versions of Linux.

14 Ahmad Jbara et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2
 0.4

 0.6
 0.8

 1 1.2
 1.4

 1.6
 1.8

 2

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Coefficient of variation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Number of changes

Fig. 10 Left: The distribution of the coefficient of variation of theMCC of 369 high-MCC functions. Right:
Scatter plot showing relationship between number of times theMCC changed and the degree of change as
measured by the coefficient of variation (if the coefficient ofvariation equals 0 it means the MCC of this
function did not change).

 0

 50

 100

 150

 200

 250

 300

94 96 98 00 02 04 06 08 10 12

M
C

C

2.3 2.52.22.4

16 20 27 32

 0

 20

 40

 60

 80

 100

 120

 140

 160

94 96 98 00 02 04 06 08 10 12

M
C

C

2.3

2.5

2.2

2.4

16 20

27 32

Fig. 11 Examples of functions whose MCC changed somewhat over time:riocontrol, andixj ioctl

The coefficient of variation is the standard deviation normalized by the average. Thus if a
function never changes it will always have the same MCC, and the CV will be 0. If its MCC
changes significantly with time, its CV can reach a value of 1 or even more. Fig. 10 shows
the distribution of the calculated CVs. About 33% of the functions exhibit absolutely no
change in the MCC across different versions of the kernel. Note that this does not necessarily
mean that the functions were not modified at all, as we are onlyusing data about the MCC.
However it does indicate that in all likelihood the control structure did not change. Another
large group of functions exhibit small to medium changes in MCC over time. Examples
are shown in Fig. 112. Finally, some functions exhibited significant changes in their MCC.
Examples are shown in Fig. 12.

2 In this and subsequent figures, we distinguish between development versions of Linux (1.1, 1.3, 2.1, 2.3,
and 2.5), production versions (1.0, 1.2, 2.0, 2.2, and 2.4, shown as dashed lines), and the 2.6 series, which
combined both types. These are identified only by their minor (third) number. TheX axis is calendar years
starting with the release of Linux in 1994.

High-MCC Functions in the Linux Kernel 15

 0

 20

 40

 60

 80

 100

 120

94 96 98 00 02 04 06 08 10 12

M
C

C

1.32.1

2.3

2.5

pre2.0

2.2

2.4

16 20 27 32

 0

 20

 40

 60

 80

 100

 120

 140

94 96 98 00 02 04 06 08 10 12

M
C

C 1.1

1.3

2.1 2.3

2.5

1.0

1.2

pre2.0

2.2

2.4

Fig. 12 Examples of functions that exhibit significant changes over time: vortex probe1, andst int ioctl

 0

 20

 40

 60

 80

 100

 120

94 96 98 00 02 04 06 08 10 12

M
C

C

1.1 1.3 2.1

2.3

2.5

1.0 1.2 pre2.0
2.2

2.4

16 20
27 32

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

94 96 98 00 02 04 06 08 10 12

M
C

C

2.52.4

16 20 27 32

Fig. 13 Examples of functions that exhibit large changes in production versions: sg ioctl and
SiS EnableBridge.

The degree to which the MCC changes is only one side of the story. In principle a very
large change may occur all at once, or as a sequence of smallerchanges. Therefore it is also
interesting to check the number of times that the MCC was changed relative to the previous
version. This has to be done carefully, because the Linux release scheme of using production
and development versions (described below) implies that several versions may be current at
the same time. Thus when a new branch is started, its previousversion is typically near the
start of the previous branch, not at its end.

Fig. 10 shows a scatter plot that compares the degree of change with the number of
changes. The correlation between these two metrics turns out to be relatively strong, with
a Spearman’s rank correlation coefficient of 0.83. This shows that additional changes tend
to accumulate. However, despite the rapid rate in which new releases of the Linux kernel
are made, the high-MCC functions do not change often. The highest number we saw was a
function whose MCC changed 50 times.

An especially interesting phenomenon is that sometimes very large changes occur in
production versions. The Linux kernel, up to the 2.6 series,employed a release scheme that
differentiated between development and production. Development versions had an odd ma-
jor number and their minor releases were made in rapid succession. Production versions,
with even major numbers, were released at a much slower rate,and these releases were only
supposed to contain bug fixed and security patches. However,our data shows several in-
stances of large changes in the MCC of a function that occur inthe middle of a production
version (Fig. 13 andvortex probe1 from Fig. 12). Such behavior contradicts the “official”
semantics of development vs. production versions. But at least in some of these cases the

16 Ahmad Jbara et al.

 0

 100

 200

 300

 400

 500

 600

 700

94 96 98 00 02 04 06 08 10 12

M
C

C

2.1

2.3

2.5

2.2

2.4 0

 20

 40

 60

 80

 100

 120

94 96 98 00 02 04 06 08 10 12

M
C

C

2.52.4

16 20 27 32

Fig. 14 Examples of functions that exhibit a sharp drop in MCC resulting from a design change:sys32 ioctl

andusb stor show sense.

change was done in a production version during the interval between two successive devel-
opment versions.

In most functions that saw a significant change in MCC the MCC grew. But there were
also cases where the MCC dropped as shown in Fig. 14. The largest drop is in function
sys32 ioctl. This is the function with the highest MCC ever, peaking at 620 in the later parts
of kernel version 2.2. At an earlier time, in version 2.3.46,it had reached an MCC value of
563, but then in version 2.3.47 this dropped to 8. The reason was a design change, where
a largeswitch was replaced by a table lookup [16]. A similar change occurred in function
usb stor show sense, where a large switch statement was replaced by a call to a newfunction
implementing a lookup table.

However, a sharp drop in MCC value does not necessarily mean adesign change which
yields reduced complexity. For example, the functionisdn tty cmd PLUSF FAX had MCC
154 in version 2.2.14. In version 2.2.15 it dropped to 3 and the original code was replaced
by conditional calls to two other new functions. One of thesefunctions has MCC 154 ex-
actly as the original function, and the other has MCC 15. Thusthe high-MCC code just
moved elsewhere. Likewise, in version 2.3.9 the functionI2o proc read lan media operation

had MCC 102, which dropped to 12 in version 2.3.10. The original function had two large
switchs which were cloned later in the same function. In version 2.3.10 the twoswitchs were
replaced by two new functions. Each of the new functions contained one of the original
switch statements and a new lookup table. The odd thing was that the lookup tables did not
replace the switch statements and were not exploited to reduce complexity. Another example
of an artificial reduction in MCC is functionfd ioctl trans. The original function had many
long compoundif statements with heavy use of theor operator. In its reduced MCC version
the logicalor operator was replaced by the bitwiseor which is not counted by the MCC
metric.

The above examples may leave the impression that design changes to reduce MCC are
purely technical. However, we also observed cases where thereduction resulted from a de-
sign change requiring a good understanding of the logic of the function, as the changes are
small and deeply interwoven within the code. An example of such a function ismain in ver-
sions 2.4.25 and 2.4.26. The chief change in MCC resulted from defining 13 new secondary
functions ranging from 1 to 50 lines of code. While in the old version negative numbers were
used to indicate an error code when returning from a secondary function, in the new version
these numbers were replaced by positive ones. In addition, in the old version all exceptional
cases were handled locally, whereas in the new version the goto mechanism was used; upon

High-MCC Functions in the Linux Kernel 17

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

94 96 98 00 02 04 06 08 10 12

M
C

C

2.3

2.5

2.2

2.4
16 20 27

 0

 20

 40

 60

 80

 100

 120

 140

94 96 98 00 02 04 06 08 10 12

M
C

C

2.1 2.3

2.5

2.2

2.4 16 20 27

Fig. 15 Co-evolution of two related functions.

 0

 50

 100

 150

 200

 250

 300

94 96 98 00 02 04 06 08 10 12

M
C

C

1.1

1.3

2.1

2.3 2.5

1.0

1.2

pre2.0

2.2
2.4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

94 96 98 00 02 04 06 08 10 12

M
C

C
2.5 16 20

27
32

Fig. 16 Evolution of thevt ioctl function, which migrated from one file to another.

exception execution jumps to a label which is located at the end of the function. All these
changes require intimate understanding of the function.

Other interesting phenomena that occurred during maintenance were co-evolution and
migration. Fig. 15 shows the co-evolution of two related functions. These functions are
do mathemu in /arch/sparc64/math-emu/math.c, and do one mathemu in /arch/sparc/math-

emu/math.c. This occurs when two related functions evolve according toa similar pattern. In
many cases this happens because one of the functions was originally cloned from the other.
In the above example, these are analogous functions in 32-bit and 64-bit architectures; when
a large change was implemented, it was done in both in parallel. Also, in both cases the
change that was initially done in a development version was soonafter propagated to the
contemporaneous production version.

An example of migration is shown in Fig. 16: thevt ioctl function, which moved from
/drivers/char/vt.c (MCC of 159 in kernel 2.5.35) to/drivers/char/vt ioctl.c (same MCC of
159 in kernel 2.5.36). In fact, these two functions are indeed identical. As another example,
cpia write proc from /drivers/char/cpia.c, with an MCC of 226 in kernel 2.2.26, morphed into
cpia write proc in /drivers/media/video/cpia.c, with an MCC of 211 in kernel 2.4.0 (via the
2.3.99-prex series, where it already was 211). The change in MCC reflects some changes in
the structure of the function. Much larger changes occurredwhenx86 emulate memop from
/drivers/kvm/x86 emulate.c, with an MCC of 285 in 2.6.24.7, morphed intox86 emulate insn

in /arch/x86/kvm/x86 emulate.c with an MCC of 174 in 2.6.25. While the second function is
partly based on the first, significant changes were made, and the MCC changed considerably
as well.

18 Ahmad Jbara et al.

To summarize, high-MCC functions in the Linux kernel evolvein a variety of ways.
This includes cases where a function changes significantly over time in a series of individ-
ual changes, and cases where functions are split or completely restructured. Taken together,
these observations provide evidence for the capability of developers to handle these seem-
ingly complex functions. In the next two sections we investigate whether they are indeed so
complex.

5 Survey of Perceived Complexity

The raison d’̂etre of the definition of MCC is the desire to be able to identify complex code,
with the further goal of avoiding or restructuring it. This is also the reason for specifying
threshold values, and requiring functions that surpass these thresholds to have proper justifi-
cation. But the question remains whether MCC indeed captures complexity as perceived by
human programmers.

5.1 Correlation of MCC and Perceived Complexity

To gain some insight into this question, which is our research question 3.1, we conducted a
survey of the perceived complexity of high-MCC functions. The survey included 92 high-
MCC functions that had been identified at the time. It was based on 14 participants, 8 from a
summer Linux kernel workshop (advanced undergraduates, some with industrial experience,
but with no prior kernel experience), and 6 that were recruited later (all were good students
after an advanced course in C programming). The goal was to identify notions of perceived
complexity, not to quantify the effect of complexity on developer performance. Thus the
survey was conducted in two hour-long sessions, in which participants were required to page
through each function for one minute and then give it a grade based on how complex (hard
to understand) it looked to them. Grades where given on a personal relative scale3. These
individual scales where then linearly normalized to the range 0 to 10, and the average and
standard deviation of the grades for each function were computed. The order in which the
functions were presented was not related to MCC or any other attribute, but all participants
received the list in the same order. At the end of the survey, participants were given an
opportunity to comment in writing and some indeed provided notes with their insights.

The results, shown in Fig. 17, indicate little correlation between MCC and perceived
complexity for high-MCC functions. In particular, some functions with relatively low MCC
(within this select set of high-MCC functions) were graded as having either very high or very
low perceived complexity. In the following we focus on thesefunctions that were perceived
as very different but this was not reflected by their MCC.

The functions that had very low average scores (and to a lesser degree also those with
very high scores) also had relatively low standard deviations, as indicated by the short error
bars. This is partly a result of scores having a limited rangeof 0–10; an average of say 1 then
implies that it is highly improbable to have any high scores.But some of the functions with a
moderate average complexity actually had both low and high scores of perceived complexity,
leading to a high standard deviation. This is partly due to the fact that complexity is not well
defined and the grading was subjective. For example, one verylong function with high MCC

3 This was chosen to enable them to respond to surprises. Thus if they see a function they think is “very
complex” and give it a high mark, and later another that is even much more complex, they can still express
this using a value beyond their previously used range.

High-MCC Functions in the Linux Kernel 19

Perceived complexity of Linux hi−MCC functions

Function MCC
0 20 40 60 80 100 120 140 160 180 200 220 240 260

N
or

m
al

iz
ed

 c
om

pl
ex

ity

0

2

4

6

8

10

Fig. 17 Scatter plot showing relationship between measured MCC and perceived complexity. The small
markings are individual grades. The average grade for each function is marked by a larger diamond, and the
error bars denote standard deviations.

switch (mod_det_stat0) {

case 0x00: p = "mono"; break;

case 0x01: p = "stereo"; break;

case 0x02: p = "dual"; break;

case 0x04: p = "tri"; break;

case 0x10: p = "mono with SAP"; break;

case 0x11: p = "stereo with SAP"; break;

case 0x12: p = "dual with SAP"; break;

case 0x14: p = "tri with SAP"; break;

case 0xfe: p = "forced mode"; break;

default: p = "not defined";

}

Fig. 18 Example of simpleswitch structure fromlog audio status.

value suffered a strong disagreement among survey participants. This could be because this
function is composed of a mix of simple as well as messy segments.

5.2 Aspects of Complexity Missed by MCC

The functions that were ranked as low complexity are relatively easy to characterize. These
are generally functions dominated by a very regularswitch construct, where thecases are
very small and straightforward. For example, the switch maybe used to assign error or
status message strings to numerical codes, leading to a single instruction in eachcase as
illustrated in Fig. 18.

In addition to these single-instructioncases, survey participants noted that long se-
quences of emptycases should not be counted as adding complexity; indeed, these are equiv-
alent to predicates in which many options are connected by logical or (and of the tools we
surveyed, VerifySoft indeed does not count emptycases). Furthermore, repeated use of the
same code template (easily identified using a CSD), e.g. in a long sequence of smallifs that
all have exactly the same structure, also reduces the perceived complexity considerably. An
example is shown in Fig. 19.

20 Ahmad Jbara et al.

bytes.high = 0x14;

bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr4.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.SOP_REGS.SOP.cr3.reg;

bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr2.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.SOP_REGS.SOP.cr1.reg;

bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr0.reg;

if (!daa_load(&bytes, j))

return 0;

if (!SCI_Prepare(j))

return 0;

bytes.high = 0x1F;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr7.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.XOP_xr6_W.reg;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr5.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.XOP_REGS.XOP.xr4.reg;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr3.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.XOP_REGS.XOP.xr2.reg;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr1.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.XOP_xr0_W.reg;

bytes.low = 0x00;

if (!daa_load(&bytes, j))

return 0;

if (!SCI_Prepare(j))

return 0;

Fig. 19 Example of a sequence of independentifs with the same structure, fromixj daa write. The full
function includes 113 suchifs.

At the other end of the spectrum, functions that received very high grades for perceived
complexity tended to exhibit either of two features. One wasthe use ofgotos to create
spaghetti-style code, in which target labels are interspersed within the function’s code in
different locations. An example was shown in Fig. 5. Note that such agoto is deterministic,
and therefore not counted by the MCC metric as a branch point.This should be contrasted
with forward gotos that are used to break out of a complex control structure in case of an
error condition. Suchgotos were tolerated by survey participants and even consideredas
improving structure.

High-MCC Functions in the Linux Kernel 21

if (ret_val

&& !item_pos) {

pasted =

B_N_PITEM_HEAD

(tb->L[0],

B_NR_ITEMS

(tb->

L[0]) -

1);

l_pos_in_item +=

I_ENTRY_COUNT

(pasted) -

(tb->

lbytes -

1);

}

Fig. 20 Example of excessive line breaks that seem to make the code harder rather than easier to understand,
from balance leaf.

The second feature that added to perceived complexity was unusual formatting. One
manifestation of such formatting was using only 2 characters as the basic unit of indentation
(instead of the common 8-character wide tab). This led to thecode looking more dense and
made it harder to decipher the control structure. Another manifestation was the use of exces-
sive line breaks, even within expressions, as illustrated in Fig. 20. These observations hark
back to the work of Soloway and Ehrlich [39], who show that even expert programmers have
difficulty comprehending code that does not conform to structural conventions. Obviously
the problem could be avoided by using a pretty-printing routine to reformat the code, but
evidently this was not done.

5.3 Comparing Functions to Identify Elements of Complexity

The functions that were found to have the lowest perceived complexity provide an especially
interesting case study. These functions are generally based on largeswitch statements, and
most if not all of their MCC score is derived fromcases in theseswitchs. We start by ranking
these functions according to their perceived complexity. By comparing neighboring func-
tions in this ranking we can then identify code characteristics that led to discrete increases
in perceived complexity (thus answering research question3.2). This could be done in the
first 7 functions; beyond that, it was not possible to identify individual discrete changes any
more.

The function with the lowest perceived complexity score is indeed very simple. This
function has one parameter, and its body comprises a singleswitch statement with a long se-
quence ofcases that are compared against the function’s parameter. The values of thecases
are numeric constants and their bodies are single-line blocks thatreturn a string value. More-
over, thecases are grouped into sets of logically related cases. These sets are paragraphed
(separated by blank lines) and headed by a single-line comment.

The next function, which was graded as twice more complex than the first one, accepts
one non-scalar parameter, and again contains oneswitch statement with a long sequence
of cases. The values of thecases are symbolic constants (except a few cases of numeric
constants) and their bodies assign string values to a sharedvariable and then break. There is
no paragraphing nor comments. After theswitch statement there are a very simple loop and

22 Ahmad Jbara et al.

char ∗ c a p i i n f o 2 s t r (u16 r e a s o n)
{

swi tch (r e a s o n) {

/∗−− i n f o r m a t i v e v a l u e s (c o r r e s p o n d i n g message was p r o c e s s e d) −−−−−∗ /
case 0x0001 :

re turn ”NCPI no t s u p p o r t e d by c u r r e n t p r o t o c o l , NCPI i g n o r e d ” ;
case 0x0002 :

re turn ” F l ag s no t s u p p o r t e d by c u r r e n t p r o t o c o l , f l a g s i g n o r e d ” ;
case 0x0003 :

re turn ” A l e r t a l r e a d y s e n t by a n o t h e r a p p l i c a t i o n ” ;

/∗−− e r r o r i n f o r m a t i o n c o n c e r n i n g CAPI REGISTER −−−−−∗ /
case 0x1001 :

re turn ”Too many a p p l i c a t i o n s ” ;
case 0x1002 :

re turn ” L o g i c a l b lock s i z e too smal l , must be a t l e a s t 128 Bytes ” ;
case 0x1003 :

re turn ” B u f f e r exceeds 64 kByte ” ;
case 0x1004 :

re turn ” Message b u f f e r s i z e too smal l , must be a t l e a s t 1024 Bytes ” ;
case 0x1005 :

re turn ”Max . number o f l o g i c a l c o n n e c t i o n s no t s u p p o r t e d ” ;
case 0x1006 :

re turn ” Reserved ” ;
case 0x1007 :

re turn ”The message cou ld no t be a c c e p t e d because of an i n t e r n a l
busy c o n d i t i o n ” ;

case 0x1008 :
re turn ”OS r e s o u r c e e r r o r (no memory ?) ” ;

case 0x1009 :
re turn ”CAPI no t i n s t a l l e d ” ;

case 0x100A :
re turn ” C o n t r o l l e r does no t s u p p o r t e x t e r n a l equ ipment ” ;

case 0x100B :
re turn ” C o n t r o l l e r does on ly s u p p o r t e x t e r n a l equ ipment ” ;

/∗−− e r r o r i n f o r m a t i o n c o n c e r n i n g message exchange f u n c t i o n s −−−−−∗ /
case 0x1101 :

re turn ” I l l e g a l a p p l i c a t i o n number ” ;
case 0x1102 :

re turn ” I l l e g a l command or subcommandor message l e n g t h l e s s than 12
b y t e s ” ;

case 0x1103 :
re turn ”The message cou ld no t be a c c e p t e d because of a queue f u l l

c o n d i t i o n ! ! The e r r o r code does no t imply t h a t CAPI canno t
r e c e i v e messagesd i r e c t e d t o a n o t h e r c o n t r o l l e r , PLCI or NCCI” ;

case 0x1104 :
re turn ” Queue i s empty ” ;

case 0x1105 :
re turn ” Queue over f low , a messagewas l o s t ! ! Th is i n d i c a t e s a

c o n f i g u r a t i o n e r r o r . The on ly r e c o v e r y from t h i s e r r o r i s t o
per fo rm a CAPI RELEASE” ;

case 0x1106 :
re turn ”Unknown n o t i f i c a t i o n p a r a m e t e r ” ;

case 0x1107 :
re turn ”The Message cou ld no t be a c c e p t e d because of an i n t e r n a l

busy c o n d i t i o n ” ;
case 0x1108 :

re turn ”OS Resource e r r o r (no memory ?) ” ;
case 0x1109 :

re turn ”CAPI no t i n s t a l l e d ” ;
case 0x110A :

re turn ” C o n t r o l l e r does no t s u p p o r t e x t e r n a l equ ipment ” ;
case 0x110B :

re turn ” C o n t r o l l e r does on ly s u p p o r t e x t e r n a l equ ipment ” ;

. . . / / 4 paragraphs o f c a s e s removed t o save space

d e f a u l t : re turn ”No a d d i t i o n a l i n f o r m a t i o n ” ;
}

}

Listing 1 Listing of the function with the lowest perceived complexity.

High-MCC Functions in the Linux Kernel 23

vo id usb stor show command (s t r u c t scs i cmnd ∗ s r b)
{

char ∗what = NULL;
i n t i ;

swi tch (s rb−>cmnd [0]) {
case TEST UNIT READY : what = ”TESTUNIT READY” ; break ;
case REZEROUNIT : what = ”REZEROUNIT” ; break ;
case REQUESTSENSE : what = ”REQUESTSENSE” ; break ;
case FORMAT UNIT : what = ”FORMAT UNIT” ; break ;
case READ BLOCK LIMITS : what = ”READ BLOCK LIMITS” ; break ;
case REASSIGNBLOCKS : what = ”REASSIGNBLOCKS” ; break ;
case READ 6 : what = ”READ 6” ; break ;
case WRITE 6 : what = ”WRITE 6” ; break ;
case SEEK 6 : what = ”SEEK6” ; break ;
case READ REVERSE: what = ”READREVERSE” ; break ;
case WRITE FILEMARKS : what = ”WRITE FILEMARKS” ; break ;
case SPACE : what = ”SPACE” ; break ;
case INQUIRY : what = ”INQUIRY” ; break ;
case RECOVERBUFFEREDDATA: what = ”RECOVERBUFFEREDDATA” ; break ;
case MODE SELECT: what = ”MODESELECT” ; break ;
case RESERVE: what = ”RESERVE” ; break ;
case RELEASE: what = ”RELEASE” ; break ;
case COPY: what = ”COPY” ; break ;
case ERASE: what = ”ERASE” ; break ;
case MODE SENSE: what = ”MODESENSE” ; break ;
case START STOP : what = ”STARTSTOP” ; break ;
case RECEIVE DIAGNOSTIC : what = ”RECEIVEDIAGNOSTIC” ; break ;
case SEND DIAGNOSTIC : what = ”SENDDIAGNOSTIC” ; break ;
case ALLOW MEDIUM REMOVAL: what = ”ALLOW MEDIUM REMOVAL” ; break ;
case SETWINDOW: what = ”SETWINDOW” ; break ;
case READ CAPACITY : what = ”READ CAPACITY” ; break ;
case READ 10 : what = ”READ 10” ; break ;
case WRITE 10 : what = ”WRITE 10” ; break ;
case SEEK 10 : what = ”SEEK10” ; break ;
case WRITE VERIFY : what = ”WRITE VERIFY” ; break ;
case VERIFY : what = ”VERIFY” ; break ;
case SEARCHHIGH : what = ”SEARCHHIGH” ; break ;
case SEARCHEQUAL: what = ”SEARCHEQUAL” ; break ;
case SEARCHLOW: what = ”SEARCHLOW” ; break ;
case SET LIMITS : what = ”SET LIMITS” ; break ;
case READ POSITION : what = ”READPOSITION” ; break ;
case SYNCHRONIZECACHE: what = ”SYNCHRONIZECACHE” ; break ;
case LOCK UNLOCK CACHE: what = ”LOCKUNLOCK CACHE” ; break ;
case READ DEFECTDATA : what = ”READ DEFECTDATA” ; break ;
case MEDIUM SCAN: what = ”MEDIUM SCAN” ; break ;
case COMPARE: what = ”COMPARE” ; break ;
case COPY VERIFY : what = ”COPYVERIFY” ; break ;
case WRITE BUFFER : what = ”WRITEBUFFER” ; break ;
case READ BUFFER: what = ”READBUFFER” ; break ;
case UPDATE BLOCK: what = ”UPDATEBLOCK” ; break ;
case READ LONG: what = ”READLONG” ; break ;
case WRITE LONG: what = ”WRITELONG” ; break ;
case CHANGE DEFINITION : what = ”CHANGE DEFINITION” ; break ;

. . . / / c a s e s removed t o save space

d e f a u l t : what = ” (unknown command) ” ; break ;
}
US DEBUGP(”Command%s (%d b y t e s)\n” , what , s rb−>cmd len) ;
US DEBUGP(” ”) ;
f o r (i = 0 ; i < srb−>cmd len && i < 16 ; i ++)
US DEBUGPX(” %02x” , s rb−>cmnd [i]) ;

US DEBUGPX(”\n”) ;
}

Listing 2 Listing of the second function with low perceived complexity.

24 Ahmad Jbara et al.

a call to a macro. The loop references (for the first time) a variable which was defined before
theswitch statement, and the macro uses the variable which was previously assigned within
theswitch statement. Listings 1 and 2 represent the first and second functions.

The third and forth functions were very similar to each otherand received very close
perceived complexity grades. They accept one non-scalar parameter and are composed of
many separateswitch statements with paragraphing but no comments. The values ofthe
cases are numeric constants and the bodies are assignments to a shared variables, followed
by break. A few of theseswitch statements are governed by a very simpleif andelse, so we
see some nesting. Nevertheless, the structure of these functions is still quite flat and regular.

The fifth function introduces several new elements for the first time in this series, and
its average grade is again double that of the previous one. Its header is much more complex
than previous functions, and contains an additional modifier besides the traditional structure.
Moreover, it contains more parameters than before where some are simple and scalar and
others are aggregate. These parameters are listed over multiple lines, and in one case the
type of a parameter was defined in one line and its name in the next line. This function is
still dominated by a largeswitch statement with mostly (80%) consecutive emptycases. The
rest of thecases contain oneif statement or afor loop with a nestedif statement. In both cases
the blocks of statements are very simple, but the conditionsin the ifs span multiple lines.

The sixth function is composed of one largeswitch statement where each of itscases
is composed of another largeswitch statement with one simple line for each of itscases.
Moreover, the firstcase of the outerswitch actually contains anif/else construct with two
switch statements in them.

The last function, which was graded as a bit more complex thanthe previous one, is
composed of two largeswitch statements that are controlled byif andelse. Thecases of these
switch statements are composed of nestedifs andelses with simple conditions. Roughly, the
blocks within the differentcases create five categories of regular blocks. Despite the deep
nesting in the differentcases, the impression is that this nesting is used to break upifs with
very complicated conditions. This is obvious because each of these blocks performs a single
statement in its innermost level.

The above allows us to identify the following elements of complexity, which are gener-
ally not acknowledged by metrics like MCC:

– Ending acase with a break, followed by some additional processing after the switch, is
more complex than having areturn directly in thecase.

– Several smallswitchs (probably switching on different variables) are more complex than
one largeswitch.

– Using constructs of different types, e.g.ifs in addition to aswitch, increases complexity.
– Adding parameters to a function increases complexity.
– Increasing the nesting of constructs in each other increases complexity.
– Embeddingswitch statements withinifs andelses is more complex than having theswitch

at the top level.

In some of these cases the more complex version cannot be avoided due to the logic of
the program. But still we can suggest the followingDos andDon’ts lessons:

– Don’t separate processing, localize whenever it is possible.
– If possible, prefer one large switch rather than splitting across many smaller ones.
– Try to avoid mixing constructs of different types.
– Use paragraphing (empty lines separating blocks of code) and comments.

High-MCC Functions in the Linux Kernel 25

{for{switch{casecasecasecasecasecasecasecasecasecasecasecase}if}{if{}}if{}else{}

if{}else{}if{}else{}for{switch{caseifcaseifcaseifcaseifcasecaseifcasecaseifcase

caseifcaseifcaseif}ifif}for{switch{caseifcaseifcaseifcaseifcasecaseifcasecaseif

casecaseifcaseifcaseif}ifif}for{if}ifelseif{ifelseifelseifif}else{}if{}else{if{}

else{}}if{}else{switch{casecasecasecasecasecasecasecasecasecasecasecaseif{}else{}}

ifelse}}

Fig. 21 An example of the control structure of a function, used as the input for the compression algorithm.

6 Regularity and Perceived Complexity

As we have already stated, High-MCC functions are quite long. Therefore, a visual repre-
sentation such as that provided by CSDs may ease capturing their code as a whole, and may
help in grasping structural properties and regularities. This raises the empirical question of
whether a visual view of high-MCC functions has an advantageover a simple listing of the
code, from a human point of view. This is research question 3.3.

As noted above, using CSDs exposed some functions as being very regular while oth-
ers appear to have irregular code structure. This reflects a combination of the sequence of
constructs used, their nesting pattern, and formatting aspects such as indentation and para-
graphing. It seems likely that these factors contribute to the perception of complexity, even
though they are not taken into account by the MCC metric. A second question is therefore
whether regularity correlates with perceived complexity.If it does, this would answer our
research question 4 in the affirmative.

To answer these questions we conducted an experiment with 15experienced program-
mers. We required that the subjects must have experience in the C language. All subjects
were males except two, with an average age of 31, and an average of 4.8 years experience
with C.

The experiment consisted of 30 high-MCC functions, presented in two different formats.
In one phase the code listing of the functions was presented,and in the other phase the
CSD diagrams of the functions were presented. The two phaseswere performed separately
with a break of at least one day between them. Which phase (code or CSD) was done first
was randomized across subjects. The task was to assign each function with a perceived
complexity score, as in the previous experiment. Before starting, participants were presented
with a short description of CSDs and an example showing the code and CSD of the same
function side by side.

Somewhat surprisingly, the results show that the CSD view had no advantage over the
code view. In fact, in two-thirds of the cases there was no significant difference in the average
scores of the two types of view. Thus it seems that experienced programmers can achieve a
good impression of code by paging through it, and seeing a graphical representation of the
code structure did not provide much additional information.

To answer the question of whether perceived complexity correlates with regularity, we
used the Lempel-Ziv compression algorithm [46] to compresseach of the 30 functions and
computed the percentage of reduction in size for each one. Asthis algorithm is based on
identifying recurring substrings in the input, we expect that functions with high regularity
will be compressed better than irregular functions. But it is still unclear what parts of the
code should be compressed to better reflect regularity. To check this we compressed each
function twice: once using its full code as is, and again using a reduced representation of its
control structure. In the control structure compression weremove the function’s content and
retain only its keywords and braces, as shown in Fig. 21. In each case we compare the results

26 Ahmad Jbara et al.

 1
 2
 3
 4
 5
 6
 7
 8

 65 70 75 80 85 90 95 100P
er

ce
iv

ed
 c

om
pl

ex
ity

Percentage reduction
 (a)

 1
 2
 3
 4
 5
 6
 7
 8

 65 70 75 80 85 90 95 100P
er

ce
iv

ed
 c

om
pl

ex
ity

Percentage reduction
 (b)

 1
 2
 3
 4
 5
 6
 7
 8

 65 70 75 80 85 90 95 100P
er

ce
iv

ed
 c

om
pl

ex
ity

Percentage reduction
 (c)

 1
 2
 3
 4
 5
 6
 7
 8

 65 70 75 80 85 90 95 100P
er

ce
iv

ed
 c

om
pl

ex
ity

Percentage reduction
 (d)

Code view CSD view

Compressing
full code

Compressing
control
structure

CC=-0.197 CC=-0.339

CC=-0.585 CC=-0.667

Fig. 22 Correlation of regularity with perceived complexity. Top row (a and b) assess regularity using percent
reduction of size when compressing the original code, while the bottom row (c and d) use compression of the
control structure. In the left column (a and c) perceived complexity is based on the code view, and in the right
column (b and d) on the CSD view.

against the perceived complexities (code view and CSD view)as reflected in the experiment.
Thus we got four combinations that are shown in Fig. 22.

The results indicate that there is a weak negative correlation between percentage reduc-
tion for raw code (regularity) and perceived complexity in code view, with a correlation coef-
ficient of -0.197. Better correlation was achieved when contrasting the raw reduction against
perceived complexity using the CSD view. Here the correlation coefficient was -0.339.

Fig. 22(c) and Fig. 22(d) show the results of comparing the percentage reduction of the
control structure and the perceived complexity in both views (code and CSD). In this case
the correlation coefficient was much stronger than in the rawreduction case. For Fig. 22(c)
plot the correlation coefficient was -0.585 and for Fig. 22(d) it was -0.667.

These results suggest that low compressibility correlateswith high perceived complex-
ity, and by implication, that irregularity correlates withhigh perceived complexity.

7 Possibility of Replacing or Refactoring high-MCC Functions

To answer research question 5 (is all the high-MCC code really necessary) we surveyed all
369 such functions that were collected from more than a thousand versions of the Linux
kernel, using the version with the highest MCC value for eachone. This complements the
quantitative metrics discussed above with a qualitative discussion aimed to gain some in-
sights about their nature. We checked cloning, replacementof code by a lookup table, and
the option of factoring out some functionality to a subroutine.

To find possible instances of cloning we compared the source code of each pair of high-
MCC functions. For doing this we used thediff Linux command, with parameters to disre-
gard differences in spaces and blank lines. We also allowed up to 10% of the total lines of
the compared functions in each pair to be different. We repeated this process twice: Once

High-MCC Functions in the Linux Kernel 27

for the full source code, and again based on the skeleton of the functions (only the keywords
and braces, as explained in Section 6) while preserving formatting and nesting. Using the
code structure comparison, we found 56 sets of clones, where34 are pairs of functions, 13
involve 3 functions, 5 have 4 functions, and 4 include no lessthan 5 clones. For the full
code, we found 51 sets of clones. These results indicate thatnearly a quarter of the high-
MCC functions are clones of other high-MCC functions. The existence of so many clones
indicates that developers found it better to create clones with small changes rather than to
abstract away the common functionality and adjust it for different uses by parameterization.

As we stated earlier, some of the high-MCC functions are written in a way that enables
replacing them by a lookup table. We manually examined the 369 functions and counted
those that are likely candidates for replacement by a lookuptable. We found 19 such func-
tions. In addition, we observed some functions that can be partially replaced (meaning that
they contain a few code segments that can be replaced with a lookup table). There were 23
such functions. These include two sets of size 2 and 3 which also appeared in the clone list.
As demonstrated in Section 4, replacement of a high-MCC function by a simpler function
based on table lookup is a transformation that indeed occursin practice.

An especially interesting question is whether well-known refactoring techniques may be
applied to high-MCC functions. As high-MCC functions are long, there is a good chance for
applying refactoring techniques such asfunction extraction. As an initial check, we tried to
identify clone code segments within a given function. We were assisted by the CSD diagram
of each function to get initial impression about cloned segments. We reviewed all 369 CSDs
manually in a single-evaluator style, and subjectively extracted 61 functions that have what
appear to be large cloned segments. Two examples are shown inFig. 23. These 61 functions
have no overlap with the lookup table functions, but may overlap with the clone list. This
indicates that about 1 in 6 high-MCC functions may be amenable to function-extraction
refactoring, but at the same time, that developers prefer toreplicate code rather than doing
so.

8 Analysis of High-MCC Functions in Other Operating Systems and Domains

The discovery of high-MCC functions in Linux immediately raised the question whether
this phenomenon is unique to Linux (with its free-for-all open source development method-
ology), or maybe such functions occur also in other systems and domains. This was research
question 6.

To answer this, we analyzed the source code of three additional operating systems, and
three open source systems from other domains. In the operating systems domain we chose
Windows, FreeBSD, and OpenSolaris. From non-OS domains we chose GCC (compilers),
Firefox (browsers), and the OpenSSL toolkit. The Windows Research Kernel (WRK) con-
tains the source code for the NT-based kernel which is compatible with Windows Server
2003. Its source code includes core sources for object management, processes, threads, vir-
tual memory, and the I/O system. It does not include Plug-and-Play, power management,
virtual DOS machine, and the kernel debugger engine. The other five are the full codebases
of FreeBSD, OpenSolaris, GCC, Firefox, and OpenSSL respectively.

Table 2 summarizes initial results of our analysis. We see that all these systems contain
high-MCC functions with extreme values at their upper bound. For example, in the FreeBSD
system the highest MCC value was 1316 which is 26 times higherthan the highest threshold
that was ever defined. It is true that the absolute number of these functions in each system
is small, but they represent a non-negligible fraction of the control flow constructs in the

28 Ahmad Jbara et al.

extractedLnx/l inux-2.6.32/drivers/staging/rt2860/common/rtmp_init .c_RTMPReadTxPwrPerRate.c.ready

extractedLnx/l inux-2.5.9/drivers/net/sk98l in/skge.c_GetConfigurat ion.c.ready

Fig. 23 Functions with repeated structures that may be factored out.

respective systems. This is listed in the table under ‘percent of MCC values’, meaning what
fraction of the total MCC summed over all the functions in thesystem is contained in the
high-MCC functions. For example, in the Windows system functions with an MCC above
50 account for more than 18% of the total MCC in the system.

According to Table 2 there are relatively few high-MCC functions and a large number
of low-MCC functions. This observation indicates that the distribution of MCC values is
skewed in all of the systems. An important class of skewed distributions are distributions
with heavy tails. The common definition of heavy-tailed distributions is that their tail is
governed by a power law, so Pr(X > x) ∝ x−α . To test the existence of a power-law tail one
can use the log-log complementary distribution plot. This plot should produce a straight line
for a perfect power law tail where its slope corresponds to the tail indexα. Such plots for

High-MCC Functions in the Linux Kernel 29

Total Max # high-MCC funcs % of MCC values
Name Version funcs MCC ≥ 100 > 50 ≥ 100 > 50
Windows WRK-v1.2 4074 246 18 84 7.0 18.6
FreeBSD 9 (stable) 67528 1316 103 490 5.3 11.8
OpenSolaris 8 21259 506 34 202 4.2 11.6
Linux 2.6.37.5 259137 587 138 765 1.6 5.1
Firefox 9 (stable) 26444 699 27 181 3.3 9.9
GCC 4.8.0 72542 1301 248 938 10.2 21.3
OpenSSL 1.0.0k 6560 371 22 78 9.0 18.2

Table 2 High-MCC function characteristics of four operating systems and three open source projects from
other domains.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

su
rv

iv
al

 p
ro

ba
bi

lit
y

MCC

Linux
FreeBSD

Solaris
Windows

Firefox
GCC

openSSL

Fig. 24 log-log complementary distribution plot of MCC values in fourdifferent systems.

the MCC values of functions in our four opperating systems and three other applications are
shown in Fig. 24. In all cases the lines look straight, and do not plunge downwards as they
would for short-tail distributions. Because we are interested in the tail of the distribution we
focused on the top 1% of the values and performed a linear regression. The results show
that the tail indices for all the systems are a bit higher than2, so these distributions have a
bounded variance. The common definition of heavy tailed distributions requires a tail index
in the range between 0 and 2, which leads to unbounded variance. Thus these distributions
are a border case: they have a power law tail, but with a tail index of slightly more than 2.

9 Discussion and Conclusions

We have shown that the practice as reflected in the Linux kernel regarding large and com-
plex functions diverges from common wisdom as reflected by thresholds used in various
automatic tools for measuring MCC. This is not surprising, as a simplistic threshold cannot
of course capture all the considerations involved in structuring the code. However, it does
serve to point out an issue that deserves more thorough empirical research. We now turn to
the implications of our findings.

30 Ahmad Jbara et al.

9.1 MCC and Linux Quality

The basic underlying question we faced was whether the high-MCC functions in the Linux
kernel constitute a code quality problem, or maybe such functions are actually acceptable
and the warnings against them are exaggerated. This was our final research question, 7, and
we can now discuss it based on all our findings.

Linux provides several examples where long and sometimes complex functions with
a high MCC seem to be justified. It is of course possible to split such functions into a
sequence of smaller functions, but this will be an artificialmeasure that only improves the
MCC metric, and does not really improve the code. On the contrary, it may even be claimed
that such artificial dissections degrade the code, by fragmenting pieces of code that logically
belong together.

For example, one class of functions that tend to have very high MCC values are those
that parse the options of some operation, in many cases the flag values of anioctl (I/O
control) system call for some device. There can be very many such flags, and the input
parameter has to be compared to all of them. Once a match is found, the appropriate action
is taken. Splitting the list of options into numerous shorter lists will just add clutter to the
code.

Another class of functions that tend to have high MCC values are functions concerned
with the emulation of hardware devices, typically belonging to unavailable (possibly legacy)
architectures. The device may have many operations that each needs to be emulated, and
furthermore this needs to take into account many different attributes of the device. Thus there
are very many combinations that need to be handled, but partitioning them into meaningful
subgroups may not be possible.

Despite the inherent size (and high MCC) of these functions,in many cases it may be
claimed that they do not in fact cause a maintenance burden. This can happen either because
they need not be maintained, or because they are actually notreally complex.

As we saw in Section 4, more than a third of our functions exhibited no or negligible
changes during the period of observation. In some of the other functions, which had larger
changes, there was only a single large-change event. Thus most functions actually displayed
strong stability the vast majority of the time. On average these functions do not require much
effort to maintain.

Alternatively, functions with a high MCC may not really be sodifficult to comprehend
and maintain. MCC counts branch points in the code. If the cumulative effect of many branch
points is to describe a complex combination of concerns, it may be hard for developers
and maintainers to keep track of what is going on. But if the branching is used to separate
concerns, as in the example of handling different flag valuesin an ioctl, this actually makes
the code readable.

Our conclusion is therefore that for the most part the high-MCC functions found in
Linux do not constitute a serious problem. On the contrary, they can serve as examples of
situations where prevailing dogmas regarding code structure may need to be lifted.

9.2 Refinements to the MCC Metric

The observation that the MCC value of a function may not reflect “real” complexity as it
is perceived by developers has been made before. Based on this, there have been sugges-
tions to modify the metric to better reflect perceived complexity. Two previously suggested
refinements are the following:

High-MCC Functions in the Linux Kernel 31

– Do not countcases in a largeswitch statement. This was mentioned already in McCabe’s
original paper [25], and is re-iterated in the MSDN documentation [28].

– Also do not count successiveif statements, as successive decisions are not as complex
as nested ones [12].

Both of these modifications together define McCabe’s “essential” complexity metric, leading
to a reduced value that assigns complexity only to more convoluted structures. But at the
same time McCabe suggests a lower threshold of only 4 for thismetric [26].

Generalizing the above, we suggest that one should not penalize “divide and conquer”
constructs where the point is to distinguish between multiple independent actions. This may
include nested decision trees in addition toswitch statements and sequences ofif statements.
Note, however, that this refines the simple syntactic definition, as it is crucial to ensure that
the individual conditions are indeed independent. For example, aswitch statement in which
a non-empty case falls through to the nextcase violates this independence, and thus adds
complexity to the code.

The above suggestions are straightforward consequences ofapplying the principle of
independence to basic blocks of code. However, this does notyet imply that they lead to
any improvements in terms of measuring complexity. This would require a detailed study of
code comprehension by human developers, which we leave for future work.

One more aspect that should be considered in MCC refinement isregularity. It is reason-
able to think that regular functions need less effort to comprehend than irregular ones. As we
have already seen compression algorithms tend to reflect theregularity extent in functions.
This can be used to help in counterbalancing the exaggeratedvalues of the MCC metric. In
addition, we note based on our experience with Linux scheduling (e.g. [11]) that at least in
some cases complexity is much more a result of how the logic ofthe code is expressed than
a result of its syntactical structure. For example, even knowing the scheduling algorithm,
it was hard to understand how the code implements this algorithm, despite the fact that its
MCC was reasonably low. Thus syntactic metrics like MCC cannot be expected to give the
full picture.

9.3 Threats to Validity

Our results are subject to several threats to validity.
Linux uses#ifdefs to enable configuration to different circumstances. Analyzing code

that contains such directives may be problematic due to unbalanced braces. We are aware
of this and dropped files that were tagged as syntactically incorrect by thepmccabe tool. In
spite of their low percentage, these files may contain interesting functions with high MCC
values that we would have missed.

While pmccabe is a well known tool for calculating MCC values, we found a bugin it:
it counted the caret symbol (bitwise xor) as adding to the MCCvalue. We wrappedpmccabe

with code that fixed this bug, and manually confirmed the results for selected functions.
However, other bugs may exist in this and other tools.

In assessing the evolution of high-MCC functions, we actually rely on the MCC values.
This is not necessarily right because a function may change without affecting the control
constructs, or it may be that one construct was deleted but another was added. Thus our
counts of changes may err on the conservative side. Our survey on perceived complexity
also suffers from a few threats. For example, grading 92 functions within 2 hours is difficult
and causes fatigue, which may affect the grading of the last functions. Moreover, a learning
effect may also occur.

32 Ahmad Jbara et al.

The survey of perceived complexity suffers from being subjective. It would have been
good to also include some low-MCC functions in this survey, to see whether subjects distin-
guish between them and the high-MCC functions. In subsequent work we are also comple-
menting this work by using a controlled experiment involving tasks related to code compre-
hension, specifically understanding, fixing bugs, and adding features [18].

Regarding external validity, we have verified that high-MCCfunctions exist also in other
operating systems and in some specific systems from other domains, and are not unique to
Linux. However, these are only preliminary results as we only examined one specific system
from each domain. Also, our results are limited to systems coded in C, and do not necessarily
generalize to systems written in an object-oriented style.

9.4 Future Work

One avenue for additional work is to assess the prevalence ofhigh-MCC functions. It is
plausible that an operating system kernel is more complex than most applications, due to the
need to handle low-level operations. Although our results have shown that such functions
also exists in other domains it would be interesting to repeat this study for more systems in
these domains and even move to new domains.

Another important direction of additional research is empirical work on comprehension
and how it correlates with MCC. This is especially needed in order to justify or refute sug-
gested modifications to the metric, and indeed alternative metrics and considerations, and
improve the ability to identify complex code. For example, our perceived complexity survey
identified formatting and backwardsgotos as factors that should most probably be taken into
account. An interesting challenge is to try and see whether the functions with spaghettigotos
could have been written concisely in a more structured manner.

Regarding the correlation between perceived complexity and regularity as reflected by
the Lempel-Ziv algorithm we think that retaining formatting attributes (such as indentation
and linebreaks) besides the control structure is a reasonable direction as these attributes may
affect regularity and perceived complexity.

Finally, in the context of studying Linux, the main drawbackof our work is its focus on a
purely syntactic complexity measure. It would be interesting to follow this up with semantic
analysis, for example what happens to the functionality of high-MCC functions that seem to
disappear into thin air. Thus this study may be useful in pointing out instances of interesting
development activity in Linux.

References

1. B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan, “Can we refactor conditional compila-
tion into aspects?” In 8th Intl. Conf. Aspect-Oriented Softw. Dev., pp. 243–254, Mar 2009,doi:
10.1145/1509239.1509274.

2. R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality benchmarking for improving
software maintainability”. Softw. Quality J. 20(2), pp. 287–307, Jun 2012,doi:10.1007/s11219-011-
9144-9.

3. T. Ball and J. R. Larus, “Using paths to measure, explain, and enhance program behavior”. Computer
33(7), pp. 57–65, Jul 2000,doi:10.1109/2.869371.

4. P. Bame, “pmccabe”. URL http://parisc-linux.org/˜bame/pmccabe/overview.html. (Visited 18 Sep 2011).
5. A. B. Binkley and S. R. Schach, “Validation of the coupling dependency metric as a predictor of run-

time failures and maintenance measures”. In 20th Intl. Conf. Softw. Eng., pp. 452–455, Apr 1998,doi:
10.1109/ICSE.1998.671604.

High-MCC Functions in the Linux Kernel 33

6. A. Capiluppi and D. Izquierdo-Cortázar, “Effort estimation of FLOSS projects: A study of the Linux
kernel”. Empirical Softw. Eng. 18(1), pp. 60–88, Feb 2013,doi:10.1007/s10664-011-9191-7.

7. B. Curtis, J. Sappidi, and J. Subramanyam, “An evaluation of the internal quality of business
applications: Does size matter?” In 33rd Intl. Conf. Softw. Eng., pp. 711–715, May 2011,doi:
10.1145/1985793.1985893.

8. B. Curtis, S. B. Sheppard, and P. Milliman, “Third time charm: Stronger prediction of programmer
performance by software complexity metrics”. In 4th Intl. Conf. Softw. Eng., pp. 356–360, Sep 1979.

9. G. Denaro and M. Pezzè, “An empirical evaluation of fault-proneness models”. In 24th Intl. Conf. Softw.
Eng., pp. 241–251, May 2002,doi:10.1145/581339.581371.

10. E. W. Dijkstra, “GoTo statement considered harmful”. Comm. ACM 11(3), pp. 147–148, Mar 1968,
doi:0.1145/362929.362947.

11. Y. Etsion, D. Tsafrir, and D. G. Feitelson, “Process prioritization using output production: scheduling
for multimedia”. ACM Trans. Multimedia Comput., Commun. & App. 2(4), pp. 318–342, Nov 2006,
doi:10.1145/1201730.1201734.

12. W. Harrison, K. Magel, R. Kluczny, and A. DeKock, “Applying software complexity metrics to program
maintenance”. Computer 15(9), pp. 65–79, Sep 1982,doi:10.1109/MC.1982.1654138.

13. I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring maintainability”. In 6th Intl.
Conf. Quality Inf. & Comm. Tech., pp. 30–39, Sep 2007,doi:10.1109/QUATIC.2007.8.

14. I. Herraiz and A. E. Hassan, “Beyond lines of code: Do we need more complexity metrics?” In Making
Software: What Really Works, and Why We Believe It, A. Oram and G. Wilson (eds.), pp. 125–141,
O’Reilly Media Inc., 2011.

15. A. Hindle, M. W. Godfrey, and R. C. Holt, “Reading beside the lines: Indentation as a proxy for
complexity metrics”. In 16th IEEE Intl. Conf. Program Comprehension, pp. 133–142, Jun 2008,doi:
10.1109/ICPC.2008.13.

16. A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in software evolution”. J. Syst. & Softw.
83(3), pp. 485–501, Mar 2010,doi:10.1016/j.jss.2009.09.042.

17. A. Jbara and D. G. Feitelson, “Characterization and assessment of the Linux configuration complexity”.
In 13thIEEE Intl. Working Conf. Source Code Analysis & Manipulation, Sep 2013.

18. A. Jbara and D. G. Feitelson, “Code regularity may compensate for high MCC and LOC: Initial results”.
2013. (In preparation).

19. A. Jbara, A. Matan, and D. G. Feitelson, “High-MCC functions in the Linux kernel”. In 20th IEEE Intl.
Conf. Program Comprehension, pp. 83–92, Jun 2012,doi:10.1109/ICPC.2012.6240512.

20. C. Jones, “Software metrics: Good, bad, and missing”. Computer 27(9), pp. 98–100, Sep 1994,doi:
10.1109/2.312055.

21. H. Koziolek, B. Schlich, and C. Bilich, “A large-scale industrial case study on architecture-basedsoft-
ware reliability analysis”. In 21st Intl. Symp. Software Reliability Eng., pp. 279–288, Nov 2010,doi:
10.1109/ISSRE.2010.15.

22. D. L. Lanning and T. M. Khoshgoftaar, “Modeling the relationship between source code complexity and
maintenance difficulty”. Computer 27(9), pp. 35–40, Sep 1994,doi:10.1109/2.312036.

23. M. M. Lehman and J. F. Ramil, “Software evolution—background, theory, practice”. Inf. Process. Lett.
88(1-2), pp. 33–44, Oct 2003,doi:10.1016/S0020-0190(03)00382-X.

24. J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis of the variability in forty
preprocessor-based software product lines”. In 32nd Intl. Conf. Softw. Eng., vol. 1, pp. 105–114, May
2010,doi:10.1145/1806799.1806819.

25. T. McCabe, “A complexity measure”. IEEE Trans. Softw. Eng. 2(4), pp. 308–320, Dec 1976,doi:
10.1109/TSE.1976.233837.

26. McCabe Software, “Metrics & thresholds in McCabe IQ”. URL
www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf, undated.(Visited 23 Dec 2009).

27. T. Mens, J. Ferńandez-Ramil, and S. Degrandsart, “The evolution of Eclipse”. In Intl. Conf. Softw. Main-
tenance, pp. 386–395, Sep 2008,doi:10.1109/ICSM.2008.4658087.

28. MSDN Visual Studio Team System 2008 Development Developer Center, “Avoid excessive complex-
ity ”. URL msdn.microsoft.com/en-us/library/ms182212.aspx, undated. (Visited 23 Dec 2009).

29. G. J. Myers, “An extension to the cyclomatic measure of program complexity”. SIGPLAN Notices
12(10), pp. 61–64, Oct 1977,doi:10.1145/954627.954633.

30. N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component failures”. In 28th Intl. Conf.
Softw. Eng., pp. 452–461, May 2006,doi:10.1145/1134285.1134349.

31. N. Ohlsson and H. Alberg, “Predicting fault-prone software modules in telephone switches”. IEEE Trans.
Softw. Eng. 22(12), pp. 886–894, Dec 1996,doi:10.1109/32.553637.

34 Ahmad Jbara et al.

32. H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, “Empirical validation of three software
metrics suites to predict fault-proneness of object-oriented classes developed using highly iterative or
agile software development processes”. IEEE Trans. Softw. Eng. 33(6), pp. 402–419, Jun 2007,doi:
10.1109/TSE.2007.1015.

33. P. Oman and J. Hagemeister, “Construction and testing of polynomials predicting software maintainabil-
ity ”. J. Syst. & Softw. 24(3), pp. 251–266, Mar 1994,doi:10.1016/0164-1212(94)90067-1.

34. F. Sauer, “Eclipse metrics plugin 1.3.6”. URL metrics.sourceforge.net/, Jul 2005. (Visited 23 Dec 2009).
35. N. Schneidewind and M. Hinchey, “A complexity reliability model”. In 20th Intl. Symp. Software Reli-

ability Eng., pp. 1–10, Nov 2009,doi:10.1109/ISSRE.2009.10.
36. M. Shepperd, “A critique of cyclomatic complexity as a software metric”. Software Engineering J. 3(2),

pp. 30–36, Mar 1988,doi:10.1049/sej.1988.0003.
37. M. Shepperd and D. C. Ince, “A critique of three metrics”. J. Syst. & Softw. 26(3), pp. 197–210, Sep

1994,doi:10.1016/0164-1212(94)90011-6.
38. Q. D. Soetens and S. Demeyer, “Studying the effect of refactorings: A complexity metrics perspective”.

In 7th Intl. Conf. Quality Inf. & Comm. Tech., pp. 313–318, Sep 2010,doi:10.1109/QUATIC.2010.58.
39. E. Soloway and K. Ehrlich, “Empirical studies of programming knowledge”. IEEE Trans. Softw. Eng.

SE-10(5), pp. 595–609, Sep 1984,doi:10.1109/TSE.1984.5010283.
40. SRI, “Software technology roadmap: Cyclomatic complexity”. In URL www.sei.cmu.edu/str/str.pdf,

1997. (Visited 28 Dec 2008).
41. I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality analysis in open source software

development”. Inf. Syst. J. 12(1), pp. 43–60, Jan 2002,doi:10.1046/j.1365-2575.2002.00117.x.
42. G. Stark, R. C. Durst, and C. W. Vowell, “Using metrics in management decision making”. Computer

27(9), pp. 42–48, Sep 1994,doi:10.1109/2.312037.
43. R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis of evolving software sys-

tems using the Gini coefficient”. In 25th Intl. Conf. Softw. Maintenance, pp. 179–188, Sep 2009,doi:
10.1109/ICSM.2009.5306322.

44. VerifySoft Technology, “McCabe metrics”. URL www.verifysoft.com/enmccabemetrics.html, Jan
2005. (Visited 23 Dec 2009).

45. E. J. Weyuker, “Evaluating software complexity measures”. IEEE Trans. Softw. Eng. 14(9), pp. 1357–
1365, Sep 1988,doi:10.1109/32.6178.

46. J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding”. IEEE Trans.
Information Theory IT-24(5), pp. 530–536, Sep 1978,doi:10.1109/TIT.1978.1055934.

