
Textured Occupancy Grids for Monocular
Localization Without Features

Julian Mason, Susanna Ricco, and Ronald Parr

Abstract— A textured occupancy grid map is an extremely
versatile data structure. It can be used to render human-
readable views and for laser rangefinder localization algo-
rithms. For camera-based localization, landmark or feature-
based maps tend to be favored in current research. This may
be because of a tacit assumption that working with a textured
occupancy grid with a camera would be impractical. We
demonstrate that a textured occupancy grid can be combined
with an extremely simple monocular localization algorithm to
produce a viable localization solution. Our approach is simple,
efficient, and produces localization results comparable to laser
localization results. A consequence of this result is that a single
map representation, the textured occupancy grid, can now be
used for humans, robots with laser rangefinders, and robots
with just a single camera.

I. INTRODUCTION

The construction and use of maps is a fundamental prob-
lem in mobile robotics. Without a map of its environment,
a robot cannot make long-range planning decisions. A map
which directly encodes the presence or absence of objects
in the world (an occupancy map) is the most natural repre-
sentation for path-planning and obstacle-avoidance problems.
As an added advantage, these maps are intuitive for human
users, making it possible for a robot to scout ahead and
return useful information to an operator. Occupancy maps
are typically used on robots with active range sensors like
sonars or laser rangefinders.

Because occupancy does not correspond directly to appear-
ance, mapping for camera-based robots focuses on features
(also called landmarks). The sparsity of feature-based maps
provides computational benefits, but limits their usefulness
in path-planning and obstacle-avoidance tasks. Since features
are chosen for their mathematical properties, rather than
human saliency, these maps are far harder for people to use.

A natural fusion of occupancy and appearance is the three-
dimensional textured occupancy grid map. In such a map,
three-dimensional space is discretized into a set of voxels,
each of which stores an occupancy measure and (if occupied)
information describing its appearance. Such a map permits
use as a pure occupancy map (by ignoring the texture), and
can be rendered to produce the appearance of the map from a
given pose. Therefore, one map can be used for both camera-
and range-sensor-equipped robots. Furthermore, the ability
to render views makes these maps extremely intuitive for
human users.

Department of Computer Science, Duke University, Box 90129, Durham
NC 27708. {mac, sricco, parr}@cs.duke.edu

This work supported by NSF CAREER award IIS-0546709 and NSF grant
IIS-1017017. Any opinions, findings, conclusions, or recommendations are
those of the authors only.

In this work, we describe a simple algorithm for narrow-
field-of-view monocular localization of a mobile robot in a
textured occupancy grid map. We then use the same map,
without modification, to perform laser-based localization.
We demonstrate empirically that the two techniques have
comparable performance. Importantly, our camera-based al-
gorithm neither extracts nor uses features; instead, it relies
on the ability to simulate a camera view given the textured
occupancy grid.

II. PRIOR WORK

What we call a textured occupancy grid is a form of
evidence grid, as introduced by Moravec and Elfes [1]. In
an evidence grid, the world is discretized into cells, and
each cell stores some information about that location. In
mobile robotics, this information is usually an occupancy,
a probability distribution which describes a belief about
the presence of an object at that location. The original
evidence grid work focused on two dimensions; Moravec
later extended the idea to three dimensions (where each cell
represents a volume), and added color, producing textured
occupancy grid maps [2]. Moravec clearly considered using
these maps for localization, but did not directly address it.
Similar work using appearance to inform stereo-vision-based
depth sensing is presented by Sáez and Escolano [3].

Recently, there has been a resurgence in work on three-
dimensional occupancy grid maps. Wurm et al. [4], Triebel
et al. [5], and Fairfield [6] present examples of techniques
for building and working with three-dimensional occupancy
grids. None, however, address texture.

A state of the art approach to single-camera localization
(and mapping) is MonoSLAM, (see, e.g. Strasdat et al. [7]),
which builds feature-based maps. Other techniques rely on
cameras with a very wide field of view (so-called “omnivi-
sion” cameras). Omnivision techniques traditionally extract
features from panoramic images (for example, Scaramuzza
et al. [8] use vertical lines, while Menegatti et al. [9] use
Fourier coefficients of the image) and perform matching,
either between local features or to a database of reference
images. One advantage of panoramic images is that they
greatly ease the problem of determining the robot’s orien-
tation, as the view from many (or all) directions is captured
simultaneously. An interesting variation is to assume that
the camera can (almost) always see a consistent, textured
surface, commonly the ceiling. Dellaert et al. [10] applied
this to a mosaic of the ceiling for a robot tour guide, and
similar approaches were taken by Gamallo et al. [11] and
Jeong and Lee [12].

Kitanov et al. [13] and Koch and Teller [14] present near
neighbors to our approach, using hand-built 3D models of
an environment. Images rendered from this model then have
features extracted; these features are compared to features
extracted from camera images of the actual scene. These
approaches do not store texture, but assume that occupancy
information from an available CAD model of the scene will
correspond to 2D features in a captured image. These efforts
produced good results when seeded with clean CAD models
and when sufficient effort was invested in robustification of
the feature detection process. To our knowledge, there are no
end-to-end demonstrations of these approaches which start
with raw sensor data, build a CAD model, then demonstrate
that the inferred CAD model can induce features useful for
monocular tracking.

We demonstrate that a textured occupancy grid of the
type that could easily be built by a robot endowed with a
laser rangefinder and camera can be used for localization
either with a laser rangefinder alone or a camera alone.
Our camera based localization approach does not rely upon
feature detection and uses only some very minor robustness
modifications to deal with deficiencies (missing data) in the
map.

III. DATASETS

A. Maps

We created 3D textured occupancy grids of two environ-
ments, which we call “lab” and “hallway.” Both were gen-
erated using data from a Riegl LMS-Z390 laser rangefinder,
with an attached calibrated Nikon D200 camera. This stan-
dalone sensor generates colorized three-dimensional point
clouds; that is, each (x, y, z) point includes an RGB color.
The lab dataset consists of nine such scans, for a total
of 20, 272, 859 points; the hallway contains ten scans, for
21, 740, 817 points. The scans were manually aligned using
retroreflective targets placed in the environments. To convert
point clouds to our textured occupancy grids we use a three-
dimensional octree-based variant of the occupancy model
described by Eliazar and Parr in DP-SLAM [15]. (Note
that we have known poses for map building, and are not
performing SLAM.) The resulting maps are thresholded on
occupancy, and only those voxels with sufficient occupancy
are kept. Retained voxels are colored according to the
average color (in RGB) of all Riegl points contained within
the voxel. Our technique and results are not dependent on
the use of the Riegl for map construction. The Riegl’s 6mm
range accuracy and 360◦ horizontal field of view made it
a convenient sensor, but not a necessary sensor: any three-
dimensional range sensor that includes color could create
usable maps.

The lab dataset is an open room, roughly 12 × 15 × 2.5
meters in size. A two-dimensional slice of this environment
can be seen in Fig. 6.

The hallway dataset is of a larger environment, roughly
17.5×22.5×3 meters in size, which can be seen in Figs. 1,
4, and 7. This dataset is a classic hallway environment:
it contains large regions of uniform color, windows with

reflections, and doorways that are subject to visual aliasing.
When being used for localization, this map requires roughly
500MB of main memory.

B. Robot Data

Our mobile robot is an iRobot Create with a Logitech
Webcam Pro 9000, with a field of view of roughly 48◦. The
robot also carries a Hokuyo URG-04LX laser rangefinder,
with a maximum range of 4 meters, and a field of view
of 240◦. The robot was manually driven through both envi-
ronments, taking one picture (see Figures 7(a) and (d) for
example images) and one 2D laser scan every half-meter
of linear distance or 25◦ of angular distance. For both the
hallway and lab datasets, one robot trajectory was taken
simultaneously with Riegl data acquisition; for the hallway
dataset, another robot trajectory (the “new hallway”) was
taken several months later (see Section VI-C).

We independently localize in the maps using only the
Hokuyo or robot-mounted camera at a time. The Riegl is
far larger than an iRobot Create, and is not robot-mounted.

C. Missing Data and Perspective Issues

Our maps suffer from some problems of missing data.
The Riegl’s vertical field of view is only 80◦, and although
our scans overlap, a few small regions remain unmapped.
In other locations the scanner encountered laser-absorbent
surfaces or reflections which result in no laser return. (We
found windows and bookcases to be particularly challeng-
ing.) The hallway contains two glass doors which open onto
an unmapped central classroom. Poses that see through these
doors suffer from a particularly extreme case of missing data.

Any algorithm relying on a fixed map is subject to
difficulties with missing data, but a further issue arises when
there is a substantial difference in the perspective from which
the map was built and the perspective from which it is
rendered. The Riegl’s center of projection is roughly 150
cm off the floor, while the robot’s camera is only 19 cm off
the floor. Therefore, our maps do not contain observations
of the colors of the bottoms of objects between 19 and 150
cm from the floor, but such surfaces may be visible to the
robot. For example, consider the table in Fig. 7(a). This table
is white on top and therefore white from the Riegl’s point
of view. It is actually black underneath, which can be seen
in this image. Because we can only render according to the
Riegl data, such views from the robot’s height could not be
expected to appear the correct color. As a result, bottom faces
of overhanging objects should be treated as having missing
texture data. As discussed in Section V, our camera sensor
model deals with missing data gracefully.

Our datasets (both maps and trajectories) are
available at http://www.cs.duke.edu/˜parr/
textured-localization. They include information
not used here, including extra camera images and three-
dimensional laser data taken from the robot on some
trajectories.

IV. THE PROBLEM

Robot localization is the problem of determining a robot’s
pose at time t, xt = [x y θ]>, given a sequence of robot
actions a1:t and observations y1:t. The key difficulty is that
the robot’s actions are noisy; the at reported by the robot
(from, for example, wheel odometers) is a noisy reading
of the robot’s actual action. This means that even given a
known x0 (the robot tracking problem), the robot’s reported
pose can diverge arbitrarily from reality. In the more general
case, the robot’s initial pose is unknown (the kidnapped
robot problem). The standard approach is to use a particle
filter (introduced for mobile robot localization by Dellaert
et al. [16]) to maintain a probability distribution (the belief
state) over the robot’s pose. Particle filter models (and, more
generally, recursive filtering techniques) model the error
in the robot’s actions and sensor readings probabilistically.
Specifically, they assume that the distribution decomposes
according to the Markov property:

P (xt|a1:t,y1:t) ∝M · S · P (xt−1|a1:t−1,y1:t−1)

The distribution M = P (xt|xt−1,at) is the motion
model; the distribution S = P (yt|xt,M) is the sensor
model, given a map M .

In a particle filter, the distribution over robot poses is
stored as a set of samples from that distribution (called
particles). Each particle represents a hypothesis about the
robot’s pose. Each particle is also assigned a weight which is
proportional to its probability; therefore, the filter represents
a discrete probability distribution over robot poses.

V. THE ALGORITHM

The main loop of a particle filter updates the particles’
weights and poses in response to a single action and ob-
servation. Let p denote a single particle, with pose px and
weight pw. Given a set P containing n particles, an action
at, and a sensor reading yt taken after performing the action,
each iteration proceeds as follows:

1) For each particle p ∈ P :
a) Draw a sample x̂ from P (xt|px,at), and set px

to x̂.
b) Set pw to P (yt|px,M).

2) Resample (with replacement) n new particles from P ,
and replace P with these new particles.

To specify the algorithm completely, we must provide both
a motion model and a sensor model.

A. Motion Model

For both monocular-camera and laser-based localization,
we use the motion model described by Eliazar and Parr [17].
This decomposes the robot’s motion into three Gaussian
terms: one parallel to the direction of motion, one perpendic-
ular to the direction of motion, and one rotational component.
The parameters of the motion model were set by hand,
but were purposefully left with relatively high variance to
guarantee good coverage of the motion space.

B. Sensor Models

For laser-based localization, we use the laser propagation
sensor model described by Eliazar and Parr [15].

For a given particle pose px in our monocular-camera
sensor model, we begin by using OpenGL to render an
image of the map, as seen from px. In this sense, we
are using OpenGL as a “camera simulator.” Due to the
discretization in the occupancy grid, the rendered image will
be “blocky,” as can be seen in Fig. 7. We then independently
normalize each color channel of the render to have mean 0
and standard deviation 1. The same normalization is applied
to the image captured by the robot’s camera. We then take the
L2 norm of the difference between the normalized render and
normalized camera image, treating each channel indepen-
dently. The probability of a particle with L2 norm l is then
proportional to e−l

2/2σ2

, for an empirically chosen value of
σ2. This corresponds to assuming that errors per-pixel, per-
channel, are drawn from independent Gaussian distributions.
Our normalization step provides some robustness against
global changes in illumination. In particular, it accounts
for both additive and multiplicative changes in lighting (by
normalizing the mean and standard deviation, respectively).
Note that unmodeled local changes (for example, the open
window seen in Fig. 2) occur in our data.

A more accurate model would require processing the
camera image to account for the “blockiness” in the rendered
image; this is not a straightforward transformation. Despite
this, our normalized L2 works quite well in practice, as can
be seen in Section VI.

In some cases, it will not be possible to render every
pixel; this happens when the view contains regions with miss-
ing occupancy or texture. When occupancy is missing, we
complete the rendered image by inpainting [18], [19]. This
produces realistic images when the missing regions are small.
When more than 50% of the pixels cannot be rendered, we
assign that particle probability zero. In our experiments, this
applies almost exclusively to particles which have strayed
into unreachable parts of the map.

Missing texture due to perspective issues is more subtle;
in these cases, inpainting generally produces the wrong
colors. The standard approach is to ignore such pixels, and
renormalize the image score according to the number of
observed pixels. This effectively assigns unobserved pixels a
score equal to the average score of the observed pixels, but
also has the effect of making unobserved pixels wild cards
that could align with any part of the real image. Empirically,
this tended to give poses with many unobserved pixels very
high scores. A better solution is to recognize explicitly that
these situations do not provide useful information to the filter,
and their information should be ignored. We set a threshold
t1 on the number of pixels that can be missing texture, and
count the number of particles that exceed it. Should that
count exceed a second threshold t2, we do not resample the
filter on that iteration, and assign every particle a uniform
probability. This allows us to maintain uncertainty in the filter
until the particles return to more informative poses. Should

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 1. Examples of camera localization on a robot with an unknown starting pose. Images (a) through (d) are steps 0, 6, 12, and 20 of localization on
the original hallway trajectory. Of particular note is (c), an example of the delayed-resampling strategy discussed in Section V-B. Images (e) through (h)
are steps 0, 5, 16, and 27 on the new hallway trajectory. All images are with 1000 particles, shown as red dots. This figure is best viewed in color, and
should be compared to the tracking results in Figs. 4 (top row) and 5 (bottom row).

the t1 count not exceed t2, we inpaint. For the experiments
presented, we set these thresholds conservatively, with t1 =
2.5% and t2 equal to half the number of particles. Unlike the
Neff criterion [20], we detect regions of uncertainty directly,
rather than inferring them from our belief state. Missing-
texture regions (rendered in yellow) and missing-occupancy
regions (rendered in green) can be seen in Fig. 7.

Our sensor model uses a total of four parameters. Two
parameters, t1 and t2, are required to deal with missing
texture caused by perspective mismatch between the mapping
and localizing sensors. We anticipate that these two param-
eters could be eliminated if the map were created and then
used from similar perspectives. The third parameter (missing-
occupancy pixel count) controls when proposed poses are
considered to be outside the mapped region. It could be
replaced by another technique for detecting particles that
have left the map. The final parameter, σ2, sets the variance
of our Gaussian error model.

VI. EMPIRICAL ANALYSIS

To validate our approach, we performed robot localization
with both a known and unknown initial pose using both
laser localization and camera localization, and occupancy
grids produced from Riegl data. The occupancy grids have

a resolution of 20 grid cells per linear meter (voxels 5cm on
a side).

A. Unknown Initial Pose
Tracking from an unknown initial pose is the classic kid-

napped robot problem and is a good measure of the flexibility
of the filter and sensor model. We solved the kidnapped
robot problem in both the lab and hallway datasets, using all
three trajectories, but due to space limitations we show only
the more challenging hallway problem in Fig. 1. (The top
row shows the old hallway trajectory; the bottom row shows
the new hallway trajectory, discussed in Section VI-C.) We
generated a set of 1000 particles uniformly at random from
the reachable part of pose space, using rejection sampling
to avoid sampling in unreachable parts of the map. At step
6 (Fig. 1(b)), the particles show a tight cluster around the
true position of the robot, with several remaining symmetric
clusters. Step 12 (Fig. 1(c)) shows the effect of delaying
resampling due to missing texture in the occupancy grid.
Convergence to a single particle cluster occurs on step 11,
which is not shown.

B. Known Initial Pose
To demonstrate quantitatively that camera localization

and laser localization are comparable in performance, we

measured the maximum and mean difference between the X–
Y positions of the robot in both camera and laser localization
for the lab dataset for varying numbers of particles, shown in
Fig. 3. The maximum and mean are computed over all poses
in the trajectories of the highest probability particles at the
end of six independent filtering runs (with varying random
seeds) for each sensor type. We needed a minimum of 12
particles to track successfully through the entire trajectory.
At 50 particles, the differences between camera and laser are
quite small. Trajectories differ by less than one robot width
on average and never by more than two robot widths. While
the disagreement decreases with increasing particle count, we
do not expect substantial improvement above 100 particles.
One reason for this is that areas with missing textures, along
with resulting delayed resampling, would ensure variance (at
a few specific points in the map) in the particle distribution
for camera localization regardless of the particle count. For
laser localization, there will be places where the limited
range of the URG-04LX introduces ambiguity.

For a more qualitative assessment of localization perfor-
mance we plot the trajectories of the highest probability
particles in both the lab (Fig. 6) and hallway (Fig. 4) datasets.
These figures demonstrate wide agreement, with some pock-
ets of disagreement between camera and laser localization.
Fig. 7(a)-(c) shows a position from the hallway dataset (top
right in Fig. 4), where camera and laser localization disagree.
In this case, camera localization suffers from the problem of
missing textures because the underside of the table was not
seen by the Riegl. Fig. 7(d)-(f) shows another position in
the hallway dataset (top left of Fig. 4) where camera and
laser localization disagree. In this case, camera localization
is more accurate, most likely because many scans in this open
expanse of hallway are reaching the maximum range of the
URG-04LX laser, while strong visual cues remain available.

C. Lighting and Map Changes

To demonstrate the robustness of our algorithm to changes
in lighting and the physical structure of the world, we took
a second robot trajectory (the “new hallway”) in the hallway
environment, roughly three months after the original data
were collected. In that interval, objects both large (desks and
couches) and small (trash cans) moved, making the Riegl-
generated map incorrect. The new trajectory was taken at
a different time of day, resulting in different global lighting
conditions as well as extreme changes in naturally-lit regions.
Lastly, wall textures, including posters and bulletin boards,
changed. An example of these changes can be seen in
Fig. 2. Finally, we traversed the loop counter-clockwise
(where the original trajectory was clockwise), to guarantee
no dependence on the direction of travel.

We performed both robot tracking and robot kidnapping
on this new trajectory. Using 1000 particles, kidnapping
converged to a single cluster of particles in 27 steps, as
can be seen in Fig. 1(h); the trajectory from robot tracking
with 100 particles can be seen in Fig. 5. This trajectory
shows more pronounced disagreement between the laser and
camera trajectories. When compared to the original trajectory

Fig. 2. An example of map errors encountered in the new hallway
trajectory. The left image is a render from the Riegl-generated map; the
right image is from the robot’s camera, at roughly the same pose. Note
the abundant natural light (due to an open windowshade) and the structural
change (the chairs have been moved to the left, replacing the desk).

0 12 25 50 100
0

0.2

0.4

0.6

0.8

1

number of particles
di

sa
gr

ee
m

en
t (

m
et

er
s)

Fig. 3. Quantitative comparison of localization methods for 12, 25, 50, and
100 particles on the lab dataset. For each particle count, we computed six
trajectories for camera localization and six for laser localization, each using
a different random seed. The trajectory used is the trajectory of the highest
probability particle at the end of the run. Red (top) shows the maximum
disagreement in X–Y position in meters over all corresponding poses in
the resulting 36 laser-camera trajectory pairs. Blue (bottom) shows the mean
disagreement over all poses. Error bars on the blue curve show one standard
deviation.

(Fig. 4), the mean disagreement has increased from 0.25
meters to 0.59 meters, and the maximum disagreement has
increased from 0.74 meters to 1.47 meters. An iRobot Create
is roughly 0.34 meters in diameter.

VII. FUTURE WORK

We see many opportunities for continued work using
textured occupancy grid maps. One limitation of our current
sensor model is that it assumes the lighting conditions remain
similar between the mapping and localization steps. Nor-
malization proved to be sufficient to handle the conditions
tested in our experiments. In general, however, maps may be
created and then used under a wide range of illuminations.
We acknowledge that more sophisticated pre-processing and
something more robust than L2 distance in normalized RGB
may result in better performance under more challenging
changes in lighting conditions. One could also imagine
combining ideas from feature-based localization with the
rendered views textured occupancy grid maps provide, for
example by weighting particles based on the distance be-
tween detected SIFT features [21]. Because we currently
use a single color per voxel, our rendered images appear

Fig. 4. Robot trajectories for the hallway dataset (22.5×17.5 m) with 100
particles. Dead reckoning is rendered in green (lightest gray). It exits the
figure on the top left but returns again in the bottom right. The camera
localization trajectory is rendered in red (medium gray), and the laser
localization trajectory is rendered in blue (darkest gray). Two red lines and
blue lines are visible on the left side because the robot covered this area
twice; it started in the bottom left, completed a clockwise loop, then finished
in the top center after rounding the corner. The mean disagreement between
the laser and camera trajectories shown here is 0.25 meters; the maximum
is 0.74 meters. All trajectories are the trajectories of the highest probability
particle at the end of the run.

Fig. 5. Robot trajectories (tracking, 100 particles) for the hallway map,
using the new hallway trajectory. (Compare to Fig. 4.) The robot started
at top-center, moving left, and completed a single counter-clockwise loop.
Dead reckoning is rendered in green (lightest gray), and exits the map at the
top-right, before re-appearing at the top-left. The laser trajectory is rendered
in blue (darkest gray), and the camera trajectory in red (medium gray). The
lower-left, lower-right, and upper-right corners are regions of substantial
natural lighting (and therefore major lighting changes); the lower-right and
upper-right corners also have substantial structural changes. A view of the
changes in the lower-right corner can be seen in Fig. 2. In both right
corners, the camera’s field of view is dominated by changed regions. In
contrast, the laser’s wider field of view allows it to measure the interior wall,
which is unchanged. This gives the laser a substantial advantage. The mean
disagreement between the laser and camera trajectories shown here is 0.59
meters; the maximum is 1.47 meters. All trajectories are the trajectories of
the highest probability particle at the end of the run.

Fig. 6. Robot trajectories for the lab dataset (15×12 m) with 100 particles.
The robot starts in the top right of the map and moves in a counterclockwise
loop. Dead reckoning is rendered in green (lightest gray). The camera
localization trajectory is rendered in red (medium gray), and the laser
localization trajectory is rendered in blue (darkest gray). In this particular
example, the mean disagreement between camera and laser localization is
0.17 meters, and the maximum is 0.41 meters. See Section VI-B and Fig. 3
for more information. All trajectories are the trajectories of the highest
probability particle at the end of the run.

blocky; this makes it difficult to detect corresponding SIFT
features. However, adding richer texture to the occupancy
grid would make the rendered images more realistic. Our
prototype implementation is fast enough to perform robot
tracking in real time on our robot (which pauses briefly after
image capture) but does not scale to full-speed video. The
bottleneck is rendering, a problem which has been studied in
great detail in the graphics community. We plan to optimize
our renderer to support solving the kidnapped robot problem
in real time. Finally, a map built using a mobile robot (rather
than the Riegl) would improve our camera localization
performance because it would eliminate (or at least greatly
reduce) the perspective mismatch, reducing the frequency of
missing texture regions. Very recently, maps similar to ours
have been built using the Microsoft Kinect [22].

VIII. CONCLUSION

We constructed textured occupancy grid maps for two
environments using a Riegl laser rangefinder and then used
the resulting maps for localization on an inexpensive iRobot
Create platform using (separately) a Hokuyo URG-04LX
laser rangefinder and a single camera. For camera local-
ization, we modified the standard particle filter localization
algorithm to use a simple observation model based upon
the L2 norm of the difference between the observed image
and an image rendered from the textured occupancy grid
map. We also introduced a delayed-resampling strategy to
account gracefully for missing texture in the map. Our
results demonstrate that a single textured occupancy grid
can be used effectively for localization with either a laser
rangefinder or a camera, even when there are substantial map
errors in color and structure. This demonstrates the viability
of this data structure as a universal map representation for
robots with a variety of sensors.

(a) (b) (c)

(d) (e) (f)
Fig. 7. Results for localization with 100 particles in the hallway dataset. Images (a) through (c) show an example where laser localization outperforms
camera localization. Image (a) is the image captured by the camera. Image (b) is a corresponding render of the scene from the pose reported by the camera
localization trajectory seen in Fig. 4. Image (c) is the comparable image from laser localization. Both camera and laser localization are too far forward, but
laser localization is more correct. Images (d) through (f) repeat the pattern of (a) through (c), but show an example where camera localization outperforms
laser localization. At this point, the far wall is outside the Hokuyo’s range. As a result, laser localization cannot disambiguate poses along the major axis
of the hallway. Camera localization can use the visual structure of the door handle (top right) to infer the correct pose. Regions with both missing texture
(rendered in yellow) and missing data (rendered in green) are visible in this figure.

REFERENCES

[1] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in Proc. IEEE Inter. Conf. on Robotics and Automation (ICRA),
1985.

[2] H. Moravec, “Robust navigation by probabilistic volumetric
sensing,” Carnegie Mellon University, Tech. Rep., 2002,
http://www.frc.ri.cmu.edu/∼hpm/project.archive/robot.papers/2002/
ARPA.MARS/Report.0202.html.

[3] J. M. Sáez and F. Escolano, “Monte Carlo localization in 3D maps
using stereo vision,” in Proc. Advances in Artificial Intelligence -
IBERAMIA 2002, 2002.

[4] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: a probabilistic, flexible, and compact 3D map repre-
sentation for robotic systems,” in Proc. ICRA 2010 Workshop on Best
Practice in 3D Perception and Modeling for Mobile Manipulation,
2010.

[5] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in Proc. IEEE/RSJ Inter.
Conf. on Intelligent Robots and Systems (IROS), 2006.

[6] N. Fairfield, “Localization, mapping, and planning in 3D environ-
ments,” Ph.D. dissertation, Carnegie Mellon University, 2009.

[7] H. Strasdat, J. M. M. Montiel, and A. Davison, “Scale drift-aware large
scale monocular SLAM,” in Proc. Robotics: Science and Systems,
2010.

[8] D. Scaramuzza, N. Criblez, and A. Martinelli, “Robust feature ex-
traction and matching for omnidirectional images,” in Proc. 6th
International Conference on Field and Service Robotics (FSR), 2007.

[9] E. Menegatti, M. Zoccarato, and E. Pagello, “Image-based Monte
Carlo localisation with omnidirectional images,” Robotics and Au-
tonomous Systems, vol. 48, no. 1, pp. 17–30, 2004.

[10] F. Dellaert, W. Burgard, D. Fox, and S. Thrun, “Using the condensation
algorithm for robust, vision-based mobile robot localization,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
1999.

[11] C. Gamallo, C. Regueiro, and P. Quintı́a, “Omnivision-based KLD-
Monte Carlo localization,” Robotics and Autonomous Systems, vol. 58,
pp. 295–305, 2010.

[12] W. Jeong and K. M. Lee, “CV-SLAM: a new ceiling vision-based
SLAM technique,” in Proc. IEEE/RSJ Inter. Conf. on Intelligent
Robots and Systems (IROS), 2005.

[13] A. Kitanov, S. Bisevac, and I. Petrovic, “Mobile robot self-localization
in complex indoor environments using monocular vision and 3D
model,” in Proc. IEEE/ASME Inter. Conf. on Advanced Intelligent
Mechatronics, 2007.

[14] O. Koch and S. Teller, “Wide-area egomotion estimation from known
3D structure,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2007.

[15] A. Eliazar and R. Parr, “DP-SLAM 2.0,” in Proc. IEEE Inter. Conf.
on Robotics and Automation (ICRA), 2004.

[16] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo local-
ization for mobile robots,” in Proc. IEEE Inter. Conf. on Robotics and
Automation (ICRA), 1999.

[17] A. Eliazar and R. Parr, “Learning probabilistic motion models for
mobile robots,” in Proc. 21st Inter. Conf. on Machine Learning
(ICML), 2004.

[18] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with
the OpenCV Library. O’Reilly Media Inc., 2008.

[19] M. Bertalmı́o, A. Bertozzi, and G. Sapiro, “Navier-Stokes, fluid
dynamics, and image and video inpainting,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2001.

[20] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197–208, 2000.

[21] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[22] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using depth cameras for dense 3D modeling of indoor envi-
ronments,” in Proc. 12th Inter. Symposium on Experimental Robotics
(ISER), 2010.

