Noname manuscript No.
(will be inserted by the editor)

High-MCC Functions in the Linux Kernel

Ahmad Jbara - Adam Matan - Dror G. Feitelson

the date of receipt and acceptance should be inserted later

Abstract McCabe’s Cyclomatic Complexity (MCC) is a widely used metor the com-
plexity of control flow. Common usage decrees that functishsuld not have an MCC
above 50, and preferably much less. However, the Linux kenotudes more than 800
functions with MCC values above 50, and over the years 366timms have had an MCC
of 100 or more. Moreover, some of these functions undergensite evolution, indicating
that developers are successful in coping with the suppagdcbmplexity. Functions with
similarly high MCC values also occur in other operating eyt and domains, including
Windows. For example, the highest MCC value in FreeBSD is618buble the highest
MCC in Linux.

We attempt to explain all this by analyzing the structureighiMCC functions in Linux
and showing that in many cases they are in fact well-stradtalbeit we observe some
cases where developers indeed refactor the code in ordedtce complexity). Moreover,
human opinions do not correlate with the MCC values of thesetfons. A survey of per-
ceived complexity shows that there are cases where high M@€tibns were ranked as
having a low complexity. We characterize these cases amifigapecific code attributes
such as the diversity of constructs (not onlywétch but alsoifs) and nesting that correlate
with discrete increases in perceived complexity.

These observations indicate that a high MCC is not necégsarimpediment to code
comprehension, and support the notion that complexity ailoe fully captured using sim-
ple syntactic code metrics. In particular, we show that ety in the code (meaning repe-
titions of the same pattern of control structures) coreslatith low perceived complexity.

Keywords Software Complexity McCabe Cyclomatic Complexity Linux Kernel -
Perceived ComplexityCode Regularity

A. Jbara
School of Computer Science and Engineering, Hebrew Uniye8i904 Jerusalem, Israel.
E-mail: ahmadjbara@cs.huji.ac.il

A. Matan
School of Computer Science and Engineering, Hebrew Uniyegi904 Jerusalem, Israel.

D. G. Feitelson
School of Computer Science and Engineering, Hebrew Uniye8i904 Jerusalem, Israel.
E-mail: feit@cs.huji.ac.il

2 Ahmad Jbara et al.

1 Introduction

Mitigating complexity is of pivotal importance in writingoeputer programs. Complex
code is hard to write correctly and hard to maintain, leadmgnore faults [22,5]. As a
result, significant research effort has been expended oninigftode complexity metrics
and on methods to combine them into effective predictorodeaquality [31,9,32]. Indus-
trial testimony indicates that using complexity metriceypdes real benefits over simple
practices such as just counting lines of code (e.g. [20,33]).

One early metric that has been used in many studies is Mc€8&lyelomatic Complex-
ity (MCC) [25]. This metric essentially counts the numbetinéar paths through the code
(the precise definition is given below in Section 2). In thigioal paper, McCabe suggests
that procedures with an MCC value higher than 10 should bettew or split in order to
reduce their complexity, and other somewhat higher thidshwve been suggested by oth-
ers (e.g. [28,40,41,44,7]). In general, proposed threlshale typically well below 50, and
there appears to be some agreement that procedures withhigingr values are extremely
undesirable.

Nevertheless, in the context of a study of Linux evolutior,vave found functions with
MCC values in the hundreds [16]. This chance discovery leaiget of research questions:

1. What are the basic characteristics of high-MCC functdBpecifically,

1.1 How common are such high-MCC functions? In other wordstleey just a fluke or
a real phenomenon reflecting the work practices of many dpeet?

1.2 What causes the high MCC counts? One may speculate thaath the result of
large flatswitch statements, that do not reflect real complexity. But if ottmare
complex and less regular constructs are found this raiseguéstion of how devel-
opers cope with them.

1.3 Does MCC correlate with other metrics, as has been showhreipast? Or does it
provide independent complexity information?

2. Do high-MCC functions evolve with time? If these functcare “write once” functions
that serve some fixed need and are never changed, then notmeghy the original author
really needs to understand them. But if they are modified niamgs as Linux continues
to evolve, it intensifies the question of how do the maintasimepe with the supposedly
high complexity.

3. What influences the perception of complexity? Specifjcall
3.1 Does a high MCC correlate with perceived complexity?theowords, does MCC

indeed capture the essence of complexity?

3.2 Can we find discrete elements of complexity? In other /arein we point out spe-
cific code attributes that, if present, make a function appeae complex? This is
an extremely important question with respect to complexigtrics, as an affirma-
tive answer may indicate that complexity is an additive propof code attributes.

3.3 Is avisual representation of high-MCC functions bdttan code listings?

4. What other ingredients of complexity may be missing frol@ @GP In particular, in our
work we found that some high-MCC functions have a very ragtlaicture. This raised
the question whether regularity may counteract the sugposeplexity reflected by
the high MCC.

5. Are all the high-MCC functions we found really required,can some of this code be
replaced or refactored? This issue reflects the tradeo# Bgrdevelopers, where some-
times allowing additional code with high complexity mesris nevertheless considered
better than trying to minimize it.

High-MCC Functions in the Linux Kernel 3

6. Are the high-MCC functions unique to Linux, or do they adgapear in other operating
systems and domains?

7. Altogether, do the high-MCC functions indicate code gyadroblems with the Linux
kernel?

To gain insight into these issues we analyzed the functiohsiux kernel version 2.6.37.5
that have MCC-100, which turn out to have MCC values ranging up to 587—wayab
the scale that is considered reasonable. We also analyeeyotution of all 369 functions
that had MCC>100 in any of the Linux kernel versions released since th@lnelease of
version 1.0 in 1994 (more than a thousand versions). In iaddite examined three other
operating systems and three systems from different domailigindows Research Kernel,
OpenSolaris, FreeBSD, GCC, Firefox, and OpenSSL — and folhatdthey also contain
similar high-MCC functions. The highest MCC values were, Z15, 1316, 1301, 699, and
371 respectively.

In a nutshell, we found that (in Linux) the most common sowthigh MCC counts
is large trees off statements, although several cases are indeed attrilutedyeswitchs.
33% of the functions do not change, but the others may chamgderably. About 5% of
the functions exhibit extreme changes in MCC values thagee#xplicit modifications to
their design, indicating active work to reduce compleXitie speculate that the ability to
work with these functions stems from the fact thattchs and large trees aofs embody a
separation of concerns, where each call to the function sellgcts a small part of the code
for execution. This is especially true if they are nesteddnheother, rather than coming
one after the other, so this explanation is especially agitfor the deeply-nested functions.
On the other hand we also observed some cases of spaghlettigbs, which are not
directly measured by MCC. Such observations motivate stgdgiternative ways in which
code structure may be analyzed when assessing the restdtimglexity. In particular, we
suggest code regularity as an important attribute that rneypensate for complexity.

The remainder of the paper is structured as follows. In thx section we define MCC
and review its use. We characterize high-MCC functions elttnux kernel in Section 3,
and their evolution in Section 4. Results of the survey o€pmed complexity are presented
in Section 5, and the relationship with regularity in Seté% Section 7 discusses the pos-
sibility of reducing high-MCC code. High-MCC functions irth@r operating systems and
domains are examined in Section 8. Discussion, significahoar findings, and further re-
search directions are presented in Section 9. This paparastanded version of a previous
conference paper [19]. The main additions are added expatation (more subjects and
additional experiments), the definition of a metric for cadgularity and its effect, an ex-
amination of evidence for cloning, and showing that high-®/@nctions exist also in other
operating systems and domains.

2 McCabe’s Cyclomatic Complexity

McCabe’s cyclomatic complexity (MCC) is based on the grdmotetic concept of cyclo-
matic number, applied to a program’s control-flow graph. Tibees of such a graph are
basic blocks of code, and the edges denote possible comtnolRfbr example, a block with
anif statement will have two successors, representing the "thgiion and the “else” op-
tion. The cyclomatic number of a graghs

V(g)=e—n+2p

4 Ahmad Jbara et al.

wherenis the number of nodegthe number of edges, amdhe number of connected com-
ponents. (In a computer program, each procedure would hgeaage connected component,
and the end result is the same as adding the cyclomatic nsrobaitl of them.) McCabe
suggested that the cyclomatic number of a control-flow graphesents the complexity of
the code [25]. He also showed that it corresponds to the nuaitieearly independent code
paths, and can therefore be used to set the minimal numbestefthat should be performed.

Another way to characterize the cyclomatic number of a grepélated to the notions of
structured programming, where all constructs have singly @nd exit points. The control-
flow graph is then planar, and the cyclomatic number is equideg number of faces of the
graph, including the “outside” area. McCabe also demotetra straight-forward intuitive
meaning of the metric: it is equal to the number of condititatesnents in the program plus
1 (if, while, etc.). If conditions are composed of multiple atomic peatés, we could also
count them individually; this is sometimes called the “exted” MCC [29]. Note that MCC
counts points of divergence, but not joins. It is thus ingemsto unconditional jumps such
as those induced kypto, break, OF return.

2.1 Thresholds on MCC

In principle MCC is unbounded, and intuition suggests thghtvalues reflect potentially
problematic code. It is therefore natural to try and definarashold beyond which code
should be checked and maybe modified. McCabe himself, in filginal paper which in-
troduced MCC, suggests a threshold of 10 [25], and this @ thls value used by the code
analysis tool sold by his company today [26]. The EclipserMsgiplugin also uses a thresh-
old of 10 by default, and suggests that the method be sptitdféxceeded [34]. VerifySoft
Technology suggest a threshold of 15 per function, and 100ilpg44]. Logiscope also
uses a threshold of 15 [41]. The STAN static analysis toatgi@ warning at 15, and con-
siders values above 20 an error [27]. The complexity metrioglule of Microsoft Visual
Studio 2008 reports a violation of the cyclomatic complexitetric for values of more than
25 [28]. The Carnegie Mellon Software Engineering Inséitdefined a four-level scale as
part of their (now legacy) Software Technology Roadmap.[#0gh risk was associated
with values of MCC above 20, and very high risk with valuegéarthan 50. Heitlager et al.
used these risk levels and suggested a complexity ratirgnselbased on the percentage of
LOC falling within each risk level [13].

All the above thresholds consider functions in isolatioerifySoft also suggests a
threshold on the sum of all functions in the same file. An alitive approach is to con-
sider the distribution of MCC values. The Gini coefficiensed to measure inequality in
economics, was used by Vasa et al. to characterize thebdititn of different metrics in-
cluding MCC [43]; he found that the distribution was highkesved, as we do too. Stark et
al. propose a decision chart that plots the cumulativeidigton function (CDF) of MCC
values on a logarithmic scale, and if the CDF falls below daterdiagonal line then the
project as a whole should be reviewed [42]; in brief, thig lirquires 20% of the functions
to have an MCC of 1, allows about 60% to be above 10, and dgctateupper bound of
90. However, it seems that this was not picked up by othex$,uaing simple thresholds
remains the prevailing approach.

High-MCC Functions in the Linux Kernel 5

2.2 Critiqgue of MCC and Correlation with LOC

It should be noted that MCC is not universally accepted asoal gomplexity metric, and it
has been challenged on both theoretical and experimerahds.

Perhaps the most common objection to using MCC as a completric is its strong
correlation with lines of code (LOC) [36,37,14]. This cdation has been demonstrated
many times, and indeed, we find that also in the Linux kernelcibrrelation coefficient of
MCC and LOC is a relatively high 0.88. But if we focus on onlg thigh-MCC functions,
the correlation is much lower. We revisit this issue in Set8.4.

Ball and Larus note that with predicates there can be betwees 1 and 2 paths
in the code, so the number of paths is a better measure of egitypthan the number of
predicates [3]. Others show that MCC only measures contrl omplexity but not data
flow complexity and has additional deficiencies [36,37]. &tjgular, MCC is intrinsic to
code, so it does not admit the possibility that code fragsiemeract with each other to either
increase or decrease the overall complexity [45]. Fin&lggappan et al. have shown that
while MCC is a good defect predictor for some projects, thiere single metric (including
MCC) that is good for all projects [30].

There is, however, no other complexity metric that enjoydewiacceptance and is free
of such criticisms, so MCC remains widely used to this daya@‘maintainability index’
includes MCC as one of its components [33], and Baggen etedntly used thresholds on
MCC in the context of creating a certification mechanism faimtainability [2]. Curtis et
al. use a criterion of MCC above 30 to identify ‘highly complemponents’, and find that
MCC is one of the four most frequent violations of good amettitiral or coding practice over
different languages [7]. The ‘weighted method count’ ntefor object-oriented software is
usually interpreted as the sum of the MCC over all methodsdiass. Recently, Capiluppi
et al. used MCC to evaluate the change in complexity of ssbgesevisions of the same file
in the Linux kernel [6], and Soetens et al. used it to checkagmumption that refactoring
reduces complexity (as it turns out, most refactoring da¢sifiect MCC) [38]. Thus, given
its wide use and availability in software development aistitg environments, MCC merits
an effort to understand it better.

2.3 Distribution of MCC in Linux

Our research question 1.1 concerned the prevalence of\{g@-functions. In a previous
study of the Linux kernel we found that the distribution of K& very skewed, with many
thousands of functions with extremely low MCC and few fuact with extremely high
MCC (the highest value observed was 620) [16]. In additiom feund that the distribution
has a heavy tail, namely one that decays according to a pewer |

Itis especially interesting to observe how this distribnthas changed with time. Such a
study reveals two seemingly contradictory findings [16isEiit was found that the absolute
number of high-MCC functions is growing with time: in versit.0 in 1994 there were only
15 functions with MCC of 50 or more, and in 2008 there were ntioa& 400 such functions.
At the same time it was also found that the distribution as alevts shifting towards lower
MCC values: In 1994 the median MCC was 4 and the 95th pereentik 20, but by 2008
the median was 2 and the 95th percentile was down to 13. Themsnmat the number of
low MCC functions is growing at a higher pace than the numibéigh-MCC functions.

6 Ahmad Jbara et al.

In this paper we focus on the tail of the distribution, namig functions with the
highest MCC values. This is the interesting part of the itigtion, because functions with
such high MCC values are thought to be too complex and shaildxist.

3 Analysis of High-MCC Functions in Linux

When studying the evolution of the Linux kernel, and in pautér how various code metrics
change with time, we found that some Linux kernel functioasehMCC values in the
hundreds [16]. Here we focus on high-MCC functions in vars266.37.5, released on 23
March 2011, as well as on the evolution of high-MCC functiansoss more than a thousand
versions released from 1994 to 2011.

3.1 Data Collection

To calculate the MCC we use thnccabe tool [4]. This tool also calculates the extended
MCQC, i.e. it also counts instances of logical operators iedfrates (&& and |). We use
the extended version, in order to avoid the confoundingceféé coding style (where a
programmer uses either nested conditionals or a logicabtqeo achieve the same effect).

Our scripts parse all the implementation files of each Linesnkl, and collect various
code metrics for functions with MCC above 100. However, imsocases the parsing is
problematic. In particular, the Linux kernel is litteredtiwvigifdef preprocessor directives,
that allow for alternative compilations based on variousfiguration options [24]. As we
want to analyze the full code base and not just a specific amafipn, we ignore such
directives and attempt to analyze all the code. As the iegutbde may not be syntactically
valid, the pmccabe tool may not always handle such cases correctly. Consdguesmall
part (around 1%) of the source code is not included in the aiglyAs a side note, the
conditional compilation itself may also add to the compexif the code, but we discuss
this issue in another paper [17]).

3.2 Description of High-MCC Functions

The functions with MCC values of 100 or more in Linux kerne8.37.5 have values rang-
ing up to 587. 104 of these functions come fromdheers subdirectory, with others coming
from arch (12 functions)fs (12 functions)sound (5 functions) net (3 functions),ib (1 func-
tion) andcrypto (1 function). The sources of all 369 functions with MECOO0 that ever
appeared in Linux are tabulated in Table 1. We manually emacha few of the top func-
tions in the drivers subdirectory and found them dominateghach statements of symbolic
constants. These constants essentially représethtodes for devices, different modes for
emulations, and usage tables of different human interfauiés.

Our research question 1.2 concerns the origin of high MCGi=WA high MCC can
be the result of any type of branching statemesisss in aswitch, if statements, or the
loop constructswhile, for, anddo. But in the high-MCC functions of Linux the origin is
usually multipleif statements otaseS in aswitch Statement, as shown in Fig. 1. These can
be nested in various ways. Somewhat common structures argeavitch with small trees
of ifs in many of itscases, or large trees dfs andelses. Logical operators, which can also

High-MCC Functions in the Linux Kernel 7

Directory ~ Subdirectory # high-MCC functions ~ Comments

drivers staging 65 new drivers being staged into the system
media 35
video 25
sound 25
SCSi 24
isdn 21
net 15
usb 14
char 14 character device drivers e.g. ttys and mice
gpu 11
block 9 block device drivers like IDE disks
others 27
total 285
arch m68k 6
sparc64 5
sparc 4
powerpc 4
parisc 4
x86 3
ia64 2
cris 1
mn10300 1
total 30
sound 0ss 18 cross platform Open Sound System
pci 2
isa 1
total 21
fs xfs 4
ext4 2
ncpfs 2
others 9
total 17
net ipv6 2
ipvd 2
core 2
802 1
atm 1
ieee80211 1
inet 1
total 10
others - 6

Table 1 Classification of the 369 high-MCC functions according te tlirectories that contain them.

be considered as branch points due to short-circuit evahyatlso make some contribution.
Loops are quite rare.

Apart from the highest-MCC function, which is an obviousliauf the rest of the distri-
bution shown in Fig. 1 is seen to decline rather slowly. Ijéethis version of Linux there
were 138 functions with MCE100, and 802 with MCE&50. Thus high-MCC functions are
not uncommon (albeit they are a very small fraction of thalt@inctions in Linux — those
with MCC of 50 or more constitute just 0.3%).

8 Ahmad Jbara et al.

600 T T T T T T T T T T
| 10000
‘ 9000 |
500 | 8000 T
‘ 3 7000
‘ g 6000 -
400 | g 5000 f] 4
1 < 4000
°
‘ © 3000 f
(@] a L]
O 300 I 2000 i
b= 1000 | 1
0
if for while case && Il
200 Construct
100
0

0O 10 20 30 40 50 60 70 80 90 100 110 120 130
Function number

Fig. 1 Distribution of constructs in high-MCC functions.

3.3 Visualization of Constructs and Nesting Structure

High-MCC functions are naturally quite long, and includeywenany programming con-
structs. As a result, it is hard to grasp their structurapprties. To overcome this problem
and provide better insights into research question 1.2,niveduce control structure dia-
grams (CSD) to visualize the control structure and nesiitgse are somewhat similar to
the diagrams used by Adams et al. [1] to visualize patternsiofg the C preprocessor.

In these diagrams (for example Figure 2) the bar across thesfiresents the length of
the function, which starts at the left and ends at the righto® this the nesting of different
constructs is shown, with deeper nesting indicated by arddexel. Each control type is
represented by a different shape and color. Each conseucet large loops) is scaled so
as to span the correct range of lines in the function. Thigdel easily identify the dominant
control structures, which are possible candidates foctefang.

Using the CSDs we easily observe each function’s nestingctstre and regularity,
which may affect the perceived complexity of the chdBome of the high-MCC functions
are relatively flat and regular. An example is shown in Figlt#is function starts with many
smallifs in sequence, and then has 9 lafgevith nested smalfs, two of which have large
else blocks with yet another level of nested smigdl. Despite the large number ©§ this
function is shallow and regular and does not appear coniptic®ther functions, like that
shown in Fig. 3, include deep nesting and appear to be morplated. Regularity and its
effect on perceived complexity are discussed in Section 6.

Recall that the high MCCs observed are predominantly difestatements anehses in
switch statements. This means that the flow is largely linear, wigmbhing used to select

1 Graphs for all functions analyzed are availablevatw.cs.huji.ac.il/“ahmadjbara/hiMCC.htm

High-MCC Functions in the Linux Kernel 9

goto

MXL_TuneRF

‘ mxI5005s

OIS COUEomy

Fig. 2 A function that is a largely flat sequenceits.

the few pieces of code that should actually be executed in i&ocation of the function.
Only a relatively small fraction of the functions includeofzs, and in most cases these are
small loops. Fig. 4 shows an example of a function that haatively many loops, and even
in this case they can be seen to be greatly outhnumberé&d Bydcases.

While most practitioners typically limit themselves tonginested structured program-
ming constructs, some also uggo. Thegoto instruction is one that breaks the function’s
structure and decreases code readability, in particulaniackwards jumps occur between
successive constructs [10]. The CSD visualizes the soatdestination points of eaghto
and their relative locations within the code. Fig. 5 showanegles of two functions that use
goto. In the firstgotos are used only to break out of nested constructs in caseaf and
go directly to cleanup code at the end of the function. Thissiglly considered acceptable.
But the second usgstos to create a very complicated flow of control, which is mucheno
problematic.

3.4 Correlation of MCC with Other Metrics

Research question 1.3 deals with the correlation of MCC wilter metrics. Indeed, one
of the criticisms of MCC is that it does not provide any sigrafit information beyond that
provided by other code metrics, notably LOC (lines of codék claim is that longer code
naturally has more branch points, and thus LOC and MCC aneleded. Indeed, when
comparing the MCC and LOC of all the functions in the Linuxr&r a significant correla-
tion is observed (Fig. 6). The correlation coefficient is3) &d the regression line indicates
that on average there are 3.8 lines of code for every bramihdMCC). However, there

10 Ahmad Jbara et al.

init301.c:SiS__ EnableBridge ‘

@

Fig. 3 A function with irregular ifs and relatively deep nesting.

‘ easycap__main.c:easycap_usb_probe

Fig. 4 A function with relatively many loops.

High-MCC Functions in the Linux Kernel

Al g LA

B
i
!
[

Pt

Fig. 5 Examples of functions using goto.

Fig. 6 Correlation of MCC with LOC for all functions in Linux kernél6.37.5.

12 Ahmad Jbara et al.

3000 T T T T 3000 T T T T
N
2500 | E 2500 B
2000 - 2000 | E
Q Q
9 1500 - g 9 1500 | N -
O o +
.
N
4 + i
+

500 600 300 400 500 600

Fig. 7 Correlation of MCC with LLOC and PLOC.

is some variability, with a few functions where the LOC oripst the MCC by a factor of 30
or more (to the left of the top line in the figure).

But if we focus on the high-MCC functions, the picture is sarhat different. The re-
sults are shown in Fig. 7, with a distinction between LLOG tton-comment non-blank
lines of code, and PLOC, the total number of lines. The Spaaiswank correlation coef-
ficients are 0.586 and 0.507, respectively, indicating aereté degree of correlation; and
indeed some functions have a relatively low MCC but high LOCyice versa. We used
Spearman’s coefficient rather than Pearson’s because ibie sensitive to correlations
when the relationships are not linear.

Another question is whether MCC is correlated with other plaxity metrics. As an
example, we checked the correlation of MCC with levels ofim@tion and nesting, based
on the premise that indentation reflects levels of nestimghagher complexity [15]. Note
that this has to be done carefully so as to avoid artifactsitieg from continuation lines
where indentation does not reflect the structure of the code.

The results are shown in Fig. 8. Obviously there is almostaroetation of MCC with
the average level of indentation or nesting in each fungtienified by calculating the cor-
relation coefficient). This reflects our findings that higl&® functions could be either flat
switchs and sequences 8, or else deep trees of nestes] so a high MCC can come with
either high or low nesting.

4 Maintenance and Evolution of High-MCC Functions

Linux is an evolving system [16]. It has shown phenomenaiviiioduring the 17 years
till the time the kernel we studied was released in 2011:igar$.0 had 122,442 lines of
actual code, and version 2.6.37.5 had 9,185,179 lines, arage annual growth rate of
29%. This testifies to Lehman'’s law of “continuing growth” afodving software systems
[23]. Obviously, most of the functions in the current rekedgin’t exist in the first release—

High-MCC Functions in the Linux Kernel 13

Average nesting

Average indentation
[$]
41
1

Fig. 8 Correlation of MCC with indentation and nesting.

Number of functions

10 11 12 13 20 21 22 23 24 25 26
Linux series

Fig. 9 The distribution of new high-MCC functions (defined as thasth MCC>100) in Linux series. Note
that the duration of the 2.6 series is much longer than theéquswnes.

they were added at some point along the way. And there weodwaistions that were part
of the kernel for some time and were later removed.

A function can achieve high MCC by incremental additionsglse a new function may
already have a high MCC when it is added. In fact, this hapgpémall versions as shown
in Fig. 9. (The relatively large number of new functions WMCC above 100 introduced
during the 2.6 series is due to the length of this series, lwhias started in December
2003.) Regarding incremental growth, note that high-MC@cfions are expected to be
hard to maintain. It is therefore interesting to investigtteir trajectory and check how
often they are changed, and this was our research questidfe 2lid this for all Linux
functions that achieved an MCC of 100 or more in any versiothefkernel. There were
369 such functions.

To get an initial insight about the evolution of high-MCC ttions, we calculate the
coefficient of variation (CV) of the MCC of each function infférent versions of Linux.

14

Ahmad Jbara et al.

Cumulative probability

0.2

0 050,05 057 V5, ¥ Ys

)

v 6 @

Coefficient of variation

1.8
1.6
1.4

4
1.2

0.8
0.6
0.4
0.2

Coefficient of variation

- ﬁﬁ
e
i

4

+

++ +

+H+ o+

+§ E
T+

++i\ , *

10

20 30
Number of changes

40

50

Fig. 10 Left: The distribution of the coefficient of variation of th&éCC of 369 high-MCC functions. Right:
Scatter plot showing relationship between number of times€ changed and the degree of change as
measured by the coefficient of variation (if the coefficientafiation equals 0 it means the MCC of this
function did not change).

300 160

75 I o207

2425 140 +
16-20--=-27 32

250
120 | 2

200 1 25
100

150 - 80

MCC
mcc

60
100

20+

50 -
20

0 L L L L L L L L 0 L L L L L L L 3
94 96 98 00 02 04 06 08 10 12 94 96 98 00 02 04 06 08 10 12

Fig. 11 Examples of functions whose MCC changed somewhat over timeontrol, andixj_ioct!

The coefficient of variation is the standard deviation ndized by the average. Thus if a
function never changes it will always have the same MCC, hadV will be 0. If its MCC
changes significantly with time, its CV can reach a value of &wen more. Fig. 10 shows
the distribution of the calculated CVs. About 33% of the filmts exhibit absolutely no
change in the MCC across different versions of the kernete it this does not necessarily
mean that the functions were not modified at all, as we are usilyg data about the MCC.
However it does indicate that in all likelihood the controbsture did not change. Another
large group of functions exhibit small to medium changes i8®/lover time. Examples
are shown in Fig. 14 Finally, some functions exhibited significant changeshigitMCC.
Examples are shown in Fig. 12.

2 In this and subsequent figures, we distinguish between ajeveint versions of Linux (1.1, 1.3, 2.1, 2.3,
and 2.5), production versions (1.0, 1.2, 2.0, 2.2, and hdwa as dashed lines), and the 2.6 series, which
combined both types. These are identified only by their mirord} number. TheX axis is calendar years
starting with the release of Linux in 1994.

High-MCC Functions in the Linux Kernel 15

120 M —— 140 M
24_.—22‘;[77777
100 | f 6200 b | 120 | jj“ 245
2
100 |
80 - g
2i4 80 -
L H 1.

60
‘,_J 60 -
250t

40 | 1 0
40

A L
20 - f 1 20 L
(182

0 0
94 9 98 00 02 04 06 08 10 12 94 9 98 00 02 04 06 08 10 12

mcc
mcc

Fig. 12 Examples of functions that exhibit significant changes oveet vortex_probel, andst_int_ioct!

120 T T T T T T T T 200

sy 180 -

L 16 20 4
100 265 160 -

80 | - 1 [
rl_f 120 +
: (6]
60 |- i 1 Q 1001
40 1 60 |
20l | 40 -
20 - 24
Lo 1pre2a 2
0 \ , 0
94 96 98 00 02 04 06 08 10 12 94 96 98 00 02 04 06 08 10 12

McC

Fig. 13 Examples of functions that exhibit large changes in productiversions: sg_ioctl and
SiS_EnableBridge.

The degree to which the MCC changes is only one side of thg. dtoprinciple a very
large change may occur all at once, or as a sequence of sicizdieges. Therefore it is also
interesting to check the number of times that the MCC was gbdmelative to the previous
version. This has to be done carefully, because the Lineasel scheme of using production
and development versions (described below) implies thagraéversions may be current at
the same time. Thus when a new branch is started, its prevas®on is typically near the
start of the previous branch, not at its end.

Fig. 10 shows a scatter plot that compares the degree of ehaitly the nhumber of
changes. The correlation between these two metrics tumn dae relatively strong, with
a Spearman’s rank correlation coefficient of 0.83. This shtivat additional changes tend
to accumulate. However, despite the rapid rate in which redeases of the Linux kernel
are made, the high-MCC functions do not change often. Thieelsignumber we saw was a
function whose MCC changed 50 times.

An especially interesting phenomenon is that sometimeg keege changes occur in
production versions. The Linux kernel, up to the 2.6 seeegployed a release scheme that
differentiated between development and production. @gmknt versions had an odd ma-
jor number and their minor releases were made in rapid ssimresProduction versions,
with even major numbers, were released at a much sloweraradethese releases were only
supposed to contain bug fixed and security patches. Howeueidata shows several in-
stances of large changes in the MCC of a function that occtirarmiddle of a production
version (Fig. 13 andortex_probel from Fig. 12). Such behavior contradicts the “official”
semantics of development vs. production versions. Butatlen some of these cases the

16 Ahmad Jbara et al.

700 T T T T T T T T 120

L .] 2.425]
600) 100 |
500 | 2]
2 80

400 |
Q Q
g g o

300 |

20
200 |
100 | — 20r
1 L2426 0 . . . Wrwweeti 16202732

0 .
94 96 98 00 02 04 06 08 10 12 94 96 98 00 02 04 06 08 10 12

Fig. 14 Examples of functions that exhibit a sharp drop in MCC resglfrom a design changeys32_ioct!
andusb_stor_show_sense.

change was done in a production version during the intemtaléen two successive devel-
opment versions.

In most functions that saw a significant change in MCC the M@&vgBut there were
also cases where the MCC dropped as shown in Fig. 14. Thestadgep is in function
sys32_ioctl. This is the function with the highest MCC ever, peaking & 82the later parts
of kernel version 2.2. At an earlier time, in version 2.3.#6&ad reached an MCC value of
563, but then in version 2.3.47 this dropped to 8. The reasmmawdesign change, where
a largeswitch was replaced by a table lookup [16]. A similar change occlmmefunction
usb_stor_show_sense, Where a large switch statement was replaced by a call to durestion
implementing a lookup table.

However, a sharp drop in MCC value does not necessarily measign change which
yields reduced complexity. For example, the functi@t_tty_cmd_PLUSF_FAX had MCC
154 in version 2.2.14. In version 2.2.15 it dropped to 3 amddtiginal code was replaced
by conditional calls to two other new functions. One of thasetions has MCC 154 ex-
actly as the original function, and the other has MCC 15. Titmeshigh-MCC code just
moved elsewhere. Likewise, in version 2.3.9 the functmnproc_read_lan_media_operation
had MCC 102, which dropped to 12 in version 2.3.10. The oalgiunction had two large
switchs which were cloned later in the same function. In versionl®.ghe twoswitchs were
replaced by two new functions. Each of the new functions @iaetd one of the original
switch statements and a new lookup table. The odd thing vedstth lookup tables did not
replace the switch statements and were not exploited ta@estciumplexity. Another example
of an artificial reduction in MCC is functiofd_ioctl_trans. The original function had many
long compoundf statements with heavy use of theoperator. In its reduced MCC version
the logicalor operator was replaced by the bitwisewhich is not counted by the MCC
metric.

The above examples may leave the impression that desiggetan reduce MCC are
purely technical. However, we also observed cases whenethuetion resulted from a de-
sign change requiring a good understanding of the logic®function, as the changes are
small and deeply interwoven within the code. An example ehsaifunction isnain in ver-
sions 2.4.25 and 2.4.26. The chief change in MCC resulted &efining 13 new secondary
functions ranging from 1 to 50 lines of code. While in the odulsion negative numbers were
used to indicate an error code when returning from a secgridaction, in the new version
these numbers were replaced by positive ones. In additidheiold version all exceptional
cases were handled locally, whereas in the new version tioengechanism was used; upon

High-MCC Functions in the Linux Kernel 17

200

140

16 20 27
180 2425
120 b 2426 — 1620 27
160
140 1 100 |
120 s L
Q Q
O 100 (8]
= =
80 g 60 - 2422
2
60 - 1 40 b
40 +
20
20
94 96 98 00 02 04 06 08 10 12 94 96 98 00 02 04 06 08 10 12
Fig. 15 Co-evolution of two related functions.
300 T T T T T T T T 200 P
2 1801 1620 7
250 | ! 1 25
160 -
123 140
200 249, 1
21 120
Q Q
O 150 B O 100 -
= =
80
100
60
40 +
50
20 -
94 96 98 00 02 04 06 08 10 12 94 96 98 00 02 04 06 08 10 12

Fig. 16 Evolution of thevt_ioctl function, which migrated from one file to another.

exception execution jumps to a label which is located at titeaf the function. All these
changes require intimate understanding of the function.

Other interesting phenomena that occurred during maintenavere co-evolution and
migration. Fig. 15 shows the co-evolution of two relateddiions. These functions are
do_mathemu N /arch/sparc64/math-emu/math.c, and do_one_mathemu in /arch/sparc/math-
emu/math.c. This occurs when two related functions evolve accordiraggonilar pattern. In
many cases this happens because one of the functions wamatlyigloned from the other.
In the above example, these are analogous functions intZ2wi64-bit architectures; when
a large change was implemented, it was done in both in phrAlso, in both cases the
change that was initially done in a development version veamafter propagated to the
contemporaneous production version.

An example of migration is shown in Fig. 16: theioctl function, which moved from
/drivers/char/vt.c (MCC of 159 in kernel 2.5.35) t@drivers/char/vt_ioctl.c (Same MCC of
159 in kernel 2.5.36). In fact, these two functions are inddentical. As another example,
cpia_write_proc from /drivers/char/cpia.c, with an MCC of 226 in kernel 2.2.26, morphed into
cpia_write_proc in /drivers/media/video/cpia.c, with an MCC of 211 in kernel 2.4.0 (via the
2.3.99-pra series, where it already was 211). The change in MCC refleate £hanges in
the structure of the function. Much larger changes occunrieeinx86_emulate_memop from
/drivers/kvm/x86_emulate.c, with an MCC of 285 in 2.6.24.7, morphed irtg6_emulate_insn
in /arch/x86/kvm /x86_emulate.c with an MCC of 174 in 2.6.25. While the second function is
partly based on the first, significant changes were made hend€C changed considerably
as well.

18 Ahmad Jbara et al.

To summarize, high-MCC functions in the Linux kernel evolwea variety of ways.
This includes cases where a function changes significamtly time in a series of individ-
ual changes, and cases where functions are split or corypleggructured. Taken together,
these observations provide evidence for the capabilityegklbpers to handle these seem-
ingly complex functions. In the next two sections we invgate whether they are indeed so
complex.

5 Survey of Perceived Complexity

The raison cetre of the definition of MCC is the desire to be able to idgrtdmplex code,
with the further goal of avoiding or restructuring it. Thsalso the reason for specifying
threshold values, and requiring functions that surpassettt@esholds to have proper justifi-
cation. But the question remains whether MCC indeed capomplexity as perceived by
human programmers.

5.1 Correlation of MCC and Perceived Complexity

To gain some insight into this question, which is our redeargestion 3.1, we conducted a
survey of the perceived complexity of high-MCC functionsieTsurvey included 92 high-
MCC functions that had been identified at the time. It was thasel4 participants, 8 from a
summer Linux kernel workshop (advanced undergraduates sath industrial experience,
but with no prior kernel experience), and 6 that were reeduiater (all were good students
after an advanced course in C programming). The goal watdifg notions of perceived
complexity, not to quantify the effect of complexity on deyeger performance. Thus the
survey was conducted in two hour-long sessions, in whictiqiaants were required to page
through each function for one minute and then give it a graset on how complex (hard
to understand) it looked to them. Grades where given on apatselative scafe These
individual scales where then linearly normalized to thegeaf to 10, and the average and
standard deviation of the grades for each function were cbetp The order in which the
functions were presented was not related to MCC or any ottrduige, but all participants
received the list in the same order. At the end of the survastigipants were given an
opportunity to comment in writing and some indeed providetes with their insights.

The results, shown in Fig. 17, indicate little correlatiogtleeen MCC and perceived
complexity for high-MCC functions. In particular, some @itions with relatively low MCC
(within this select set of high-MCC functions) were gradsdhaving either very high or very
low perceived complexity. In the following we focus on thésections that were perceived
as very different but this was not reflected by their MCC.

The functions that had very low average scores (and to arldsggee also those with
very high scores) also had relatively low standard deviati@s indicated by the short error
bars. This is partly a result of scores having a limited raofd®-10; an average of say 1 then
implies that it is highly improbable to have any high scoBagt some of the functions with a
moderate average complexity actually had both low and higles of perceived complexity,
leading to a high standard deviation. This is partly due éf#fet that complexity is not well
defined and the grading was subjective. For example, ondaegyfunction with high MCC

3 This was chosen to enable them to respond to surprises. Ttheyisee a function they think is “very
complex” and give it a high mark, and later another that is evealnmiore complex, they can still express
this using a value beyond their previously used range.

High-MCC Functions in the Linux Kernel 19

Perceived complexity of Linux hi-MCC functions
10 -

Normalized complexity

0 T T T T — T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260
Function MCC

Fig. 17 Scatter plot showing relationship between measured MCC ancefved complexity. The small
markings are individual grades. The average grade for eauttiun is marked by a larger diamond, and the
error bars denote standard deviations.

switch (mod_det_stat0) {

case 0x00: p = "mono"; break;

case 0x01: p = "stereo"; break;

case 0x02: p = "dual"; break;

case 0x04: p = "tri"; break;

case 0x10: p = "mono with SAP"; break;
case Oxll: p = "stereo with SAP"; break;
case 0x12: p = "dual with SAP"; break;
case Ox14: p = "tri with SAP"; break;
case Oxfe: p = "forced mode"; break;
default: p = "not defined";

}

Fig. 18 Example of simplewitch structure fromlog_audio_status.

value suffered a strong disagreement among survey patitspThis could be because this
function is composed of a mix of simple as well as messy setgnen

5.2 Aspects of Complexity Missed by MCC

The functions that were ranked as low complexity are redétieasy to characterize. These
are generally functions dominated by a very regul@tch construct, where theases are
very small and straightforward. For example, the switch rhayused to assign error or
status message strings to numerical codes, leading to ke sirgjruction in eachase as
illustrated in Fig. 18.

In addition to these single-instructiofases, survey participants noted that long se-
qguences of emptyases should not be counted as adding complexity; indeed, thressgaiv-
alent to predicates in which many options are connected d¢igadbor (and of the tools we
surveyed, VerifySoft indeed does not count emgies). Furthermore, repeated use of the
same code template (easily identified using a CSD), e.g.on@s$equence of smafk that
all have exactly the same structure, also reduces the peccedmplexity considerably. An
example is shown in Fig. 19.

20 Ahmad Jbara et al.

bytes.high = 0x14;

bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr4.reg;
if (!'daa_load(&bytes, j))

return O;

bytes.high = j->m_DAAShadowRegs.SOP_REGS.SOP.cr3.reg;
bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr2.reg;
if (!'daa_load(&bytes, j))

return O;

bytes.high = j->m_DAAShadowRegs.SOP_REGS.SOP.crl.reg;
bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr0.reg;
if (!'daa_load(&bytes, j))

return O;

if (!'SCI_Prepare(j))
return O;

bytes.high = O0x1F;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr7.reg;
if (!daa_load(&bytes, j))

return O;

bytes.high = j->m_DAAShadowRegs.X0P_xr6_W.reg;
bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr5.reg;
if (!daa_load(&bytes, j))

return O;

bytes.high = j->m_DAAShadowRegs.X0P_REGS.XOP.xr4.reg;
bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr3.reg;
if (!daa_load(&bytes, j))

return O;

bytes.high = j->m_DAAShadowRegs.X0P_REGS.XOP.xr2.reg;
bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xrl.reg;
if (!daa_load(&bytes, j))

return O;

bytes.high = j->m_DAAShadowRegs.X0P_xrO_W.reg;
bytes.low = 0x00;

if (!daa_load(&bytes, j))

return O;

if (!SCI_Prepare(j))
return O;

Fig. 19 Example of a sequence of independéstwith the same structure, fromj_daa_write. The full
function includes 113 sudifs.

At the other end of the spectrum, functions that receivey kégh grades for perceived
complexity tended to exhibit either of two features. One Wes use ofgotos to create
spaghetti-style code, in which target labels are intesgzemwithin the function’s code in
different locations. An example was shown in Fig. 5. Notd tech ggoto is deterministic,
and therefore not counted by the MCC metric as a branch pbiig. should be contrasted
with forward gotos that are used to break out of a complex control structurage of an
error condition. Suclgotos were tolerated by survey participants and even considesed
improving structure.

High-MCC Functions in the Linux Kernel 21

if (ret_val
&& !item_pos) {
pasted =
B_N_PITEM_HEAD
(tb->L[0],
B_NR_ITEMS
(tb->
L[o]) -
15
1_pos_in_item +=
I_ENTRY_COUNT
(pasted) -
(tb->
lbytes -
13
}

Fig. 20 Example of excessive line breaks that seem to make the coderhattler than easier to understand,
from balance_leaf.

The second feature that added to perceived complexity wasuah formatting. One
manifestation of such formatting was using only 2 characsrthe basic unit of indentation
(instead of the common 8-character wide tab). This led tatitke looking more dense and
made it harder to decipher the control structure. Anotharifestation was the use of exces-
sive line breaks, even within expressions, as illustratefgig. 20. These observations hark
back to the work of Soloway and Ehrlich [39], who show thatreerpert programmers have
difficulty comprehending code that does not conform to s$tna conventions. Obviously
the problem could be avoided by using a pretty-printing ireuto reformat the code, but
evidently this was not done.

5.3 Comparing Functions to Identify Elements of Complexity

The functions that were found to have the lowest perceivetpbexity provide an especially
interesting case study. These functions are generallydbasdargeswitch statements, and
most if not all of their MCC score is derived frogases in thesewitchs. We start by ranking
these functions according to their perceived complexity.cBmparing neighboring func-
tions in this ranking we can then identify code charactesghat led to discrete increases
in perceived complexity (thus answering research que&i2n This could be done in the
first 7 functions; beyond that, it was not possible to idgntitlividual discrete changes any
more.

The function with the lowest perceived complexity scorendeed very simple. This
function has one parameter, and its body comprises a singt statement with a long se-
guence okases that are compared against the function’s parameter. Tihes/af thecases
are numeric constants and their bodies are single-linéblth@treturn a string value. More-
over, thecases are grouped into sets of logically related cases. Theseasetparagraphed
(separated by blank lines) and headed by a single-line carhme

The next function, which was graded as twice more complex the first one, accepts
one non-scalar parameter, and again containsseneh statement with a long sequence
of cases. The values of theases are symbolic constants (except a few cases of humeric
constants) and their bodies assign string values to a skaridble and then break. There is
no paragraphing nor comments. After thetch statement there are a very simple loop and

22 Ahmad Jbara et al.

char xcapi.info2str(ul6é reason)

switch (reason) {
/+— informative values (corresponding message was processed) */
case 0x0001:

return "NCPl.not_supportedby.current.protocol ,.NCPIl.ignored”;
case 0x0002:

return "Flags.not.supportedby_current.protocol ,.flags.ignored”;
case 0x0003:

return "Alert _already.sent.by_anotherapplication”;

/+— error information concerning CAPI_REGISTER x/
case 0x1001:
return "Too.many.applications”;
case 0x1002:
return "Logical.block.size_.too_.small ,_.must.be_at.least.128_.Bytes”;
case 0x1003:
return "Buffer_exceeds64_kByte”;
case 0x1004:
return "Message buffer_.size.too_small ,.must.be_at_least.1024_Bytes”;
case 0x1005:
return "Max..number.of_logical_connectionsnot_supported”;
case 0x1006:
return "Reserved”;
case 0x1007:
return "The.messagecould_not.be_acceptedbecauseof.an.internal.
busy_condition”;
case 0x1008:
return "OS.resource.error.(no.memory.?)”;
case 0x1009:
return "CAPl_not.installed”;
case 0x100A:
return "Controller.does.not.support.external.equipment”;
case 0x100B:
return "Controller_.does.only_support.external.equipment”;

/«— error information concerning message exchange functions */
case 0x1101:
return "lllegal._application.number”;
case 0x1102:
return "lllegal _.commandor.subcommandor_.messagelength.less_.than.12
-bytes”;

case 0x1103:
return "The.messagecould_.not.be_.acceptedbecauseof.a_.queue.full .
condition.!! _The_error.code_does.not_.imply_that_CAPl.cannot
receive.messagesdirected.to_.another.controller ,.PLCl_.or_.NCCI";
case 0x1104:
return "Queue.is._empty”;
case 0x1105:
return "Queue.overflow ,_,a_.messagewas.lost_!! _This.indicates.a.
configuration.error..The_.only_recovery.from.this_error_is.to.
perform.a_.CAPI_.RELEASE";
case 0x1106:
return "Unknown.notification.parameter”;
case 0x1107:
return "The_.Messagecould_not.be_acceptedbecauseof.an.internal.
busy.condition”;
case 0x1108:
return "OS_Resource.error.(no.memory.?)”;
case 0x1109:
return "CAPl_not.installed”;
case 0x110A:
return "Controller_does.not.support.external.equipment”;
case 0x110B:
return "Controller_.does.only_support.external.equipment”;

/| 4 paragraphs of cases removed to save space
default: return "No._additional.information”;
}
}

Listing 1 Listing of the function with the lowest perceived complexity

High-MCC Functions in the Linux Kernel 23

void usb_stor.show.command @truct scsicmnd xsrb)

char sxwhat = NULL;
int i;

switch (srb—>cmnd[0]) {

case TEST.UNIT_READY: what = "TEST.UNIT_READY"; break;
case REZERQUNIT: what = "REZERQUNIT”; break;

case REQUESTSENSE: what = "REQUESBENSE”; break;

case FORMAT.UNIT: what = "FORMAT.UNIT"; break;

case READ_BLOCK_LIMITS: what = "READ_BLOCK_LIMITS”; break;
case REASSIGNBLOCKS: what = "REASSIGNBLOCKS”; break;
case READ6: what = "READS6"; break;

case WRITE.6: what = "WRITE®6"; break;

case SEEK6: what = "SEEK6"”; break;

case READ.REVERSE: what = "READREVERSE"; break;

case WRITELFILEMARKS: what = "WRITEFILEMARKS”; break;
case SPACE: what = "SPACE”; break;

case INQUIRY: what = "INQUIRY"; break;

case RECOVERBUFFEREDDATA: what = "RECOVERBUFFEREDDATA"; break;
case MODE_SELECT: what = "MODESELECT”; break;

case RESERVE: what = "RESERVE”;break;

case RELEASE: what = "RELEASE"; break;

case COPY: what = "COPY"; break;

case ERASE: what = "ERASE”; break;

case MODE_SENSE: what = "MODESENSE”; break;

case START.STOP: what = "STARTSTOP”; break;

case RECEIVEDIAGNOSTIC: what = "RECEIVEDIAGNOSTIC”; break;
case SENDDIAGNOSTIC: what = "SENDDIAGNOSTIC”; break;
case ALLOW_MEDIUM REMOVAL: what = "ALLOW_MEDIUM_REMOVAL"; break;
case SETWINDOW: what = "SETWINDOW”; break;

case READ_CAPACITY: what = "READ.CAPACITY"; break;

case READ_10: what = "READ10"; break;

case WRITE_10: what = "WRITE10"; break;

case SEEK10: what = "SEEK10"; break;

case WRITE.VERIFY: what = "WRITE.VERIFY”; break;

case VERIFY: what = "VERIFY"; break;

case SEARCHHIGH: what = "SEARCHHIGH"; break;

case SEARCHEQUAL: what = "SEARCHEQUAL"; break;

case SEARCHLOW: what = "SEARCHLOW”; break;

case SET.LIMITS: what = "SET_LIMITS”; break;

case READ_POSITION: what = "READPOSITION"; break;

case SYNCHRONIZECACHE: what = "SYNCHRONIZECACHE"; break;
case LOCK.UNLOCK_ CACHE: what = "LOCKUNLOCK_CACHE"; break;
case READ.DEFECT.DATA: what = "READ.DEFECT.DATA”; break;
case MEDIUM_SCAN: what = "MEDIUMLSCAN"; break;

case COMPARE: what = "COMPARE"; break;

case COPY.VERIFY: what = "COPY.VERIFY"; break;

case WRITE.BUFFER: what = "WRITEBUFFER"; break;

case READBUFFER: what = "READBUFFER”; break;

case UPDATEBLOCK: what = "UPDATEBLOCK”; break;

case READLONG: what = "READLONG”; break;

case WRITELLONG: what = "WRITELONG”; break;

case CHANGE.DEFINITION: what = "CHANGEDEFINITION”; break;

/! cases removed to save space
default: what = ”"(unknown.command)”; break;
}
US.DEBUGP ("Command%s.(%d_.bytes \n”, what, srb—>cmd.len);
US.DEBUGP("");
for (i = 0; i < srb—>cmd.len & i < 16; i++)

USDEBUGPX(".%02x", srb—>cmnd[i]);
USDEBUGPX("\n");

Listing 2 Listing of the second function with low perceived complexity

24 Ahmad Jbara et al.

a call to a macro. The loop references (for the first time) &sde which was defined before
theswitch statement, and the macro uses the variable which was psiyiassigned within
theswitch statement. Listings 1 and 2 represent the first and secomwtidos.

The third and forth functions were very similar to each othed received very close
perceived complexity grades. They accept one non-scatanper and are composed of
many separatewitch statements with paragraphing but no comments. The valudéiseof
caseS are numeric constants and the bodies are assignments &oedl sfariables, followed
by break. A few of thesewitch statements are governed by a very simpkndelse, SO we
see some nesting. Nevertheless, the structure of thestdiusics still quite flat and regular.

The fifth function introduces several new elements for thet fime in this series, and
its average grade is again double that of the previous anbelder is much more complex
than previous functions, and contains an additional madifisides the traditional structure.
Moreover, it contains more parameters than before wheree somsimple and scalar and
others are aggregate. These parameters are listed oveéplemliltes, and in one case the
type of a parameter was defined in one line and its name in tkidine. This function is
still dominated by a largewitch statement with mostly (80%) consecutive emgides. The
rest of thecases contain onéf statement or &r loop with a nested statement. In both cases
the blocks of statements are very simple, but the condifiotfseifs span multiple lines.

The sixth function is composed of one largétch statement where each of itsses
is composed of another largeitch statement with one simple line for each of éges.
Moreover, the firstase of the outerswitch actually contains afif/else construct with two
switch statements in them.

The last function, which was graded as a bit more complex tharprevious one, is
composed of two largevitch statements that are controlled ipyndelse. Thecases of these
switch statements are composed of negtedndelses with simple conditions. Roughly, the
blocks within the differentases create five categories of regular blocks. Despite the deep
nesting in the differentases, the impression is that this nesting is used to breakswith
very complicated conditions. This is obvious because e#ititese blocks performs a single
statement in its innermost level.

The above allows us to identify the following elements of pdewity, which are gener-
ally not acknowledged by metrics like MCC:

— Ending acase with a break, followed by some additional processing afterskitch, is
more complex than havingraturn directly in thecase.

— Several smallwitchs (probably switching on different variables) are more ctaxgthan
one largewitch.

— Using constructs of different types, eifs in addition to awitch, increases complexity.

— Adding parameters to a function increases complexity.

— Increasing the nesting of constructs in each other incseam@plexity.

— Embeddingwitch statements withiifs andelses is more complex than having theitch
at the top level.

In some of these cases the more complex version cannot bdeavdue to the logic of
the program. But still we can suggest the followildgs andDon’ts lessons:

— Don't separate processing, localize whenever it is possibl

— If possible, prefer one large switch rather than splittiogbas many smaller ones.
— Try to avoid mixing constructs of different types.

— Use paragraphing (empty lines separating blocks of codttamments.

High-MCC Functions in the Linux Kernel 25

{for{switch{casecasecasecasecasecasecasecasecasecasecasecase}if }H{if{}}if{}else{}
if{}else{}if{}else{}for{switch{caseifcaseifcaseifcaseifcasecaseifcasecaseifcase
caseifcaseifcaseif}ifif}for{switch{caseifcaseifcaseifcaseifcasecaseifcasecaseif
casecaseifcaseifcaseif}ifif}for{if}ifelseif{ifelseifelseifif}else{}if{}else{if{}
else{}}if{}else{switch{casecasecasecasecasecasecasecasecasecasecasecaseif{}else{}}
ifelse}}

Fig. 21 An example of the control structure of a function, used asrpatifor the compression algorithm.

6 Regularity and Perceived Complexity

As we have already stated, High-MCC functions are quite .|@ingerefore, a visual repre-
sentation such as that provided by CSDs may ease captugitgtde as a whole, and may
help in grasping structural properties and regularitidgs Taises the empirical question of
whether a visual view of high-MCC functions has an advantage a simple listing of the
code, from a human point of view. This is research questidn 3.

As noted above, using CSDs exposed some functions as beingegrilar while oth-
ers appear to have irregular code structure. This reflectsrdination of the sequence of
constructs used, their nesting pattern, and formattingasgsuch as indentation and para-
graphing. It seems likely that these factors contributdnéogerception of complexity, even
though they are not taken into account by the MCC metric. Adsdguestion is therefore
whether regularity correlates with perceived complexityt does, this would answer our
research question 4 in the affirmative.

To answer these questions we conducted an experiment wighdérienced program-
mers. We required that the subjects must have experiente i@ tanguage. All subjects
were males except two, with an average age of 31, and an avefag8 years experience
with C.

The experiment consisted of 30 high-MCC functions, presgbint two different formats.
In one phase the code listing of the functions was preseated,in the other phase the
CSD diagrams of the functions were presented. The two plvesesperformed separately
with a break of at least one day between them. Which phase @o@SD) was done first
was randomized across subjects. The task was to assign eactioh with a perceived
complexity score, as in the previous experiment. Befomgista participants were presented
with a short description of CSDs and an example showing tlde emd CSD of the same
function side by side.

Somewhat surprisingly, the results show that the CSD viesvrfaadvantage over the
code view. In fact, in two-thirds of the cases there was noiigant difference in the average
scores of the two types of view. Thus it seems that experéepoegrammers can achieve a
good impression of code by paging through it, and seeing phigal representation of the
code structure did not provide much additional information

To answer the question of whether perceived complexityetates with regularity, we
used the Lempel-Ziv compression algorithm [46] to compesssh of the 30 functions and
computed the percentage of reduction in size for each onehi8slgorithm is based on
identifying recurring substrings in the input, we expedittfunctions with high regularity
will be compressed better than irregular functions. Bus istill unclear what parts of the
code should be compressed to better reflect regularity. €okcthis we compressed each
function twice: once using its full code as is, and againgisimieduced representation of its
control structure. In the control structure compressionremove the function’s content and
retain only its keywords and braces, as shown in Fig. 21.¢h ease we compare the results

26 Ahmad Jbara et al.

Code view CSD view
2 2
5 8 T T T T T T g 8 T N T+ T L T
E_ g : +y ++ ty T : EL Z : N ; o]
. — i
Compressing § 5| 4 " | g 5l " "*\;f+~\i}:]
full code s 4} b= + s 4 F L T
Qo + * I) 4 +
= 3 cc=0197 b 2 3 cc=0339 o
8 2 b 8 2 r + + 4
T 1 P S T T S R o 1 P S B N
e 65 70 75 80 85 90 95100 & 65 70 75 80 85 90 95100
Percentage reduction Percentage reduction
> (@) > (b)
% 8 — T % 8 L
= 7 - + + B = 7r Tt b
. [=3 = .o+ =3 ThE t
Compressing € 6 x B g 6K T B
contr%l 9 S s oy] g s it wry]
structure o 4 A PR o 4 T
¢ 3t T S 3t S
g 2 CC=-0.585 | % 2 CC=-0.667 .
a—) 1 1 1 1 1 1 T 5 1 1 1 1 1 1 1
o 65 70 75 80 85 90 95100 O 65 70 75 80 85 90 95100
Percentage reduction Percentage reduction
(c) (d)

Fig. 22 Correlation of regularity with perceived complexity. Topw¢a and b) assess regularity using percent
reduction of size when compressing the original code, whigghibttom row (c and d) use compression of the
control structure. In the left column (a and c) perceived caxipt is based on the code view, and in the right
column (b and d) on the CSD view.

against the perceived complexities (code view and CSD véswflected in the experiment.
Thus we got four combinations that are shown in Fig. 22.

The results indicate that there is a weak negative corogldtetween percentage reduc-
tion for raw code (regularity) and perceived complexity aale view, with a correlation coef-
ficient of -0.197. Better correlation was achieved wheniasting the raw reduction against
perceived complexity using the CSD view. Here the correfatioefficient was -0.339.

Fig. 22(c) and Fig. 22(d) show the results of comparing tiregrgage reduction of the
control structure and the perceived complexity in both wdaode and CSD). In this case
the correlation coefficient was much stronger than in thereduction case. For Fig. 22(c)
plot the correlation coefficient was -0.585 and for Fig. 32(evas -0.667.

These results suggest that low compressibility correlatdshigh perceived complex-
ity, and by implication, that irregularity correlates whigh perceived complexity.

7 Possibility of Replacing or Refactoring high-MCC Functions

To answer research question 5 (is all the high-MCC codeyrealtessary) we surveyed all
369 such functions that were collected from more than a #ndiversions of the Linux
kernel, using the version with the highest MCC value for eab. This complements the
guantitative metrics discussed above with a qualitatigeuision aimed to gain some in-
sights about their nature. We checked cloning, replacewfectde by a lookup table, and
the option of factoring out some functionality to a subroati

To find possible instances of cloning we compared the sowde of each pair of high-
MCC functions. For doing this we used thi& Linux command, with parameters to disre-
gard differences in spaces and blank lines. We also allowed 40% of the total lines of
the compared functions in each pair to be different. We rggkthis process twice: Once

High-MCC Functions in the Linux Kernel 27

for the full source code, and again based on the skeletorediitictions (only the keywords
and braces, as explained in Section 6) while preservingdting and nesting. Using the
code structure comparison, we found 56 sets of clones, vd¥eege pairs of functions, 13
involve 3 functions, 5 have 4 functions, and 4 include no tbess 5 clones. For the full

code, we found 51 sets of clones. These results indicatendaaty a quarter of the high-

MCC functions are clones of other high-MCC functions. Thes&nce of so many clones
indicates that developers found it better to create cloris small changes rather than to
abstract away the common functionality and adjust it fofledént uses by parameterization.

As we stated earlier, some of the high-MCC functions aretemitn a way that enables
replacing them by a lookup table. We manually examined tt&f@6ctions and counted
those that are likely candidates for replacement by a lodébfe. We found 19 such func-
tions. In addition, we observed some functions that can bigafig replaced (meaning that
they contain a few code segments that can be replaced wittkapaable). There were 23
such functions. These include two sets of size 2 and 3 whiahabpeared in the clone list.
As demonstrated in Section 4, replacement of a high-MCCtfondy a simpler function
based on table lookup is a transformation that indeed odoymsactice.

An especially interesting question is whether well-knoefactoring techniques may be
applied to high-MCC functions. As high-MCC functions aradothere is a good chance for
applying refactoring techniques suchfasction extraction. As an initial check, we tried to
identify clone code segments within a given function. Weenassisted by the CSD diagram
of each function to get initial impression about cloned segts. We reviewed all 369 CSDs
manually in a single-evaluator style, and subjectivelyaoted 61 functions that have what
appear to be large cloned segments. Two examples are shéq 28. These 61 functions
have no overlap with the lookup table functions, but may layewith the clone list. This
indicates that about 1 in 6 high-MCC functions may be amenéblfunction-extraction
refactoring, but at the same time, that developers prefeggticate code rather than doing
Sso.

8 Analysis of High-MCC Functions in Other Operating Systems ad Domains

The discovery of high-MCC functions in Linux immediatelyised the question whether
this phenomenon is unique to Linux (with its free-for-alleopsource development method-
ology), or maybe such functions occur also in other systerdslamains. This was research
guestion 6.

To answer this, we analyzed the source code of three adalitigrerating systems, and
three open source systems from other domains. In the opgragstems domain we chose
Windows, FreeBSD, and OpenSolaris. From non-OS domainshagecGCC (compilers),
Firefox (browsers), and the OpenSSL toolkit. The Windowsdech Kernel (WRK) con-
tains the source code for the NT-based kernel which is cdbipawith Windows Server
2003. Its source code includes core sources for object neamagt, processes, threads, vir-
tual memory, and the 1/0 system. It does not include PlugRlag, power management,
virtual DOS machine, and the kernel debugger engine. Ther ditre are the full codebases
of FreeBSD, OpenSolaris, GCC, Firefox, and OpenSSL respdct

Table 2 summarizes initial results of our analysis. We satdh these systems contain
high-MCC functions with extreme values at their upper boltwdt example, in the FreeBSD
system the highest MCC value was 1316 which is 26 times hitdjaerthe highest threshold
that was ever defined. It is true that the absolute numberesftiiunctions in each system
is small, but they represent a non-negligible fraction & dontrol flow constructs in the

28 Ahmad Jbara et al.

extractedLnx/linux-2.6.32/drivers/staging/rt2860/common/rtmp_init.c_RTMPReadTxPwrPerRate.c.|r

L 1 [

l Il Il l

‘ extractedLnx/Iinux-2.5.9/drivers/net/sk98Iin/skge.c_GetConfiguration.c.re{z

fy il

Fig. 23 Functions with repeated structures that may be factored out.

PN

VR SO Y

respective systems. This is listed in the table under ‘per@EMCC values’, meaning what
fraction of the total MCC summed over all the functions in #ystem is contained in the
high-MCC functions. For example, in the Windows system fioms with an MCC above
50 account for more than 18% of the total MCC in the system.

According to Table 2 there are relatively few high-MCC fuons and a large number
of low-MCC functions. This observation indicates that thstribution of MCC values is
skewed in all of the systems. An important class of skewettibigions are distributions
with heavy tails. The common definition of heavy-tailed disitions is that their tail is
governed by a power law, so (> x) O x 7. To test the existence of a power-law tail one
can use the log-log complementary distribution plot. Tt phould produce a straight line
for a perfect power law tail where its slope corresponds ¢ot#il indexa. Such plots for

High-MCC Functions in the Linux Kernel 29

Total Max #high-MCCfuncs % of MCC values

Name \ersion funcs MCC >100 > 50 > 100 > 50
Windows WRK-v1.2 4074 246 18 84 7.0 18.6
FreeBSD 9 (stable) 67528 1316 103 490 5.3 11.8
OpenSolaris 8 21259 506 34 202 4.2 11.6
Linux 2.6.37.5 259137 587 138 765 1.6 5.1
Firefox 9 (stable) 26444 699 27 181 3.3 9.9
GCC 4.8.0 72542 1301 248 938 10.2 21.3
OpenSSL 1.0.0k 6560 371 22 78 9.0 18.2

Table 2 High-MCC function characteristics of four operating sysseand three open source projects from
other domains.

Linux ——
FreeBSD ——
Solaris ——
Windows
Firefox i
GCC ——
openSSL ——

0.1

0.01

0.001

survival probability

0.0001

le-05

1le-06 L L L
1 10 100 1000 10000

MCC

Fig. 24 log-log complementary distribution plot of MCC values in falifferent systems.

the MCC values of functions in our four opperating systentstaree other applications are
shown in Fig. 24. In all cases the lines look straight, and alopfunge downwards as they
would for short-tail distributions. Because we are interdsn the tail of the distribution we
focused on the top 1% of the values and performed a lineaessgm. The results show
that the tail indices for all the systems are a bit higher thaso these distributions have a
bounded variance. The common definition of heavy tailediligions requires a tail index
in the range between 0 and 2, which leads to unbounded varidihes these distributions
are a border case: they have a power law tail, but with a tdéxrof slightly more than 2.

9 Discussion and Conclusions

We have shown that the practice as reflected in the Linux keegearding large and com-
plex functions diverges from common wisdom as reflected lgsttolds used in various
automatic tools for measuring MCC. This is not surprisirggaaimplistic threshold cannot
of course capture all the considerations involved in stnilcg the code. However, it does
serve to point out an issue that deserves more thorough ieaipigsearch. We now turn to
the implications of our findings.

30 Ahmad Jbara et al.

9.1 MCC and Linux Quality

The basic underlying question we faced was whether the MiGI& functions in the Linux
kernel constitute a code quality problem, or maybe suchtions are actually acceptable
and the warnings against them are exaggerated. This wasalurdsearch question, 7, and
we can now discuss it based on all our findings.

Linux provides several examples where long and sometimemplex functions with
a high MCC seem to be justified. It is of course possible tot spich functions into a
sequence of smaller functions, but this will be an artificredasure that only improves the
MCC metric, and does not really improve the code. On the eoytit may even be claimed
that such artificial dissections degrade the code, by fragmgpieces of code that logically
belong together.

For example, one class of functions that tend to have veity KIGC values are those
that parse the options of some operation, in many cases tpevdlaes of arioctl (I/O
control) system call for some device. There can be very mach $lags, and the input
parameter has to be compared to all of them. Once a matchnis ftlue appropriate action
is taken. Splitting the list of options into numerous sholites will just add clutter to the
code.

Another class of functions that tend to have high MCC valuesfanctions concerned
with the emulation of hardware devices, typically belomgio unavailable (possibly legacy)
architectures. The device may have many operations thateeeds to be emulated, and
furthermore this needs to take into account many differeribates of the device. Thus there
are very many combinations that need to be handled, butipaitig them into meaningful
subgroups may not be possible.

Despite the inherent size (and high MCC) of these functionsjany cases it may be
claimed that they do not in fact cause a maintenance burdes c@n happen either because
they need not be maintained, or because they are actualiealdt complex.

As we saw in Section 4, more than a third of our functions eidibno or negligible
changes during the period of observation. In some of ther dtimetions, which had larger
changes, there was only a single large-change event. Thsifumations actually displayed
strong stability the vast majority of the time. On averagssthfunctions do not require much
effort to maintain.

Alternatively, functions with a high MCC may not really be difficult to comprehend
and maintain. MCC counts branch points in the code. If theudative effect of many branch
points is to describe a complex combination of concerns,ay e hard for developers
and maintainers to keep track of what is going on. But if thenbhing is used to separate
concerns, as in the example of handling different flag vailuesioct!, this actually makes
the code readable.

Our conclusion is therefore that for the most part the higg@/functions found in
Linux do not constitute a serious problem. On the contrdugy tcan serve as examples of
situations where prevailing dogmas regarding code strechay need to be lifted.

9.2 Refinements to the MCC Metric

The observation that the MCC value of a function may not refleal” complexity as it

is perceived by developers has been made before. Basedsoihigtie have been sugges-
tions to modify the metric to better reflect perceived comitye Two previously suggested
refinements are the following:

High-MCC Functions in the Linux Kernel 31

— Do not countases in a largewitch statement. This was mentioned already in McCabe’s
original paper [25], and is re-iterated in the MSDN docuraéioh [28].

— Also do not count successiviestatements, as successive decisions are not as complex
as nested ones [12].

Both of these modifications together define McCabe'’s “ess&nbmplexity metric, leading
to a reduced value that assigns complexity only to more datew structures. But at the
same time McCabe suggests a lower threshold of only 4 fontkisic [26].

Generalizing the above, we suggest that one should notiperidivide and conquer”
constructs where the point is to distinguish between mieltimlependent actions. This may
include nested decision trees in additiorwa@ch statements and sequences gtatements.
Note, however, that this refines the simple syntactic démjias it is crucial to ensure that
the individual conditions are indeed independent. For etapaswitch statement in which
a non-empty case falls through to the nextase violates this independence, and thus adds
complexity to the code.

The above suggestions are straightforward consequenagspbfing the principle of
independence to basic blocks of code. However, this doegetdtnply that they lead to
any improvements in terms of measuring complexity. Thisldoequire a detailed study of
code comprehension by human developers, which we leavetimefwork.

One more aspect that should be considered in MCC refinemesgutarity. It is reason-
able to think that regular functions need less effort to caghpnd than irregular ones. As we
have already seen compression algorithms tend to reflecethdarity extent in functions.
This can be used to help in counterbalancing the exaggevateds of the MCC metric. In
addition, we note based on our experience with Linux schiegié.g. [11]) that at least in
some cases complexity is much more a result of how the logiteofode is expressed than
a result of its syntactical structure. For example, everwing the scheduling algorithm,
it was hard to understand how the code implements this éftgoyidespite the fact that its
MCC was reasonably low. Thus syntactic metrics like MCC catre expected to give the
full picture.

9.3 Threats to Validity

Our results are subject to several threats to validity.

Linux uses#ifdefs to enable configuration to different circumstances. Aziaty code
that contains such directives may be problematic due tolanbad braces. We are aware
of this and dropped files that were tagged as syntacticatlgriect by thesmccabe tool. In
spite of their low percentage, these files may contain isterg functions with high MCC
values that we would have missed.

While pmccabe is a well known tool for calculating MCC values, we found a ag:
it counted the caret symbol (bitwise xor) as adding to the M@lDe. We wrappe@mccabe
with code that fixed this bug, and manually confirmed the tedolr selected functions.
However, other bugs may exist in this and other tools.

In assessing the evolution of high-MCC functions, we atyualy on the MCC values.
This is not necessarily right because a function may chant®ut affecting the control
constructs, or it may be that one construct was deleted mthenwas added. Thus our
counts of changes may err on the conservative side. Ourysorveerceived complexity
also suffers from a few threats. For example, grading 92tians within 2 hours is difficult
and causes fatigue, which may affect the grading of the lemttions. Moreover, a learning
effect may also occur.

32 Ahmad Jbara et al.

The survey of perceived complexity suffers from being scifije. It would have been
good to also include some low-MCC functions in this surveysée whether subjects distin-
guish between them and the high-MCC functions. In subsdquerk we are also comple-
menting this work by using a controlled experiment involytasks related to code compre-
hension, specifically understanding, fixing bugs, and agltéatures [18].

Regarding external validity, we have verified that high-MfD@ctions exist also in other
operating systems and in some specific systems from otheaidejrand are not unique to
Linux. However, these are only preliminary results as wg exhmined one specific system
from each domain. Also, our results are limited to systenadgdaon C, and do not necessarily
generalize to systems written in an object-oriented style.

9.4 Future Work

One avenue for additional work is to assess the prevalenbégbhfMCC functions. It is
plausible that an operating system kernel is more comphax thost applications, due to the
need to handle low-level operations. Although our resudtgehshown that such functions
also exists in other domains it would be interesting to repiga study for more systems in
these domains and even move to new domains.

Another important direction of additional research is emgepl work on comprehension
and how it correlates with MCC. This is especially neededriteoto justify or refute sug-
gested modifications to the metric, and indeed alternatig&ios and considerations, and
improve the ability to identify complex code. For examplet perceived complexity survey
identified formatting and backwardstos as factors that should most probably be taken into
account. An interesting challenge is to try and see wheligfunctions with spagheigbtos
could have been written concisely in a more structured ntanne

Regarding the correlation between perceived complexityragularity as reflected by
the Lempel-Ziv algorithm we think that retaining formagiattributes (such as indentation
and linebreaks) besides the control structure is a reatodabction as these attributes may
affect regularity and perceived complexity.

Finally, in the context of studying Linux, the main drawbaxdlour work is its focus on a
purely syntactic complexity measure. It would be interestd follow this up with semantic
analysis, for example what happens to the functionalityigfitMCC functions that seem to
disappear into thin air. Thus this study may be useful in fiognout instances of interesting
development activity in Linux.

References

1. B. Adams, W. De Meuter, H. Tromp, and A. E. Hassa@ah we refactor conditional compila-
tion into aspects?In 8th Intl. Conf. Aspect-Oriented Softw. Dev,, pp. 243-254, Mar 200%oi:
10.1145/1509239.1509274.

2. R.Baggen, J. P. Correia, K. Schill, and J. Viss8tghdardized code quality benchmarking for improving
software maintainability Softw. Quality J. 20(2), pp. 287-307, Jun 2012pi:10.1007/s11219-011-
9144-9.

3. T. Ball and J. R. Larus,Using paths to measure, explain, and enhance program beéhaR@mputer
33(7), pp. 57-65, Jul 200@0i:10.1109/2.869371.

4. P.Bame, pmccabé URL http://parisc-linux.org/"bame/pmccabe/overvietmh (Visited 18 Sep 2011).

5. A. B. Binkley and S. R. SchachValidation of the coupling dependency metric as a predicfoun-
time failures and maintenance measurés 20th Intl. Conf. Softw. Eng., pp. 452—455, Apr 1998]oi:
10.1109/1CSE.1998.671604.

High-MCC Functions in the Linux Kernel 33

6. A. Capiluppi and D. Izquierdo-Cazar, ‘Effort estimation of FLOSS projects: A study of the Linux
kernel'. Empirical Softw. Eng. 18(1), pp. 60-88, Feb 20180i:10.1007/s10664-011-9191-7.

7. B. Curtis, J. Sappidi, and J. Subramanyamn “evaluation of the internal quality of business
applications: Does size mattért 33rd Intl. Conf. Softw. Eng., pp. 711-715, May 2011doi:
10.1145/1985793.1985893.

8. B. Curtis, S. B. Sheppard, and P. MillimanTHird time charm: Stronger prediction of programmer
performance by software complexity metfick 4th Intl. Conf. Softw. Eng., pp. 356360, Sep 1979.

9. G. Denaro and M. Peez“An empirical evaluation of fault-proneness models 24th Intl. Conf. Softw.
Eng., pp. 241-251, May 2002{0i:10.1145/581339.581371.

10. E. W. Dijkstra, ‘GoTo statement considered harmifuComm. ACM 11(3), pp. 147-148, Mar 1968,
doi:0.1145/362929.362947.

11. Y. Etsion, D. Tsafrir, and D. G. FeitelsonRPfocess prioritization using output production: schedyli
for multimedid. ACM Trans. Multimedia Comput., Commun. & App. 2(4), pp. 318-342, Nov 2006,
doi:10.1145/1201730.1201734.

12. W. Harrison, K. Magel, R. Kluczny, and A. DeKoclpplying software complexity metrics to program
maintenance Computer 15(9), pp. 65—79, Sep 1988pi:10.1109/MC.1982.1654138.

13. I. Heitlager, T. Kuipers, and J. VisseR ‘practical model for measuring maintainabilityn 6th Intl.
Conf. Quality Inf. & Comm. Tech., pp. 30-39, Sep 200dpi:10.1109/QUATIC.2007.8.

14. |. Herraiz and A. E. HassanBéyond lines of code: Do we need more complexity metti¢s Making
Software: What Really Works, and Why We Believe It, A. Oram and G. Wilson (eds.), pp. 125-141,
O'Reilly Media Inc., 2011.

15. A. Hindle, M. W. Godfrey, and R. C. Holt,Reading beside the lines: Indentation as a proxy for
complexity metrics. In 16th IEEE Intl. Conf. Program Comprehension, pp. 133142, Jun 2008pi:
10.1109/1CPC.2008.13.

16. A.lsraeliand D. G. FeitelsonThe Linux kernel as a case study in software evolutidnSyst. & Softw.
83(3), pp. 485-501, Mar 201@0i:10.1016/j.jss.2009.09.042.

17. A.Jbara and D. G. FeitelsorCharacterization and assessment of the Linux configuratomptexity'.

In 13thIEEE Intl. Working Conf. Source Code Analysis & Manipulation, Sep 2013.

18. A.Jbara and D. G. FeitelsorCbde regularity may compensate for high MCC and LOC: Initialifes'.
2013. (In preparation).

19. A.Jbara, A. Matan, and D. G. Feitelsoiigh-MCC functions in the Linux kern&lIn 20th IEEE Intl.
Conf. Program Comprehension, pp. 83-92, Jun 20120i:10.1109/1CPC.2012.6240512.

20. C. Jones, Software metrics: Good, bad, and missin@omputer 27(9), pp. 98—-100, Sep 1994pi:
10.1109/2.312055.

21. H. Koziolek, B. Schlich, and C. Bilich A large-scale industrial case study on architecture-baséel
ware reliability analysi§ In 21stIntl. Symp. Software Reliability Eng., pp. 279-288, Nov 201Q®oi:
10.1109/ISSRE.2010.15.

22. D.L. Lanning and T. M. Khoshgoftaaiodeling the relationship between source code complexity an
maintenance difficulfyy Computer 27(9), pp. 35-40, Sep 1994pi:10.1109/2.312036.

23. M. M. Lehman and J. F. RamilSoftware evolution—background, theory, practidef. Process. Lett.
88(1-2) pp. 33-44, Oct 20030i:10.1016,/50020-0190(03)00382-X.

24. J. Liebig, S. Apel, C. Lengauer, Caktner, and M. SchulzeAh analysis of the variability in forty
preprocessor-based software product linés 32nd Intl. Conf. Softw. Eng., vol. 1, pp. 105-114, May
2010,doi:10.1145/1806799.1806819.

25. T. McCabe, A complexity measure |EEE Trans. Softw. Eng. 2(4), pp. 308-320, Dec 197&joi:
10.1109/TSE.1976.233837.

26. McCabe Software, Metrics & thresholds in McCabe Q URL
www.mccabe.com/pdf/McCabe%201Q%20Metrics.pdf, undaiéddited 23 Dec 2009).

27. T.Mens, J. Feandez-Ramil, and S. DegrandsaffHe evolution of Eclipse In Intl. Conf. Softw. Main-
tenance, pp. 386—395, Sep 20080i:10.1109/1CSM.2008.4658087.

28. MSDN Visual Studio Team System 2008 Development Devel@eater, ‘Avoid excessive complex-
ity”. URL msdn.microsoft.com/en-us/library/ms182212.aspx.ated. (Visited 23 Dec 2009).

29. G. J. Myers, An extension to the cyclomatic measure of program complex®GPLAN Notices
12(10) pp. 61-64, Oct 197#o0i:10.1145/954627.954633.

30. N. Nagappan, T. Ball, and A. ZelleiMining metrics to predict component failufesn 28th Intl. Conf.
Softw. Eng., pp. 452—461, May 200@loi:10.1145/1134285.1134349.

31. N.Ohlsson and H. AlbergPredicting fault-prone software modules in telephone swec |EEE Trans.
Softw. Eng. 22(12) pp. 886—894, Dec 1996pi:10.1109/32.553637.

34

Ahmad Jbara et al.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattebg'Empirical validation of three software
metrics suites to predict fault-proneness of object-oeérdlasses developed using highly iterative or
agile software development processd€£EE Trans. Softw. Eng. 33(6), pp. 402—-419, Jun 200doi:
10.1109/TSE.2007.1015.

P. Oman and J. HagemeisteZdnstruction and testing of polynomials predicting sofevaraintainabil-
ity”. J. Syst. & Softw. 24(3), pp. 251-266, Mar 199410i:10.1016,/0164-1212(94)90067-1.

F. Sauer, Eclipse metrics plugin 1.3"6URL metrics.sourceforge.net/, Jul 2005. (Visited 23 D86%).
N. Schneidewind and M. HincheyA“complexity reliability model. In 20th Intl. Symp. Software Reli-
ability Eng., pp. 1-10, Nov 2009J0i:10.1109/ISSRE.2009.10.

M. Shepperd,A critique of cyclomatic complexity as a software metri€oftware Engineering J. 3(2),
pp. 30-36, Mar 1988J0i:10.1049/sej.1988.0003.

M. Shepperd and D. C. InceA‘critique of three metrics J. Syst. & Softw. 26(3), pp. 197-210, Sep
1994,doi:10.1016/0164-1212(94)90011-6.

Q. D. Soetens and S. Demeye$ttidying the effect of refactorings: A complexity metricsgpectivé.

In 7thIntl. Conf. Quality Inf. & Comm. Tech., pp. 313-318, Sep 2018¢i:10.1109/QUATIC.2010.58.
E. Soloway and K. Ehrlich,Empirical studies of programming knowledgeéEEE Trans. Softw. Eng.
SE-10(5) pp. 595-609, Sep 19840i:10.1109/TSE.1984.5010283.

SR, ‘Software technology roadmap: Cyclomatic complexityy URL www.sei.cmu.edu/str/str.pdf,
1997. (Visited 28 Dec 2008).

I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleri€dde quality analysis in open source software
developmerit Inf. Syst. J. 12(1), pp. 43-60, Jan 2008pi:10.1046/j.1365-2575.2002.00117.x.

G. Stark, R. C. Durst, and C. W. VowellJ$ing metrics in management decision makingomputer
27(9) pp. 42-48, Sep 1994pi:10.1109/2.312037.

R. Vasa, M. Lumpe, P. Branch, and O. Nierstras2orhparative analysis of evolving software sys-
tems using the Gini coefficiehtin 25th Intl. Conf. Softw. Maintenance, pp. 179-188, Sep 2008oi:
10.1109/1CSM.2009.5306322.

VerifySoft Technology, McCabe metrics URL www.verifysoft.com/enmccabemetrics.html, Jan
2005. (Visited 23 Dec 2009).

E. J. Weyuker, Evaluating software complexity measurelEEE Trans. Softw. Eng. 14(9), pp. 1357—
1365, Sep 1988]0i:10.1109/32.6178.

J. Ziv and A. Lempel, Compression of individual sequences via variable-ratengidi EEE Trans.
Information Theory IT-24(5), pp. 530-536, Sep 19780i:10.1109/TIT.1978.1055934.

