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Drug resistance resulting from mutations to the target is an unfor-
tunate common phenomenon that limits the lifetime of many of
the most successful drugs. In contrast to the investigation of muta-
tions after clinical exposure, it would be powerful to be able to in-
corporate strategies early in the development process to predict
and overcome the effects of possible resistance mutations. Here
we present a unique prospective application of an ensemble-based
protein design algorithm, K*, to predict potential resistance muta-
tions in dihydrofolate reductase from Staphylococcus aureus using
positive design to maintain catalytic function and negative design
to interfere with binding of a lead inhibitor. Enzyme inhibition as-
says show that three of the four highly-ranked predicted mutants
are active yet display lower affinity (18-, 9-, and 13-fold) for the
inhibitor. A crystal structure of the top-ranked mutant enzyme
validates the predicted conformations of the mutated residues
and the structural basis of the loss of potency. The use of protein
design algorithms to predict resistance mutations could be incorpo-
rated in a lead design strategy against any target that is susceptible
to mutational resistance.
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esistance has been observed for even the most reserved anti-

biotics, sometimes after only brief clinical exposure. One of
the most common resistance mechanisms is the accumulation of
mutations in an enzyme target, creating an active site that can no
longer accommodate the inhibitor yet maintains function. When
these resistance mutations are discovered in the clinic, the
mutants must be identified and studied, forcing the drug design
process to start anew. To address this problem in preclinical drug
discovery, resistance mutants are generated and studied in vitro
with labor-intensive experiments. In contrast, it would be useful
to predict resistance mutations in silico during the very early
stages of drug discovery, thus encouraging strategies to overcome
these limitations during the design process. In response to this
need, we have developed and experimentally tested a protocol
to computationally predict resistance mutations in a protein
target, using algorithms for positive and negative structure-based
protein design.

Protein design algorithms have recently been developed and
used to reengineer proteins and enzymes to bind unique ligands.
In the case of enzymes, successful design requires catalytic activ-
ity as well as binding. A promising approach involves ensemble-
based scoring and search algorithms for protein design, which
have been applied to modify the substrate specificity of an anti-
biotic-producing enzyme in the nonribosomal peptide synthetase
pathway (1). New algorithms for protein design, an example of
which is called K*, combine a statistical mechanics-derived
ensemble-based approach to computing the binding constant
with the speed and completeness of a branch-and-bound pruning
algorithm (2-4). In addition, efficient deterministic algorithms in-
clude provable e-approximation algorithms for estimating parti-
tion functions in order to model binding to arbitrary precision (4).
Other examples of successful applications of computational
protein design include design of unique enzymes (5, 6), enhance-
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ment of antibody affinity (7), and design of a unique protein
fold (8).

There have been few previous attempts to predict potential re-
sistance mutations; most of these have been applied retrospec-
tively to predict known mutations that occur in response to
clinically used antibiotics. Predictions have identified peptide
sequences that would bind more tightly to a mutant HIV protease
enzyme (9), profiled tyrosine kinase inhibitors (10), and estimated
“vitality values” to account for the catalytic activity of resistant
mutants of HIV protease (11). A recent review (12) summarizes
structure- and sequence-based attempts to predict known
mutations in HIV protease and reverse transcriptase.

Using structure-based design, we have been developing a
unique class of propargyl-linked antifolate inhibitors that are ac-
tive against several pathogenic species of dihydrofolate reductase
(DHFR), specifically, methicillin-resistant Staphylococcus aureus
(MRSA) DHFR (Sa DHFR) (13, 14). As MRSA has an extensive
array of resistance mechanisms, it is critical to consider the likely
development of resistance for any new inhibitors. Therefore,
given that we have determined high resolution structures of
wild-type Sa DHFR bound to these propargyl-linked antifolates
(13, 14), we considered this to be an excellent case to apply struc-
ture-based protein design algorithms for resistance mutation
prediction.

Here, we report a prospective study that uses the protein de-
sign algorithm, K*, to predict resistance mutations in DHFR from
MRSA toward a potent propargyl-linked antifolate. Structure-
based negative design predicted mutations to destabilize the
binding of the inhibitor; positive design predicted mutations that
stabilize the native protein function. Intersecting the top-scoring
positive and negative designs predicted candidate resistance mu-
tations. Four of the top ten ranked mutant enzymes were created
and evaluated. Three of the mutants indeed maintained activity
and displayed lower (18-, 9- and 13-fold) affinity for the inhibitor.
A crystal structure of the top-ranked mutant bound to the inhi-
bitor shows a conformation of the ligand that clearly has signi-
ficantly fewer interactions with the protein. This unique and
expedient approach to resistance mutation prediction should
be useful for the development of inhibitors toward other targets
for which drug therapy is limited by mutational resistance.
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Results and Discussion

Compound 1 (Fig. 1) is a lead inhibitor of MRSA DHFR
(K; = 10 nM) and possesses antibacterial activity against isolates
of MRSA in culture. In order to elucidate the basis of its potency,
we determined a crystal structure of the enzyme bound to its
cofactor, NADPH and compound 1. Crystals of the wild-type
Sa DHFR showed diffraction amplitudes to 2.1 A (Table 1);
the structure was determined with difference Fourier methods
using coordinates of Sa (F98Y)DHFR (15). The model reveals
the overall characteristic “DHFR fold” that consists of an
eight-stranded beta sheet and four alpha helices connected by
flexible loop regions. The pyrimidine ring of compound 1 forms
two conserved hydrogen bonds with Asp 27 and the 4-amino
group forms two additional hydrogen bonds with the backbone
carbonyl atoms of residues Leu 5 and Phe 92 (Fig. 1). The pro-
pargyl linker and propargylic methyl group form van der Waals
contacts with Phe 92 and Leu 20. The methyl group at the C6
position forms van der Waals interactions with Leu 20 and
Leu 28 and the meta-biphenyl ring extends into a hydrophobic
pocket formed primarily by residues Ile 50, Leu 28, and Leu 54.

In order to identify residues that when mutated may incur a
binding penalty for compound 1 but that would maintain binding
to the substrate, dihydrofolate, K* searches using the minDEE/
A * /K* algorithms (1, 4) were performed. For these searches, the
algorithm used as input the crystal structure of Sa DHFR:com-
pound 1:NADPH as well as a model of Sa DHFR bound to
NADPH and dihydrofolate, which was adapted from coordinates
of a single mutant Sa DHFR bound to the same ligands (15). Ten
active site residues (Leu 5, Val 6, Leu 20, Asp 27, Leu 28, Val 31,
Thr 46, Ile 50, Leu 54, and Phe 92) were modeled as flexible using
rotamers (16) and allowed to keep their wild-type identity or to
mutate within a restricted group of amino acids (see Materials and
Methods) that conserve the amino acid property or correlate with
a different DHFR species. In order to comprehensively test the
algorithm, the group included mutations that represent both
single- and double-nucleotide polymorphisms. While single-
nucleotide polymorphisms are the most prevalent mechanism
of mutational resistance, more complex mutations do evolve such
as those in HIV-1 reverse transcriptase (17-19), hepatitis C pro-
tease (20), hepatitis B reverse transcriptase (21), and Helicobacter
pylori rpoB (22).

Based on the input model, K* searches designed to identify up
to 2-point mutations were performed separately for dihydrofolate
and compound 1. K* scores are computed as a ratio of Boltz-
mann-weighted partition functions over rotamer-based confor-
mational ensembles for the bound protein-ligand complex, the
free protein, and free ligand (see Materials and Methods). Since
higher K* scores imply better affinity, we focused our attention on
pairs of mutations that scored highly for dihydrofolate and poorly
for compound 1, particularly on those that returned a score of
zero for compound 1 (Table 2) and a resultant score ratio of
infinity. A mutant K* score of 0 for compound 1 implies one

of two scenarios: (1) K* pruned all rotameric conformations for
these mutants; or (2) the computed partition function for the
bound protein-ligand complex for a given mutant was signifi-
cantly less (in the current redesigns: more than eight orders of
magnitude) than the product of the partition functions for the
free protein and the free ligand. Typically, scenario (1) occurs
when significant steric interference exists either within the pro-
tein or between the protein and the ligand for all possible
rotameric conformations, even after minimization. An initial ster-
ic overlap (before minimization) between two rotamers of more
than 1.5 A was considered significant and the corresponding pair
of rotamers was pruned from further consideration (Materials and
Methods). Scenario (2) is typically caused by significantly unfavor-
able interactions between the protein and the ligand, as opposed
to the protein in its unbound form (Table 2). The different mu-
tants with a score of 0 for compound 1 are thus not equivalent
with respect to the predicted destabilized interactions with com-
pound 1. There were 105 mutants with a score ratio of infinity; the
top ten exhibited a dihydrofolate score considerably better than
the others and were further investigated. These ten mutants fell
into two groups: the first group contained mutations at residues
31 and 92, the second group contained mutations at positions 50
and 92 (Table 2). The computed partition functions for the bound
protein-ligand complex (with compound 1) and the free protein
(Table 2 D, E), along with the lowest energy for the respective
ensemble of conformations (Table S1) suggest that compound
1 has significantly destabilized interactions with these mutants.

Interestingly, the wild-type sequence was ranked #306 out of
1,173 with dihydrofolate and #369 out of 1,173 with compound 1,
suggesting that a subset of the higher-ranked sequences may have
improved binding to dihydrofolate or compound 1.

Experimental Validation of the Predicted Mutants. To test the validity
of the results of the algorithm, we created four of the mutants that
show diversity at each of the positions (ranked by the algorithm
#1, 3, 7, and 9) using site-directed mutagenesis and purification
procedures similar to the wild-type enzyme (13, 14). Enzyme
activity assays show that there is only a modest 3-fold reduction
in K, values for dihydrofolate (Table 3) for the Val31/Phe92 mu-
tants. While the k., and k., /Kj; values are lower than those of
the wild-type enzyme (Table 3), the losses are within the range of
other clinically observed DHFR mutants. For example, the FS7L
mutation in Plasmodium vivax DHFR (pyrimethamine, cyclogua-
nil and WR99210 resistance) (23), the L22R mutation in human
DHFR (methotrexate resistance) (24) and the A16V mutation in
Plasmodium falciparum DHFR (cycloguanil resistance) (25) suf-
fer 220-, 250-, and 680-fold losses, respectively, in k., /K. The
ninth-ranked mutant, Sa (I5S0W, F92S) DHFR, was not active,
suggesting that the Ile50Trp mutation prevents binding to
the substrate. The results for the mutants ranked #1, 3, and 7
by the algorithm experimentally validate the positive design

Table 1. Statistics of data collection and refinement

Complex Sa (WT)/ cmpd 1/NADPH Sa (V31Y,F921)/ cmpd 1/NADPH
PDB ID 3F0Q 3LG4
Space group P6,22 P6,

Unit cell (a,b,c in A)

Resolution, (last shell, A)

Completeness, % (last shell, %)

Redundancy (last shell)

Rsym (last shell)

(/o) (last shell)

Refinement statistics

R-factor/Ryrce

Rms deviation bond lengths A), angles (°)

Average B factors (AZ): overall; NADPH; compound 1
Residues in most favored regions, allowed regions (%)

a=b=79.16, c = 108.80
25.9 - 2.10 (2.29 - 2.08)

a=b=288.752, c=103.167
42.8 - 3.15 (3.23 - 3.15)

87.9 (95.3) 91.2 (99.7)
10.40 (12.2) 5.0 (5.4)
0.050 (0.143) 0.061 (0.379)
8.6 (2.7) 14.5 (3)
0.196; 0.231 0.26; 0.292
0.010; 1.386 0.007; 1.219
20.6; 16.7; 21.8 88.7; 94.7; 68.5
90.4, 9.6 87.5; 12.5
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Fig. 1.
compound 1 (A) as B) stick models and C) surface rendering.

component of the K* algorithm and its success in predicting
mutants that retain catalytic activity.

In order to assess the results of the negative design component
of the algorithm, K; values were measured for the wild-type and
Sa (V31Y, F92I) DHFR enzymes with compound 1. Dixon plots
show that the inhibitor binds competitively (Figs. S1 and S2);
analysis of the plots yields K; values of 7.5 nM and 128 nM
for the wild type and mutant, respectively. K; values were also
calculated from ICs, values and K, values (26) for all active
mutants (Table 4). The top-ranked resistance mutant, Sa (V31Y,
F921) DHFR, shows the greatest (18-fold) loss in affinity for com-
pound 1. Mutants Sa (V31Y, F92S) and Sa (V31F, F92L) DHFR
also show significant (9-fold and 13-fold, respectively) losses in
potency, suggesting that the algorithm is also successful in its ne-
gative design component. The success of the algorithm prompted
the investigation of a structure of the mutant to determine why
the resistance mutations at positions 31 and 92 retain activity but
lose affinity for compound 1.

Determination of a Crystal Structure of Sa (V31Y, F92I) DHFR, NADPH
and Compound 1. Crystals of Sa (V31Y, F92I) DHFR showed
diffraction amplitudes to 3.15 A (Table 1); the structure of the
mutant was determined using difference Fourier methods based
on the wild-type structure bound to NADPH and compound 3
(Table S2) as a model (PDB ID: 3FQC) (13). There is a high de-
gree of similarity between Sa (wild-type) and Sa (V31Y, F92I)
DHEFR, reflected in a root mean square deviation for 157 Ca
atoms of 0.355 A. The similarity of the enzymes is also reflected
in their melting temperatures, as determined by circular di-
chroism (T, wild-type =42.5°C, T,, Sa(V31Y,F92I) = 36.3°C,
graphs shown in Fig. S3). The Sa (V31Y, F92I) DHFR mutant

Table 2. The top ten mutants as ranked by the score ratio criterion
are shown with the respective K* scores with dihydrofolate (DHF)

Compound 1

Partition function®

Rank Mutations? DHF K* Score® Fp? PL®

1 V31Y/F92i 4.30 x 1040 6.6 x 1022 2.1x10'32
2 V31Y/F92V 3.81 x 10% 2.9 x 10391 43 %103
3 V31Y/F92S 3.13 x 10% 1.2x 10331 2.4x10'73
4 V31Y/F92A 2.94 x 10%0 1.3x 10330 4.4x 10"
5 V31Y/F92M 6.77 x 1038 3.4 x 10332 1.0 x 1062
6 V31Y/F92L 6.38 x 1038 2.3x 10320 2.7 x 10150
7 V31F/F92L 6.01x 1033 2.3x 1037 2.3x 10370
8 150W/F92M 7.70 x 1032 8.8 x 10340 5.0 x 10377
9 IS0W/F92S 2.74 x 1032 1.9 x 10332 3.2x103%
10 I50W/F92A 2.10 x 1032 1.9 x 10338 3.9x 1033

For each of the mutants, the computed “partition function for the free
protein (FP) and °protein-ligand (PL) complex (with compound 1) are also
shown; all of the top 10 mutants had a K* score of 0 for compound 1.
Mutants shown in bold were selected for experimental validation.

Frey et al.

Stereo view of the superposition of the ternary crystal structures of Sa (WT) DHFR (green) and Sa(V31Y/F921) DHFR (magenta) bound to NADPH and

structure exhibits the standard, extended conformation of
NADPH, in contrast to the alternate conformation observed
in several structures of the Sa (F98Y) DHFR mutant (13). In con-
trast to the wild-type structure in which the ligand fully occupies
the site, compound 1 binds the mutant active site with 50%
occupancy, suggesting that the V31Y and F92I mutations affect
ligand binding.

Despite the moderate resolution of the data for the mutant
enzyme, the electron density maps revealed significant structural
details including side chain and ligand orientations in the active
site that disclose the basis of the lower affinity of compound 1
(Fig. 1). Strong hydrophobic interactions made with the native
Phe92 residue and propargyl linker of compound 1 are reduced
with the mutation to Ile92. The Val31Tyr mutation introduces
steric bulk in the active site that interferes with the 2-methyl
substitution on the distal phenyl ring, causing the substituted bi-
phenyl of the ligand to contort around the propargyl position and
reorient by approximately 60°. Reorientation positions the two
phenyl rings outside the main hydrophobic pocket, causing the
loss or reduction of strong hydrophobic interactions with residues
Leu 28, Val 31, Leu 54, and Phe 92. In the new position, the distal
phenyl ring maintains interactions only with Leu 20. While it
appears that the mutant enzyme may have bound the opposite
enantiomer compared to that bound in the wild-type structure,
the resolution of the electron density does not permit exact
evaluation.

K, values suggest that active sites mutated at the Val31 and
Phe92 positions retain affinity for the substrate, dihydrofolate. In
order to understand why these mutations allow substrate binding,
we compared the Sa (V31Y, F92I) DHFR crystal structure bound
to compound 1 and NADPH with the lowest energy predicted
structure for Sa (V31Y, F92I) DHFR bound to dihydrofolate
(Fig. 24). In contrast to compound 1, which relies on the inter-
action between the propargyl linker and Phe 92, dihydrofolate
lacks a propargyl linker and is minimally affected by the Ile 92
mutation. In addition, the para-aminobenzoic acid moiety of
dihydrofolate can be accommodated in the limited space near
the Tyr 31 mutation. This accommodation differs from compound
1, where the biphenyl changes orientation to avoid steric repul-
sion with Tyr 31. Although a crystal structure for the Sa (V31F,
F92L) DHFR mutant was not obtained, it appears that the
dihydrofolate molecule could also be accommodated in the space
near the Phe 31 mutation.

Table 3. Kinetic parameters for the wild-type and mutant enzymes

kcat/KM
Enzyme Ky, units in pM kg, units in 1/s  (fold decrease)
Sa (WT) 145 + 35 31 2.14 (1.00)
Sa (V31Y, F92l) 43 £26 2.8 0.06 (36)
Sa (V31Y, F92S) 58 + 3.0 1.4 0.02 (107)
Sa (V31F, F92L) 45 + 4.3 0.31 0.007 (306)
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Table 4. Inhibition assays for enzymes and compound 1

Enzyme Ki, nM Fold loss*
Sa wild-type (WT) 10 1.0
Sa (V31Y,F92l) 180 18

Sa (V31Y, F92S) 87 8.7
Sa (V31F, F92L) 130 13

*Fold loss = K; value for enzyme/K; value for WT.

To assess whether the K* algorithm predicted similar rotamer
conformations as were observed in the crystal structure, the crys-
tal structure of Sa (V31Y, F92I) DHFR was compared with the
lowest energy predicted structure (Fig. 2B). The Tyr 31 mutation
observed in the crystal structure has the same conformation as
each of the top ten members of the ensemble of predicted struc-
tures. Although the rotamer for Ile 92 in the crystal structure
differs from the predicted structure, the predicted residue is
located in the same location and space as both the mutant Sa
(V31Y, F92I) and Sa (WT) DHFR structures. Similarity of rota-
mer conformations suggests that the algorithm is accurate in
predicting not only the identity of residues targeted for mutation,
but also the proper orientation of mutated residues.

The conformation of compound 1 from the top K*-predicted
structure lacks the reorientation of the biphenyl observed in the
Sa (V31Y, F92I) DHFR crystal structure. This reoriented confor-
mation is significantly out of the range of ligand conformations
input to the software to be modeled by K*. For example, in the K*
input ligand rotamer (see Materials and Methods section) closest
to the ligand conformation in the Sa (V31Y, F92I) DHFR crystal
structure, the biphenyl of compound 1 is rotated by approxi-
mately 60°.

The goal of the K* algorithm was to block binding to com-
pound 1 by introducing mutations to DHFR, based on the se-
lected set of input ligand conformations. Using this input model,
the algorithm successfully identified mutations that have signifi-
cantly diminished binding to compound 1. The ligand flexibility
model used by K* significantly improves on models where ligands
are treated as rigid or in which rigid ligand rotamers are used.
However, due to the expense of the computation, the number
of rotamers and the span of ligand conformations were still sig-
nificantly limited. While, ideally, the entire feasible conformation
space around a ligand should be evaluated by the computational
procedure, this would come at the cost of a combinatorial in-
crease in compute times. Optimal balance should thus be sought
between the computational requirements and the comprehen-
siveness of the flexibility models.

Nevertheless, it is interesting to determine how a ligand con-
formation mimicking the one observed in the crystal structure of
the Sa (V31Y, F92I) mutant complex would be scored by our
algorithm. To this end, we set up and performed a K* score
computation for the Sa (V31Y, F92I) mutant, with the ligand di-
hedrals constrained to a conformation close to the one observed
in the mutant crystal structure. Interestingly, the computed lowest
energy (approx. —179.4 kcal/mol) in the K* conformation en-
semble for the bound protein-ligand complex was virtually iden-
tical to the lowest energy of the original K* ensemble (approx.
—180.0 kcal/mol, see Table S1). Thus, even with the ligand
conformation mimicking the one observed in the crystal structure
complex, K* predicts the Sa (V31Y, F92I) mutant to have signi-
ficantly destabilized interactions with compound 1 as compared
to the free protein (see Table S1).

Fig. 2. Stereo views of the superposition of the Sa(V31Y/F921) DHFR crystal structure (magenta) with A) model of dihydrofolate in the active site (cyan) and B)

the lowest energy model from the predicted ensemble (yellow).

13710 | www.pnas.org/cgi/doi/10.1073/pnas.1002162107
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Elucidating Structure-Activity Relationships of Additional Antifolate
Compounds. The structural evidence suggests that the Val31Tyr
and Phe92lle mutations decrease affinity by reducing hydropho-
bic interactions with Phe 92 and introducing steric bulk at Val 31.
In order to validate these hypotheses, we tested the activity of
four other propargyl-based antifolates for the mutant enzymes
and probed the structure-activity relationships. All four addi-
tional antifolates (compounds 2, 3, 4, and 5 shown in Table S2
with inhibition values) are potent inhibitors for the wild-type en-
zyme, but lose potency for all of the mutant enzymes. Compound
2, with an unsubstituted distal phenyl ring relative to the dimethyl
substitution on compound 1, loses only 7-fold affinity for the Sa
(V31Y, F92I) DHFR enzyme, validating that the unsubstituted
phenyl is less affected by mutations at the Val 31 position. In con-
trast, compound 4, with an ethyl group at the C6 position of the
diaminopyrimidine ring, is affected by the Val 31 mutation
(exhibiting 10.5-, 16-, and 28-fold losses with each of the enzymes
mutated at Val 31) because the ethyl group has extensive van der
Waals contacts with Val 31.

Mutations at the Phe 92 position affect the interactions with
the propargyl substitutions on the compounds. As such, these
mutations reduce the affinity of compound 3, with a gem-dimethyl
at the propargylic position, by 7-18-fold. Compound 5, with a
para-biphenyl ring instead of the meta-biphenyl of compound
1, has lower affinity for the wild-type enzyme (K; =24 nM);
analysis of cocrystal structures shows that the para-biphenyl ring
juts out of the active site (13). Interestingly, the orientation of the
para-biphenyl ring in these structures is similar to the new orien-
tation adopted by the meta-biphenyl ring of compound 1 in the Sa
(V31Y, F92I) DHFR structure.

Conclusions

Predicting potential resistance mutations in an enzyme target in
silico would enable the design of compounds early in the drug
design process that overcome these limitations. Towards that
goal, we used the protein design algorithm, K*, to predict muta-
tions in DHFR from S. aureus. Positive design selected mutations
that maintain binding to the substrate, dihydrofolate; negative de-
sign selected mutations that lower the affinity for a lead inhibitor
and the intersection of these sets resulted in a ranked series of
double mutants. Four of the ten top-ranked mutants were chosen
for experimental validation. Excitingly, as predicted, three of the
mutants maintain catalytic activity and show lower affinity for the
inhibitor. A crystal structure of the top-ranked mutant further
validates the predicted conformations of the mutated residues
and reveals a conformation of the ligand with many fewer inter-
actions than are apparent in the wild-type structure.

Materials and Methods

K*. The following mutations (one-letter amino acid codes) were allowed for
the ten active site residues: Leu5, Val6, Leu20, Leu28, Val31, and Ile50—
AVLIMFWY; Asp27—DE; Phe92—AVLIMFWYS. Residues Thrd6 and Leu54
were modeled using rotamers but were not allowed to mutate. K* performed
2-point mutation searches, in which any two of the ten active site residues
were allowed to simultaneously mutate, while the other eight residues were
allowed to change rotamers. These searches yielded a total of 1,173 candi-
date mutants (that included the wild-type, 1-, and 2-point mutations),
corresponding to 4.37 x 10'° (DHFR:NADPH:dihydrofolate) and 2.49 x 10'?
(DHFR:NADPH: compound 1) conformations, for which K* scores were com-
puted (see below). The use of a factor of ~100 more conformations to predict
mutants with reduced binding to compound 1 reflects the need for greater
conformational flexibility for negative design.

NADPH and a steric shell of residues within 5 A from the active site or 8 A
from dihydrofolate were included as part of the input structure. The sub-
strate was modeled as flexible using rotamers and was allowed to rotate/
translate. Modal values from the Penultimate rotamer library (16) were used
for the amino acid side chains. Ligand rotamers were defined for dihydro-
folate and compound 1 by sampling sets of rotatable bonds (see S/ Text).
For all rotamers, each dihedral was allowed to minimize within +£9° from
its initial value.
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For each of the candidate mutants, positive design (dihydrofolate as sub-
strate) and negative design (compound 1 as substrate) computations were
performed and scored. The ratio of the K* scores for a given mutant with
dihydrofolate and compound 1 was used to rank the candidate mutants;
mutants with high ratios were predicted to be good dihydrofolate and poor
compound 1 binders. The energy function consisted of the Amber vdw,
electrostatic, and dihedral energies (27), and the EEF1 implicit pairwise
solvation model (28) (see S/ Text).

A K* score for a given mutant was computed as the ratio of the partition
functions for the bound protein-ligand complex and the free protein and
free ligand. Partition functions were computed over Boltzmann-weighted
ensembles of conformations: a partition function g for a given ensemble
S of conformations was computed as: q = Y s exp(—Es/RT), where E; is
the energy of conformation s, T is the temperature in Kelvin, and R is
the gas constant. For each partition function computation, initial rotamer
pruning based on the MinDEE algorithm (4) was first applied as a prepro-
cessing step to reduce the number of candidate rotamers and rotamer-
based conformations. MinDEE is provably accurate with continuously flex-
ible rotamers defined over a bounded (but continuous) region of side-chain
conformation space. Following, A* enumerated the remaining unpruned
conformations in order of increasing lower bounds on their energies. For
computational efficiency, a provably accurate e-approximation algorithm
was applied to guarantee the accuracy of the computed partition function
based only on a small fraction of the remaining unpruned conformations
(4). Using this e-approximation algorithm, the A* enumeration could be
provably halted once the computed partition function was guaranteed
to be within e from the full partition function (when all rotameric confor-
mations are taken into account). An ¢ value of 0.03 guaranteed that the
computed partition functions were at least 97% of the corresponding full
partition functions (1, 4). The MinDEE/A* and K* algorithms return a gap-
free list of predictions in the order of the predicted score (either empirical
molecular mechanics energy [MinDEE], or free energy based on molecular
ensembles [K*]).

Mutant Enzyme Preparation. Sa DHFR mutants ranked #1, 3, 7, and 9 by the K*
algorithm were prepared with site-directed mutagenesis using the DNA
encoding Sa (WT) DHFR as a template. All clones were verified by DNA se-
quencing. Mutant enzymes were expressed in E. coli BL21(DE3) cells and
purified using procedures previously adapted for the wild-type protein (13).

Enzyme Assays. Enzyme activity and inhibition assays were performed in tri-
plicate for each DHFR mutant by monitoring the rate of NADPH oxidation by
the DHFR enzyme at an absorbance of 340 nm (13). Kinetic parameters were
measured by performing triplicate enzyme activity assays at varying substrate
concentrations of dihydrofolate and analyzed with Lineweaver-Burk plots.
Ky, values, in addition to the obtained ICs5, values, were used to calculate
K; values for each enzyme and inhibitor (26). K; values were also determined
experimentally for compound 1 and the wild-type and Sa (V31Y, F92I)
enzymes using four concentrations of substrate (50, 100, 150, and 200 pM)
and four concentrations of inhibitor near the 1Cs5, value (50, 75, 100, and
150 nM for wild-type and 150, 300, 450, and 600 nM for Sa(V31Y,F92I)DHFR).
The inhibition data were analyzed with Dixon plots.

Enzyme Stability by Circular Dichroism. Temperature-induced unfolding ex-
periments were performed for both Sa (WT) and Sa (V31Y, F92l) DHFR by
increasing the temperature from 5 °C to 70 °C and monitoring circular dichro-
ism at 222 nm. CD measurements were taken at 1 °C temperature increments
with an equilibration time of 2 min. Protein concentrations used in these
experiments were 12 pM for Sa (WT) DHFR and 17 uM for Sa (V31Y, F92I)
DHFR. To account for the difference in enzyme concentration, the data points
were converted from millidegrees to molar ellipticity and then plotted to
determine T, values.

Crystallization. Both Sa DHFR and Sa (V31Y, F92I) DHFR were crystallized using
hanging-drop vapor diffusion. The purified enzymes (12 mg/mL) were incu-
bated with compound 1 (1 mM) and NADPH (2 mM) for 2 h on ice. Crystals of
the protein:ligand:NADPH complex were optimized in a crystallization
solution containing 15% PEG MW10,000, 150 mM sodium acetate, and
100 mM MES pH 6.5.

Data Collection and Refinement. Diffraction data with amplitudes extending
to 2.1 A or 3.15 A were collected at National Synchrotron Light Source
(beamline X29 or X25) for complexes of Sa DHFR and Sa (V31Y, F92I) DHFR,
respectively. Data were indexed and scaled using HKL 2000 (29). Programs
Coot (30) and Refmac (31) were used to build and refine the structure until
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e,

an acceptable Ry and Ry Were achieved. The geometry of the structure
was validated using Procheck (32) and Ramachandran plots. Data collection
and refinement statistics are reported in Table 1.

Software. All software is freely available open-source upon publication.
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SI Text

S| Materials and Methods. Ligand rotamer definitions. As a modeling
improvement (vs. redesigns in which substrates are modeled with
fixed geometries), ligand rotamers were defined for dihydrofolate
and compound 1 by sampling sets of rotatable bonds. Based on
the input dihydrofolate structure and eighteen folate structures
from the Protein Data Bank (PDB), eight dihydrofolate rotamers
defined over ten rotatable bonds were selected. In the case of
compound 1, 512 rotamers defined over four rotatable bonds
were selected. The choice of substrate rotamers aimed at improv-
ing the accuracy of the model, while keeping the redesigns
computationally feasible.

Positive and negative design. For each of the candidate mutants,
two separate computations were performed: a positive design
and a negative design. Positive design was performed with dihy-
drofolate as substrate and aimed at identifying mutants with si-
milar or improved binding to dihydrofolate, as determined by the
respective K* scores. Negative design was performed for
compound 1 as substrate and aimed at identifying dihydrofolate
reductase (DHFR) mutants with significantly decreased or ab-
lated binding to compound 1, as determined by the respective

*+Sa V31Y F92l DHFR
~=SaDHFR

-11000

-11500 -

-12000

-12500

-13000

-13500

-14000

K* scores. The ratio of the K* scores for a given mutant with
dihydrofolate and compound 1 was then used to rank the candi-
date mutants; mutants with high ratios were ranked higher since
such mutants were predicted to be good dihydrofolate and poor
compound 1 binders.

Energy function. A distance-dependent dielectric of 6, a solvation
energy scaling factor of 0.05, and a vdW radii scaling factor of 0.95
were used. While the computed energies are in units of kcal/mol
(see, e.g., Table 2), the computed values are only used for the
relative comparison of candidate conformations and mutations
and are not a quantitative measure of biophysical energies.
Rotameric conformations with initial steric overlap (before mini-
mization) of more than 1.5 A for a pair of atoms were pruned
from consideration, and their energies were not computed; hy-
drogens were not considered in these steric checks.

Determining the unbound structures for £*. The unbound structures
were obtained by removing the ligand from the starting bound
structure.
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Circular dichroism data shown as molar ellipticity at 222 nm versus temperature.
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Fig. S2. Dixon plot for determining the K; value of the wild-type enzyme and compound 1.
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Fig. S3. Dixon plot for determining the K; value of Sa (V31Y, F92I) DHFR and compound 1.

Table S1. The top ten mutants as ranked by the score ratio criterion are shown with the respective
K* scores with "dihydrofolate (DHF).

Compound 1

Lowest energy© Partition function®

Rank Mutations® DHF K* Score® FPe PLf FPe PL"

1 V31Y/F92I 4.30 x 1040 —399.0 —-180.0 6.6 x 102%2 2.1x 10132
2 V31Y/F92V 3.81 x 10% —-410.8 -195.5 2.9 x 1039 4.3x 1043
3 V31Y/F92S 3.13 x 10% —-450.8 -236.0 1.2 x 10331 24%10'73
4 V31Y/F92A 2.94 x 10%° —449.9 -233.8 1.3 x 10330 4.4x 10"
5 V31Y/F92M 6.77 x 1038 —453.2 -229.9 3.4x 10332 1.0 x 10'%°
6 V31Y/F92L 6.38 x 1038 —-436.6 -204.9 2.3 %1032 2.7 x 1030
7 V31F/F92L 6.01x 1033 —446.0 —423.2 2.3x103%7 2.3x 10310
8 I50W/F92M 7.70 x 1032 —464.7 —447.5 8.8 x 10340 5.0 x 10327
9 150W/F92S 2.74 x 1032 —-462.1 —-444.1 1.9 x 10339 3.2x 1035
10 I50W/F92A 2.10x 1032 —-461.0 —441.2 1.9 % 10338 3.9x 1038

For each of the mutants, the computed ‘lowest energy (in kcal/mol) and “partition function for the ®*free
protein (FP) and *"protein-ligand (PL) complex (with compound 1) are also shown; all of the top 10 mutants
had a K* score of 0 for compound 1. Mutants shown in bold were selected for experimental validation
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Table S2. Inhibition assays (K; values in nM) for enzymes and propargyl-linked antifolates

Sa V31Y, Sa V31Y, Sa V31F, Fold loss Fold loss Fold loss
Compound Fo2i F92S FI2L Sa WT (V31Y, F92I/WT) (V31Y, F92S5/WT) (V31F, F92L/WT)
180 87 130 10 18 8.7 13
NH, OMe
o~ U
‘ —
H,N” N
g 1
60 49 100 8.5 71 5.8 11.8
NH, OMe
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PP
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g 2
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N &
)\\ _ OMe
H,N” N OMe 3
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