Precise Zero Knowledge

Silvio Micali* Rafael Pass'

December 1, 2007*

Abstract

We put forward the notion of Precise Zero Knowledge and provide its first implementations
in a variety of settings under standard complexity assumptions. Whereas the classical notion
of Zero Knowledge bounds the knowledge of a player in terms of his potential computational
power (technically defined as polynomial-time computation), Precise Zero Knowledge bounds
the knowledge gained by a player in terms of its actual computation (which can be considerably
less than any arbitrary polynomial-time computation).

*CSAIL, MIT, E-Mail: silvio@csail.mit.edu

TDepartment of Computer Science, Cornell University, E-Mail: rafael@cs.cornell.edu

tA preliminary version of this paper appeared in 38’th STOC, 2006 under the name Local Zero Knowledge. This
version contains a slight revision from August 2011.

Contents

1

Introduction

1.1 Precise Zero-Knowledge
1.2 Precision Beyond ZKC
1.3 Related Work e
1.4 Subsequent Work
1.5 Notation and Preliminaries L o
1.6 Overview e

Definitions of Precise Zero Knowledge and Proofs of Knowledge

2.1 Precise Zero Knowledgeo

2.2 Properties of Precise ZKo
2.2.1 Preserving Running-time Distribution
2.2.2 Composition of Precise ZKC Lo

2.3 Precise Proofs of Knowledge
2.3.1 Emulatable Precise Proofs of Knowledge
2.3.2 ZK for the Prover and Emulatable Proofs of Knowledge

Constructions of Precise Proofs of Knowledge

3.1 Statistical Knowledge Precision Lemmas
3.1.1 Linear precision using w(logn) rounds
3.1.2 Polynomial precision using w(l) rounds

3.2 Computational Knowledge Precision Lemmas

3.3 Constructions of WI Precise Proofs of Knowledge
3.3.1 W Precise Proofs of Knowledge
3.3.2 Statistical-WZ Precise Proofs of Knowledge
3.3.3 Emulatable Precise Proofs of Knowledge

Constructions of Precise ZK

4.1 Precise ZK Arguments for NP L
4.1.1 Computationally Precise ZX Arguments from Any One-way Function

4.2 Precise ZK Proofs for NP

4.3 Everything Provable is Provable in Precise ZK

4.4 Existence of Statistically Precise ZK Proofs
4.4.1 Unconditional WZ Precise Proof of Knowledge for a Specific Language
4.4.2 Statistically Precise ZK Proof for Graph Non-Iso
4.4.3 Other Unconditional Statistically Precise Z/C Proofs

Black-Box Lower Bounds for Precise ZK
5.1 Definition of Black-Box Precise ZKo
5.2 The Lower Bound

Precise Encryption

Precise Secure Computation

N w W

10
10
10
11

11
11
13
13
14
15
16
17

18
18
19
22
25
26
26
27
27

28
28
33
34
37
38
38
39
40

41
41
42

45

47

A Basic Notation
A.1 General Notation s
A.2 Protocol Notation

B Preliminaries
B.1 Indistinguishability e
B.2 Interactive Proofs and Arguments L.
B.3 Commitment Schemes L
B.4 Zero Knowledge oL
B.5 Witness Indistinguishability 0 0
B.6 Proofs of Knowledge

C Known Non Black-box Simulators are Not Precise

54
54
95

56
o6
o7
o7
99
60
61

61

1 Introduction

The works of Goldwasser and Micali [36] and of Goldwasser, Micali and Rackoff [37] put forward a
computational approach to knowledge in interactive systems. In a nutshell, their approach can be
summarized as follows:

A player knows only what he can feasibly compute.

Since “feasible computation” is formalized as probabilistic polynomial-time computation, their no-
tion bounds the knowledge gained by a player in an interaction in terms of what is computable in
probabilistic polynomial time.

In this paper, we put forward a stronger notion that precisely bounds the knowledge gained by
a player in terms of the actual computation he has performed (which can be considerably less than
any arbitrary polynomial-time computation). We focus our treatment on interactive proofs [37], but
as we shall see, our notion naturally extends to more general types of interactions—in particular,
secure encryption schemes and general secure multi-party computations.

1.1 Precise Zero-Knowledge

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali and Rackoff [37] are fascinating
(and seemingly paradoxical) constructs, allowing one player (called the Prover) to convince another
player (called the Verifier) of the validity of a mathematical statement x € L, while providing zero
additional knowledge to the Verifier.

Goldwasser, Micali and Rackoff’s definition essentially states that an interactive proof of z € L
provides zero (additional) knowledge to the Verifier, if, for any probabilistic polynomial-time verifier
V', the view of V in the interaction can be “indistinguishably reconstructed” by a probabilistic
polynomial-time simulator S—interacting with no one—on just input . The rational behind this
definition is that since whatever V' “sees” in the interaction can be reconstructed in polynomial-time,
the interaction does not yield anything to V' that cannot already be computed in polynomial-time.
Thus, zero-knowledge proofs, although conveying a lot of information to the Verifier, guarantee that

The class of probabilistic polynomial-time verifiers learn nothing new from the interac-
tion.

We wish to consider a notion of zero knowledge that guarantees that also individual verifiers,
rather than the class of polynomial-time verifiers, learn nothing new. A major step towards this
goal was taken already by Goldreich, Micali and Wigderson [34], and Goldreich [31]. The refinement
of [34, 31], called knowledge tightness, calls for a tighter coupling between the running-time of V'
and the running-time of S. Roughly speaking, a proof is zero knowledge with tightness p(-) if the
expected running time of S(x) is upper-bounded by p(|x|) times the running time of V' (x) (plus some
small additive polynomial in |z|). Think for instance of ¢(n) = 2; knowledge-tight zero knowledge
then roughly says that, given any instance z, if V' (x)’s running-time on input x is ¢, S(z)’s expected
running needs to be bounded by (roughly) 2¢.

Recall that as V(x) is an interactive machine, its running-time may depend on the messages
it receives. In the definition of knowledge tightness, the running-time of V' (z) is taken to mean
the worst-case (i.e., maximum) running-time of V(x) in any interaction. The tightness of a zero-
knowledge proof thus bounds the knowledge gained by the Verifier in terms of its mazimum running-
time in any interaction.

Our notion of Precise Zero Knowledge aims at bounding the knowledge of a verifier in an
execution-by-execution manner. To motivate it, consider a malicious verifier V' that, on input an
instance z € {0,1}", with probability .01 over the messages it receives, takes n°® computational
steps and n steps the rest of the time. The worst-case running time! of V is n°?, and thus zero
knowledge with optimal tightness only requires that V' be simulated in expected time O(n"). Does
this really mean that it is indifferent for V' to get out and interact with the Prover or to stay home
and run S? Unless we are confident that n°° steps convey absolutely no knowledge (or unless we
have stronger guarantees about the behavior of the simulator) the answer is no. In fact, by inter-
acting with the Prover, V' will almost always execute n steps of computation, while (in absence of
extra guarantees) running the simulator might always cause him to invest n°° steps of computation!
(This is not just a theoretical worry or an artifact of the definition: it actually occurs for classical
protocols and simulators.?)

Rather than preserving just the worst-case running-time of the verifier, we wish the simulation
to preserve the running-time distribution of the verifier. In fact, we want even more: informally,

P provides a zero-knowledge proof of x € L if the view v of any verifier V in an interaction with
P about x can be reconstructed—on just input x—in the same time (within, say, a constant
factor) as that taken by V in the particular view v.

In other words, whatever V can “see with P” in ¢ steps of computation, he can reconstruct by
himself in—say—2t steps. We call a proof satisfying the above property a precise zero-knowledge
proof (or a zero-knowledge proof with linear precision); more generally, the proof is said to have
precision p(n,t) if the time it takes to reconstruct a view in which V takes t steps is bounded by
p(|z],t). Roughly speaking, we formalize this notion as follows: for any Verifier V', we require the
existence of a simulator S such that for any true statement x and any view v output by S(z) (on
input some random tape r), if V takes t steps in the view? v, then S(x) cannot have taken more
than p(|z|,t) steps to generate it (using the random tape r).

In essence, whereas knowledge-tight zero-knowledge only requires that the simulation incurs a
small slow down relative to the the maximum running time of the verifier, our notion calls for a
small slow down with respect to the actual running time in each particular execution.

Notice that if restricting our attention to verifiers that always execute the same (or roughly the
same) number of computation steps, then any standard zero-knowledge simulation with tightness
O(1) also has precision p(n,t) = O(t) + poly(n). However, if considering general verifiers whose
running-time depend (in some non-trivial fashion) on the instance and the messages received, then
precise simulation seems harder to obtain. (Indeed, as we shall see, known simulations do not even
guarantee precision p(n,t) = poly(n,t).)

Let us provide some applications of the new notion.

n fact, also the expected running-time of V is O(n%%).

2Consider for instance, the protocol of Feige-Shamir [28] when instantiated with Goldreich, Micali and Wigderson’s
Graph 3-Coloring proof system [34]. As above, consider a verifier V that with prob .01 runs in time n°°, and otherwise
in time n. The Feige-Shamir simulator runs the verifier n? times, each time feeding it new messages (this is done
in order to extract a “fake” witness). The probability that the verifier runs in time n in all n? rewindings is 99,
Thus, although the verifier only runs in time n°® with probability .01, the simulator will essentially always run in time

O(n™).

3Recall that the view of V' contains both the messages received by V and its random tape; given these, the execution
of V is deterministic and we can thus determine the number of steps it takes in this view.

Preserving Success/Time-Distribution. Standard Zero-Knowledge proofs provide the guarantee
that the Verifier will not be able to compute any properties of the statement proved, that
cannot already be computed (without interacting with the Prover) in expected time that is
comparable to the worst-case running-time of the Verifier. Barak and Lindell [7] point out
that such a coupling between the expected running-time of the simulator and the worst-case
running-time of the Verifier, allows for a success-probability /running-time trade-off for the
Verifier: a malicious Verifier might potentially with probability, say, ﬁio compute some prop-
erty after 1 year, that would have taken him 100 years to compute before the interaction. They
also note that zero-knowledge proofs with strict polynomial-time simulators, i.e., simulators
whose worst-case running-time is coupled to the worst-case running-time of the Verifier do not
allow such a trade-off. In other words, strict polynomial-time zero-knowledge proofs do not
allow for success-probability/(worst-case) running-time trade-offs.

Precise Zero Knowledge additionally guarantees that the success-probability /running-time dis-
tribution of the Verifier is preserved. More precisely, consider a verifier that can compute some
property with a certain success probability and a running time that is specified by some prob-
ability distribution (over the random coins of both the honest prover and the verifier). Then,
the notion of Precise Zero Knowledge guarantees that the same property can be computed
with (roughly) the same success probability and running-time distribution, without the help
of the prover.

“More Deniable” Identification. Perhaps the most important use of zero-knowledge proofs in
practice consists of (1) convincing a gate keeper of our identity, without (2) leaving any
evidence of our interaction that can be believed by a third party [29, 18, 23]. Intuitively,
the information left in the hands of the gate keeper consists of his view of the interaction,
something that he could reconstruct himself without any help in the case of a zero knowledge
proof (of z € L, for a fixed hard language L and for an input = publicly linked to the identity).
However, let us argue that also for such a “deniable identification” application, standard
definitions of zero-knowledge might not directly stipulate sufficient security guarantees.

Consider a gate keeper that with probability 0.01 takes n°" steps and n steps otherwise. With
probability 0.99, such a gate keeper might obtain in n steps a view of the interaction that would
have taken him n%" steps to generate, if naively running the zero-knowledge simulator. Such a
view might therefore serve as a (plausible) evidence of the authenticity of his interaction with
us. Of course, if we know that the gate keeper always executes either n steps, or n°" steps,
then any view obtained by the keeper in n steps can be reconstructed in roughly n steps by
considering the zero-knowledge simulator for a “truncated” version of the keeper, that executes
at most n steps. In general, however, the running time of the gate keeper might be much more
erratic (for instance, the gate keeper might take }D steps with probability p, or might use
some even more complicated probability distribution), and thus deniability becomes harder
to argue. Precise Zero Knowledge instead stipulates essentially optimal deniability: whatever
view the gate keeper obtains with our help, he could have generated alone in twice its running
time in that view.

Results Without any trusted set-up assumptions, none of the known zero-knowledge protocols and
simulators satisfy our precise simulation requirement. In particular, in Appendix 5, we show that
precise zero-knowledge proofs systems with black-box simulators only exists for “trivial” languages.
(In fact, our impossibility results is even stronger; we also rule out the possibility of proof systems

for languages in BPP where the running time of the honest verifier is significantly smaller than
the time needed to decide the language.) Since all classical protocols and simulators are black-box
this result shows that none of these simulators satisfies our precise ZK requirements (even for the
weakest notion of computationally precise ZK). It can furthermore be verified that also known
non-black-box simulator techniques (due to Barak [2]) are insufficient. We provide more details on
such simulations in section C.*

We, however, manage to prove the existence of Precise ZK protocols in a variety of settings
under standard complexity assumptions. Namely, we prove the following.

Theorem: Assume the existence of k(n)-round public-coin statistically-hiding commitments.
Then, every language in N'P has:

1. an w(k(n))-round computational ZIC proof with polynomial precision.

2. an w(k(n)logn)-round computational ZIC proof with linear precision.

(
(
3. an k(n) + w(1)-round statistical ZK argument with polynomial precision.
4. an k(n) + w(logn)-round statistical ZK argument with linear precision.

Furthermore, every language in TP has a computational ZIC proof with linear precision.

Theorem: Assume the existence of one-way functions. Then there exist an w(1)-round com-
putational ZKC argument with polynomial precision for all languages in N'P. There also exists an
w(logn)-round computational ZX argument with linear precision for all languages in N'P.

To prove the above result, while avoiding our impossibility ones, we rely on a “slightly” non-black-
box simulation technique: the only non-black-box components of it is that we allow the simulator
to count the number of computational steps taken by a verifier, and times out the verifier when it
runs for too long.

We also prove that statistically precise Z/KC proofs exist unconditionally for some notable non-
trivial languages. In particular,

Theorem: There exist an w(1)-round statistical ZKC proofs with polynomial precision for Graph
Non-isomorphism and Quadratic Non-residuosity. There also exist w(logn) rounds statistical ZK
proofs with linear precision for Graph Non-isomorphism and Quadratic Non-residuosity.

The last result can be generalized to provide statistically precise ZK proofs for a restricted
version of the Statistical Difference problem, SD} /2 [69, 57]. (The general, i.e., non-restricted,
Statistical Difference problem is complete for statistical Z/C [69])

4Very briefly, the reason why the non black-box simulator of Barak [2] (and variants thereof) is not precise arises
from the fact that the simulator will always commit to the whole auxiliary tape of the verifier (which might be very
long), while the verifier with high probability might read only a very small portion of it. That is, the running time of
the simulator will always be “large”, while the verifier might run very fast with high probability.

An outline of our techniques. On a high-level, our protocols follows a paradigm by Feige and
Shamir [28]. The protocols consists of two phases: the first phase is a pre-amble phase, the second
phase is a proof phase. The pre-amble phase has the property that the prover’s messages can be
perfectly emulated (without knowing the witness). Additionally, during this pre-amble phase, a
simulator will be able to, by “rewinding” the verifier, recover a “trapdoor” that it can later use in
the proof phase to provide a convincing (and indistinguishable) proof without knowing the witness.
The traditional way of simulating such a protocol is to first honestly emulate the pre-amble phase,
and next rewind the verifier (in the pre-amble phase) to “extract” out a trapdoor that can later
be used in the proof phase. The problem with using this approach in the context of Precise ZK
is that the verifier may run “fast” in the first execution of the pre-amble phase, but run “long” in
the rewindings. This prevents the simulator from outputting the view of the first execution of the
pre-amble phase; rather, to make sure that the simulation respects the running-time of the verifier
in the view output, it would need to output a view of the pre-amble plase where the verifier ran
“long”. But if we do this, we biase the views outputs towards being “long”.

To get around this problem, we will “measure” how many computational steps the verifier takes
in the first execution of the pre-amble phase, and next, in the rewindings, “cut-off” the verifier if it
attemps to take more steps than it did in the first run. Doing this, however, introduces an additional
problem: now, we can no longer guarantee that the number of rewindings needed to perform the
extraction is small. We solve this issue by increasing the length of the pre-amble phase: following
the work of Richardson and Kilian [66], (see also [50, 65]), we consider a pre-amble phase which gives
the simulator many sequential “rewinding” opportunities from which a trapdoor can be extracted;
we refer to these rewinding opportunities as “slots”. Using a counting argument, we can next show
that if the number of slots is large enough, there exists at least one of these, for which a bounded
number of “rewinds-with-cutoff” suffices. Roughly speaking, the idea is that for every slot s, the
probability that the verifier runs longer in the first execution of the slot s than in the “rewinding” of
s, is the same as the probability that it runs shorter in the first execution of s than in the rewinding,
and thus this probability must be % If we instantiate the pre-amble with a protocol where each slot
has the property that a trapdoor can be extracted using a single successful rewinding, then for each
slot in the pre-amble, we have a probability of % of succeeding in extracting a trapdoor from this
slot, using just a single “rewiding-with-cutoff”. This concludes that if we have w(logn) sequential
slots, we can ensure that, except with negligible probability, a trapdoor is always extracted from
the pre-amble phase. Furthemore, if we rely on this method for extracting the trapdoor from the
pre-amble phase, we can guarantee that if the verifier took ¢ steps in the first run of the pre-amble
phase, then the extraction process will take at most ¢ steps (since we cut-off the verifier if he runs
longer in the rewindings than what he did in the first run). Using this method, we can demonstrate
a w(logn) round protocol with precision p(n,t) = 2t.

Other complexity measures. In this paper we focus only on precision with respect to the com-
plexity measure running time. Our notions can, however, be instantiated also with other complexity
measures. A treatment of precision with general complexity measures can be found in [47].

1.2 Precision Beyond ZK

We extend the treatment of precision also to other cryptographic primitives.

Precise Proofs of Knowledge The notion of a proof of knowledge was intuitively introduced
by Goldwasser, Micali and Rackoff [37] and was formalized by Feige, Fiat and Shamir [26], Tompa
and Woll [71] and Bellare and Goldreich [5]. Loosely speaking, an interactive proof of x € L is a
proof of knowledge if the prover can only convinces the verifier (with non-negligible probability),
if it in PPT can compute a witness w for the statement x. This is formalized by requiring the
existence of a PPT machine F, called an extractor, such that E on input the description of P and
any statement z € L outputs a valid witness for x € L if P succeeds in convincing the Verifier (with
non-negligible probability) that x € L. Halevi and Micali [44] introduced a strengthening of the
notion of a proof of knowledge, called a conservative proof of knowledge, which guarantees a tighter
coupling between the expected running-time of the extractor £ and the expected running time of
P in an interaction with the honest verifier. Their notion thus guarantees that P will only be able
to convince the Verifier that « € L, if it could have computed a witness for € L in time closely
related to its expected running-time.

The above notions were all designed to be applicable within cryptographic protocols (e.g., as tool
for achieving Z/C, or for identification protocols). Thus, in a sense, these definitions are syntactic
rather than semantic. We believe that is it important to have a semantical notion of a proof of
knowledge, which corresponds as closely as possibly to the “intuitive” meaning of what it means to
verify an agent’s knowledge. For instance, such a notion could conceivably be applicable to provide
a formal treatment of, say, school exams.

Towards this goal, we put forward a notion of a proof of knowledge that more precisely bounds
the knowledge of the prover in an execution by execution manner: Consider, for instance, a teacher
wishing to verify whether a student has done its homework. We desire a test that checks if the
student indeed did its homework (and knows what it is supposed to know), and not merely that
the student could have done it (under some different circumstances).® Thus, we would like to have
a notion of a proof of knowledge which requires that a prover (the student) can only convince the
verifier (the teacher) whenever it “essentially” has a witness on its worktape (its brain) at the end of
the interaction (the exam). More precisely, we put forward a notion of a proof of knowledge which
guarantees that

P will only succeed in convincing the verifier that x € L if P can compute a witness for
x € L in time closely related (say, within a constant factor) to the actual time P spent
in the every interaction where V' is accepting.

That is, whenever P spends t steps in a particular interaction in order to convince the Verifier, P
could in, say, 2t, steps compute a witness to the statement proved. As such, our definition allows
us to capture what it means for a particular prover to know a witness in a particular interaction,
providing more intrinsic meaning to the notion of a proof of knowledge. We call a proof satisfying
the above property a precise proof of knowledge.

Just as traditional proofs of knowledge protocols are useful in the design of zero-knowledge proofs
(and more general secure protocol), we demonstrate the applicability of precise proofs of knowledge
protocols as building blocks in order to obtain precise zero-knowledge proofs. (In fact, we here show
that a slightly weaker variant of our notion of precise proofs of knowledge, called emulatable precise
proofs of knowledge, is sufficient; roughly speaking, this notion is a precise analog of the notion of
witness extended emulation of Lindell [52]).

®The student might e.g., decide to do the homework based on what questions the teacher asks. In this case, we
only want the teacher to accept in the event that the student indeed did the homework.

Precise Encryption We provide a strengthening of the traditional semantical security definition
of [36]. In fact, our strengthening applies also to Shannon’s original definition of prefect secrecy—as
far as we know, this is the first strengthening of Shannon’s definition (when considering single-
message security under a passive attack). Intuitively, (for the case of public-key encryption)

We say that an encryption scheme is secure with precision p(n,t) if anything an eaves-
dropper learns in time t, given the encryption of a message of length n, could have been
computed in time p(n,t), knowing only n and the public-key.

Recall that the definition of [36] only requires that the eavesdropper learns no more than what could
have been computed in polynomial time. Due to the equivalence between semantical-security and
indistinguishability [36], it is, however, easy to see that any semantically-secure encryption scheme
has precision p(n,t) = O(t+ g(n)) where g is a polynomial upper-bounding the running-time of the
encryption algorithm.® Thus, semantically-secure encryption schemes are already “quite” precise
(in contrast to traditional Z/C).

Nonetheless, we argue that it is still be desirable to improve the precision (both for philosophical
and practical purposes). Consider, for instance, an adversary with small computational resources
(e.g, a constant-depth circuit). It conceivable that such an adversary cannot execute the encryption
procedure (in particular if the communicating parties are powerful and paranoid entities, and as a
consequence use a very large security parameter), yet we would still like to guarantee that seeing
an encrypted messages does not provide the adversary with additional knowledge.

We investigate whether better precision can be obtained. The answer is surprisingly elegant:

Any semantically-secure encryption scheme with pseudorandom ciphertexts has linear
precision—i.e., precision p(n,t) = O(t).

This result (although technically simple) gives a strong semantical motivation for the “lay-man”
belief that a good encryption scheme should scramble a message into something random (looking)—
indeed, as demonstrated, whenever this happens the encryption scheme satisfies a semantically
stronger notion. (Additionally, the same argument shows that the one-time pad is perfectly secure
with essentially optimal precision; however, not necessarily every perfectly secure encryption scheme
has linear precision.)

We additionally show how to turn any CCA2-secure encryption scheme into one that is CCA2-
secure with linear precision; the transformation (which relies on a careful padding argument) is only
a feasibility results (and does not preserve the efficiency of the underlying CCA2-secure scheme more
than up a polynomial factor). We leave open the question of constructing practical CCA2-secure
precise encryption schemes.

Precise Secure Computation We finally provide a definition of precise secure computation.
Whereas the definitions of precise encryption and precise proofs of knowledge are quite different
from the traditional definitions, the definition of precision secure computation is instead “just” a
careful adaptation of the precise ZK definition to the setting of secure computation. Additionally,
we show that by appropriately compiling the GMW protocol [34] using precise ZK protocols (and
applying careful padding), results in a secure computation protocol with linear precision. Similar
modifications can be done also to the protocols of [8] and [68].

5This follows since the view of an adversary can be readily simulated by honestly encrypting 0™.

1.3 Related Work

Our notions have benefited from several prior ones, in particular knowledge tightness for zero-
knowledge proofs [34, 31]. It should also be appreciated that the on-line simulators of non-interactive
zero-knowledge proofs [12, 14] as well as the on-line simulators for secure computation of [58, 21,
15] are specific, earlier examples of precise simulators. However, such on-line simulators require
trusted set-up assumptions, or an honest majority, or super-polynomial simulation [63]. (In a sense,
therefore, we show that for pure precision purposes none of those requirements are necessary.) The
basic deficiencies of expected-polynomial-time simulators with respect to strict polynomial-time ones
pointed out in [7] have motivated our work. As discussed later, our definitions capture many of the
desiderata of [44] for proofs of knowledge. We also mention that Yuval Ishai independently has
advocated an execution-by-execution preservance of resources (such as corruption of players) in the
context of secure computation.

1.4 Subsequent Work

Several recent work extend our work. We highligth three directions below.

Precision and Game/Decision Theory Halpern and Pass [47] provide a model of “game-
theory with costly computation”—where the players are charged for the computational complexity
of their strategies. As they show, in this model, the traditional game-theoretic notion of Nash-
implementation of mediators is closely related to the notion of Precise Secure Computation. Thus, in
a sense, precision allows us to relate the zero-knowledge simulation paradigm and Nash equilibrium.

Halpern and Pass [48] also present a connection between Precise ZK and the decision-theoretic
concept of value of information: roughly speaking, in games with costly computation, the value of
participating in a Z/KC proof with precision p(n,t) = 2t is no higher than the value of getting a twice
as fast computer.

Precision and Concurrency Pandey, Pass, Sahai, Teng and Venkitasubramariam [62] extend
our treatment to the concurrent setting, where we consider the execution of multiple zero-knowledge
protocols taking place at the same time [23]; in particular, they present Precise Concurrent ZK
protocols for N'P.

A very recent work by Goyal, Jain and Ostrovsky [40] present a surprising application of Precise
ZK to the construction of concurrently-secure password key-exchange protocols.

Precision and Leakage-resilient Protocol A very recent work by Garg, Jain and Sahai [41]
present an elegant application of Precise Z/C to the construction of leakage-resilient protocol—that
is, cryptographic protocol that retain their security properties, even if part of the state of the honest
parties is leaked to the attacker. Roughly speaking (and oversimplifying), the idea is to construct a
precise ZC protocol with respect to the complexity measure “leakage”.

1.5 Notation and Preliminaries

Our probabilistic notation follows [39]; see appendix A.1 for more details. By algorithm, we mean a
Turing machine. For simplicity, we only consider algorithms with finite (i.e., bounded) running-time.
By a probabilistic algorithm we mean a Turing machine that receives an auxiliary random tape as
input. If M is a probabilistic algorithm, then for any input z, the notation “M,(x)” denotes the

10

output of the M on input z when receiving r as random tape. We let the notation “M,(x)” denote
the probability distribution over the outputs of M on input x where each bit of the random tape r is
selected at random and independently, and then outputting M, (z) (note that this is a well-defined
probability distribution since we only consider algorithms with finite running-time). Our protocol
notation is described in Appendix A.2. We emphasize that in our notion of a view of an interaction,
we only consider the part of the input and random tapes actually read by the parties.

When measuring the running-time of algorithms, for simplicity (and in accordance with the
literature, see e.g., [31]), we assume that an algorithm M, given the code of a second algorithm A
and an input z, can emulate the computation of A on input = with no (or linear) overhead.

Other preliminaries, such as the definition of indistinguishability of ensembles, interactive proofs,
zero-knowledge proofs, witness indistinguishability, proofs of knowledge and commitments can be
found in Appendix B.

1.6 Overview

In Section 2 we provide formal definitions of precise Z/XC and precise proofs of knowledge. Our con-
structions of precise (statistical or computational) ZK (proof/argument) protocols (with polynomial
or linear precision) essentially proceed in two steps: first, we construct a witness-indistinguishable
(WZ) [27] precise proof of knowledge, and then use it to yield a corresponding precise Z/K protocol.
All main technical difficulties arise in the first step. The second one can sometimes be obtained as
easily as by replacing a standard proof of knowledge, in a prior ZK construction, with our precise
one. We actually obtain our precise proofs of knowledge in an essentially uniform way. We start by
showing some key knowledge precision lemmas. Each such lemma shows that a WZ proof of knowl-
edge (P, V), when repeated a sufficient number of times m, yields a WZ precise proof of knowledge,
as long as (P, V) satisfies special soundness [19].7 (Different lemmas state that different number of
repetitions yield different levels of precision—the higher the number the better the precision.) The
knowledge precision lemmas can be found in Section 3. In Section 4, we rely on the constructed
proof of knowledge protocols to provide constructions of precise ZX protocols.

Section 5 contains our black-box lower bounds for precise ZX.

In Section 6 and Section 7, we extend the notion of precision to secure encryption and secure
computation.

2 Definitions of Precise Zero Knowledge and Proofs of Knowledge

In this chapter we put forward our precise notions of zero knowledge and proofs of knowledge. We
also investigates some basic properties of our new notions.

2.1 Precise Zero Knowledge

Definition 1 (Perfect Precise ZK) Let L be a language in NP, Ry a witness relation for L,
(P,V) an interactive proof (argument) system for L, and p : N x N x N — N a monotonically
increasing function. We say that (P, V') is perfect ZK with precision p if, for every ITM V', there
exists a probabilistic algorithm S such that the following two conditions holds:

1. The following two ensembles are identical:

"Despite the name, the quite standard property that a valid witness can be readily computed from any
two executions having the same first message but different second messages.

11

() {ViEWs[P(2,9) © Vi(2,2)]}
(b) {Su(x,2)}

2. For every x € L, every z € {0,1}*, and every sufficiently long r € {0,1}*, STEPSg, (5 .) <
p(‘$‘7STEPSV’(Sr(x7Z))'

z€LyERL (x),z€{0,1}*

z€L,yeRL (z),2€{0,1}*

We refer to an algorithm S as above as a precise simulator, or as a simulator with precision p.
If p(n,t) is a polynomial (a linear function) in only t , we say that (P, V') has polynomial (linear)
precision.

Computational /Statistical ZK. We obtain the notion of statistically precise ZK by requir-
ing that the two ensembles of Condition 1 be statistically close over L. We obtain the notion
of a computationally precise ZK by furthermore adding the restriction that V’ is a probabilistic
polynomial-time machine, and by requiring that the two ensembles of Condition 1 are computation-
ally indistinguishable over L.

Remarks:

1. Note that in the case of computationally precise ZX our definition only differs from the
standard definition of ZK in that we additionally require that the actual running-time of the
simulator is “close” to the actual running-time of the verifier in a true interactions with a
prover.

In the case of perfectly and statistically precise ZX, our definition additionally differs in
that we require simulation of all malicious verifiers (even those having an unbounded running
time). By contrast, perfect/statistical ZK in the standard sense only calls for polynomial-time
verifiers to be simulatable (though, for classical examples of perfect/statistical Z/C proofs, all
verifiers can actually be simulated).®

2. Note that every perfect/statistical/computational Z/C proof system (P, V') with polynomial
precision is a perfect /statistical /computational Z/C proof system in the standard sense.’ The
converse, however, may not be true—for every fixed polynomial p there might exist a verifier
having a worst-case (or even expected) runnning-time that exceeds p by far, but whose actual
running time ¢ is small a substantial amount of the time. Consider, for instance, a verifier V'
that with probability 1(1)—0 takes n°0 steps, and otherwise n steps. The expected running-time
of V' is thus O(n%Y); we conclude that even a simulator with optimal expected precision could
potentially always take O(n®°) steps, whereas V' almost always takes n steps. In fact, even a

simulator with optimal higher-moment precision might always take O(n®°) steps.

3. One might consider weakening Condition 2 by requiring that it holds only for most (rather
than all) tapes r of S. However, under such a relaxation, perfect ZX with polynomial precision
would no longer imply perfect (nor statistical, or computational!) Z/C in the standard sense.
Consider a simulator S that runs in fixed polynomial time, except for a fraction 27 1*! of its
random tapes, where it always takes 2l steps. Such an S would run in expected exponential
time, but still satisfy polynomial precision under the above relaxation of Condition 2.

8This is not a new observation. Indeed, the definition of statistical black-box zero-knowledge of [72] calls for
simulation of also unbounded verifiers.
9Indeed, even with respect to strict polynomial time simulators.

12

4. A seemingly stronger definition would be to require the existence of a universal precise sim-
ulator which works for all verifiers (assuming that it also gets the code of the verifier). In-
terestingly, in the case of perfectly and statistically precise ZK this alternative formulation is
equivalent to our definition. This follows from the fact that it is sufficient to describe a precise
simulator for the Universal Turing Machine that runs the code it receives as its auxiliary input.
Note that the same argument does not go through for computationally precise ZK (nor the
standard notion of ZK): as the Universal Turing Machine is not a polynomial-time machine,
computationally precise ZK (or standard ZK) does not require the existence of a simulator
for it.

2.2 Properties of Precise ZK
2.2.1 Preserving Running-time Distribution

Whereas the notion of knowledge-tight ZIC (see Definition B.4) guarantees that the (expected)
running-time of the simulator is closely related to the worst-case running-time of the adversar-
ial verifier, we here show that the notion of precise ZX guarantees that the actual running-time
distribution of the verifier is respected by the simulator.

We proceed to a formal treatment. The following proposition shows that the cumulative proba-
bility distribution function (cdf) of the running-time of the simulator respects the cdf of the running-
time of the adversary verifier.

Proposition 1 Let L be a language in NP, Ry a witness relation for L, p : N x N — N a
monotonically increasing function, and (P,V) a statistical (computational resp.) ZK argument
system for L with precision p. Let V' be an arbitrary (polynomial-time resp.) probabilistic machine
and let S be the precise simulator for V'. Then there exists a negligible function u(n), such that for
allx € L,y € Rr(x) all z € {0,1}*, it holds that for everyt € N:

Fyi(t) < Fs(p(|],) + p(lz])

where
Fyo(t) = Pr v < ViEwa[Pa(z,y) < Vi(2,2)] © stEPSV/(0) <]

and
Fs(t) =Pr [STEPSS.(W) < t}

Proof: Suppose for contradiction that there exists a (polynomial-time in the case of computational
ZK, and arbitrary otherwise) verifier V/ and a polynomial g(n) such that for infinitely many = € L
there exists y € Rp(x),z € {0,1}*,t € N such that:

Fy(t) > Fs(p(lal. 1) + s

where S is a precise simulator for V’. Towards the goal of contradicting the precise simulation
requirement of S, consider a generic x,y, z,t for which this happens. Consider the distinguisher D
defined as follows:

e D on input a view v outputs 1 if and only if STEPSy/(v) < TIMEy/(|z|) and STEPSy-(v) < t.

13

First, note that if V' is polynomial-time, then so is D. It follows directly from the construction of D
that D on input a random view v < VIEW3[Ps(z,y) <> V{(z,2)] output 1 with probability Fy(t).
Secondly, if follows from the precise “reconstruction” requirement of S (i.e., that the actual number
of steps used by S to output a view is at most p(|z|,t) where ¢ is the running-time of V' in the
view output by S) that D on input a random view v - Se(z, z) outputs 1 with probability smaller
or equal to Fs(p(|z|,t)). We conclude that D distinguishes the output of Se(x, z) from the view of
V'(z,z) in a real execution with P(xz,%), with probability at least —L, which contradicts the fact

g(Jz])’
that S is a valid simulator for V'. |}

By using exactly the same proof we also get:

Proposition 2 Let L be a language in NP, Ry a witness relation for L, p : N X N — N a
monotonically increasing function, and (P,V) a statistical (computational resp.) ZK argument
system for L with precision p. Let V' be an arbitrary (polynomial-time resp.) probabilistic machine
and let S be the precise simulator for V'. Then there exists a negligible function u(n), such that for
alzel,ye Ry(x) all z € {0,1}*, it holds that for everyt € N:

Fy(t) = Fs(p(|zl,) + p(|z])

where
Fy:(t) = Pr [v — VIEW2 [Py (z,y) <> V)(x,2)] : STEPSy/(v) > t}

and

Fs(t) = Pr {STEPSS.(%Z) > t}

2.2.2 Composition of Precise ZK

Sequential Composition. Whereas the standard definition of ZK only talks about a single
execution between a prover and a verifier, Goldreich and Oren [35] have shown that the standard
definition of ZK (see Definition 13) in fact is closed under sequential composition. That is, sequential
repetitions of a Z/X protocol results in a new protocol that still remains Z/C.

We observe that the exactly the same proof as was used by Goldreich and Oren [35] can by used
to show that the protocol resulting from sequentially repeating a precise ZK also is a precise ZK
proof (albeit with slightly worse precision).

Lemma 1 (Sequential Composition Theorem) Let (P,V) be a perfect/statistical/ computa-
tional ZKC with precision p interactive proof (or argument) for the language L € N'P. Let Q(n)
be a polynomial, and let (Pg,Vg) be an interactive proof (argument) that on common input x €
{0,1}" proceeds in Q(n) phases, each on them consisting of an execution of the interactive proof
(P,V) on common input = (each time with independent random coins). Then (Pg,Vg) is an per-
fect/statistical/computational ZK interactive proof (argument) with precision pg(n,t) = O(Q(n)p(n,t))

Parallel Composition. Goldreich and Krawczyk [33] (see also Feige and Shamir [28]) show that
the standard notion of ZK is not closed under parallel repetitions. More precisely, they show that
there exists Z/XC proofs, that have the property that a malicious verifier participating in 2 parallel
(i.e., simultaneous and synchronized) executions of the same protocol in fact can recover the whole
witness to the statement proved.

We observe that the protocol of Feige and Shamir, when instantiated with the corresponding
precise ZK protocols (as we construct in Section 4) suffices to show that also the notion of precise
ZK is not closed under parallel repetition.

14

2.3 Precise Proofs of Knowledge

We define our notion of a precise proof of knowledge. Intuitively we say that (P,V) is a proof of
knowledge with precision p, if there for every adversary prover P’ exists an extractor E such that:

1. Given any joint-view (viewps, viewy) of an execution between P’ and V' on common input z,
it holds that E on input only the view viewps outputs a valid witness for x € L, if viewy is a
view where V is accepting.

2. Given any view viewps containing a proof of the statement x, it furthermore holds that the
worst-case running-time of E on input viewp: is smaller than p(|z|,t) where ¢ denotes the
actual running-time of P’ in the view viewp.

More precisely,

Definition 2 (Precise Proof of Knowledge) Let L be a language in NP, Ry, a witness relation
for L, (P,V) an interactive proof (arqgument) system for L, and p : N x N — N a monotonically
increasing function. We say that (P, V') is a perfectly-sound proof of knowledge with precision p for
the witness relation Ry, if for every probabilistic interactive machine P’, there exists a probabilistic
algorithm E such that the following conditions hold:

1. For every x,z € {0,1}*,
Pr [(viewp/,viewv) — Pl(z,2) < Vo(x) :

ouTy (viewy) = 1 A E(viewpr) ¢ RL(x)} =0

2. For every view viewp: which contains the view of a proof of the statement x and every suffi-
ciently long r € {0,1}* it holds that

STEPSE, (view,) < P(|2|, STEPSp/ (viewpr))
We refer to an algorithm E as above as a precise extractor, or as an extractor with precision p.

Statistically/Computationally sound precise proofs of knowledge. As in the case of statistically-
sound expected proofs of knowledge, we obtain the notion of a statistically-sound precise proof of
knowledge by exchanging condition 1 in Definition 2 for the following condition:

1’. There exists some negligible function p(-) such that for every z,z € {0, 1}*,

Pr {(viewp/,viewv) — Pl(x,2) < Vo(x) :

ouTy (viewy) = 1 A E(viewp:) ¢ Re(x)] < p(|2])

We obtain the notion of a computationally-sound precise proof of knowledge by furthermore adding
the restriction that P’ is a probabilistic polynomial-time machine.

15

2.3.1 Emulatable Precise Proofs of Knowledge

We present a somewhat different notion of a proof of knowledge, called a emulatable precise proof of
knowledge. This notion seems more suitable for many cryptographic applications (and in particular
ours). As we elaborate upon in Section 2.3.2, this notion combines in a rather natural way the
notions of precise ZK and precise proofs of knowledge.

In essence, we require that given an alleged prover P’ and an input z € L, (a) the joint view
of P" and the honest verifier V' on input z, and (b) a valid witness for z € L whenever V’s view is
accepting, can be simultaneously reconstructed in a time that is essentially identical to that taken
by P’ in the reconstructed view.

We mention that although the definition of an emulatable precise proofs of knowledge bears
certain similarities with Lindell’s definition of witness extended emulation [52], it differs in several
crucial ways, as will be discussed shortly.

Definition 3 (Emulatable Precise Proof of Knowledge) Let L be a language in NP, Ry a
witness relation for L, (P,V) an interactive proof (argument) system for L, andp : N x N — N
a monotonically increasing function. We say that (P, V') is a perfectly-sound emulatable proof of
knowledge with precision p for the witness relation Ry, if for every probabilistic interactive machine
P', there exists a probabilistic algorithm E such that the following conditions hold:

1. The following two ensembles are identical
(a) {Pl(z,2) & Vala) }

(b) {(viewp/,viewv,w) +— Eo(x,2): (viewp/,viewv)}

x,2€{0,1}*

z,2€{0,1}*
2. For every x,z € {0,1}*,

Pr [(viewp/,viewv, w) < Fo(z,2) :

ouTy (viewy) = 1 A (z,w) ¢ RL} =0

3. For every x,z € {0,1}*, and sufficiently long r € {0,1}*, given (viewp:, viewy,w) = E,(x, z),
it holds that
STEPSE, (3,2) < P(|2], STEPS pr (viewpr))

We refer to an algorithm E as above as a precise emulator-extractor, or as an emulator-extractor

with precision p.

Statistically /Computationally sound emulatable precise proofs of knowledge. We ob-
tain the notion of a statistically-sound emulatable precise proof of knowledge by exchanging condition
1 in Definition 3 for the following condition:

2/, There exists some negligible function u(-) such that for every z, z € {0, 1}*,
Pr {(viewp/, viewy,w) « Eo(x,2) :

outy (viewy) = 1 A (z,w) ¢ Re] < (|

We obtain the notion of a computationally-sound emulatable precise proof of knowledge by further-
more adding the restriction that P’ is a probabilistic polynomial-time machine.

16

Remark: We note that, besides the precise reconstruction requirement (which is the principal
difference), our definition differs also from that of [52] in that the latter only requires reconstruction
of the view of the Verifier. By requiring reconstruction of the joint view of the Prover and the
Verifier, we make it easier to handle proofs of knowledge as a sub-protocol: Whenever, in a larger
protocol, algorithm A gives a proof of knowledge to B about x € L, we can syntactically replace
their views with the output of our extractor on inputs A and z, without altering in any way their
distributions. Furthermore, our extractor will return, on the side, a valid witness for z € L, whenever
the view of B is accepting.

2.3.2 ZK for the Prover and Emulatable Proofs of Knowledge

In this section we show a natural relation between precise ZX, precise proofs of knowledge and
emulatable precise proofs of knowledge. More precisely, we present a lemma showing that precise
proofs of knowledge protocols that are precise ZK for the Prover (i.e., the prover learns precisely
nothing from the verifier) are emulatable precise proofs of knowledge. This lemma will turn out to
be very useful to us since “natural” proofs of knowledge protocols (and in particular the ones we
consider) have the property of being precise ZK for the prover.

Definition 4 (Precise ZK for the Prover) Let (P,V) be an interactive proof (argument) system
and p: N x N — N a monotonically increasing function. We say that (P,V') is ZK for the prover
with precision p if, for every ITM P’, there exists a probabilistic algorithm S such that the following
two conditions holds:

1. The following two ensembles are identical:
() {Pu(z,2) & Vi(@)}
(5) {Su(@,2)}

2. For every x,z € {0,1}*, and sufficiently long r € {0,1}*

x,2€{0,1}*

x,2€{0,1}*

STEPSg, (¢,2) < P(|z], STEPS pr (view: [S,(z, 2)])

Remarks: We point out that the definition of “precise ZK for the prover” differs from the defi-
nition of “precise ZX” in that we require the simulator to output the joint view of both the prover
and verifier. Note that this difference becomes insubstantial if we assume that the verifier V' reveals
all its random coins in the last round—then the view of V' can be reconstructed from the view of
the P’ in time that is proportional to the running time of P’. Although this assumption is without
loss of generality, we prefer to present the definition of “precise ZXC for the prover” in its current
form to emphasize the need for the simulator to output also the view of the verifier.

Lemma 2 Let (P,V) be a perfectly-sound (statistically-sound/computationally-sound) proof of know!l-
edge with precision pi(n,t) for the witness relation Ryp. If (P,V) is ZK for the prover with preci-
sion pa(n,t), then (P, V') is a perfectly-sound (statistically-sound/computationally-sound) emulatable
proof of knowledge with precision O(1) - [p1(n,t) + pa(n,t)] for the witness relation Ry,

Proof: For a given prover P’, consider the “precise ZK for the prover” simulator S, and the
extractor E. We construct an emulator-extractor Fo for P’. E5 on input x, 2’ proceeds as follows:

17

1. (viewpr,viewy) < So(z, 2).
2. w4 Eq(viewpr).
3. Output ((viewpr,viewy), w).

It directly follows from the validity of S and E that the output of Es is correctly distributed, and
that its precision is O(1) - [p1(n,t) + p2(n,t)]. W

3 Constructions of Precise Proofs of Knowledge

We provide four different “knowledge precision” lemmas showing how to transform standard proof
of knowledge protocols with certain specific features into precise proofs of knowledge. All our
transformations are very simple and follow the same paradigm: an “atomic” standard proof of
knowledge (with specific properties) is repeated sequentially an appropriate number of time.

More precisely, we show that,

1. w(1) sequential repetitions of, so called, special-sound proofs of knowledge constitute statistically-
sound proofs of knowledge with polynomial precision.

2. w(logn) sequential repetitions of, so called, special-sound proofs of knowledge with linear ex-
traction constitute statistically-sound proofs of knowledge with linear precision.

3. w(1) sequential repetitions of, so called, computationally special-sound proofs of knowledge
constitute computationally-sound proofs of knowledge with polynomial precision.

4. w(logn) sequential repetitions of, so called, computationally special-sound proofs of knowl-
edge with linear extraction constitute computationally-sound proofs of knowledge with linear
precision.

We furthermore show that WZ of the underlying atomic proof of knowledge protocols is preserved
under all of the above transformations (this follows easily since the transformation only consists of
sequential repetition of the underlying protocol and since WZ is closed under composition [27]).

Before we state our lemmas we start by formally specifying what we mean by “sequential repeti-
tion”. Given a function m, we say that the m-sequential repetition of (P, V') is an interactive proof
system (P, V) defined as follows: on common input z € {0,1}", (P, V) proceeds in m(n) phases,
each on them consisting of an execution of the interactive proof (P, V) on common input z (each
time with independent random coins). V' finally accepts if V' accepted in all m(n) executions of
(P, V).

3.1 Statistical Knowledge Precision Lemmas

We start by recalling the notion of special-sound proofs [19]. (Looking ahead, we mention that the
protocol of Blum is known to be special-sound.) Intuitively, a three-round public-coin interactive
proof is said to be special-sound, if a valid witness to the statement x can be readily computed from
any two accepting proof-transcripts of = which have the same first message but different second
messages. More generally, a k-round public-coin interactive proof is said to be special-sound if the
k—1’st round is a verifier-round 4 (i.e., a round where the verifier is supposed to send a message) and

18

a valid witness to the statement x can be readily computed from any two accepting proof-transcripts
of x which have the same first k¥ — 2 messages but different £ — 1’st message.

We proceed to a formal definition. We start by introducing some notation. Let Ty = (mi, .., mk),
Ty = (m?,.., m%) be transcripts of a k-round protocol. We say that T7 and 15 are consistent if the
first k — 2 messages are the same, but the k — 1’st message is different, i.e, m} = m? for j <k-—1
and m}g_l % mz_l.

Let ACCEPTy denote the predicate that on input a statement x and a k-round transcript of
messages T = my, ma,..,my outputs 1 if and only if V' accepts in that transcript (recall that our
definition of public-coin protocols requires that the verifier determines whether to accept or not by

applying a deterministic predicate to the transcript of all messages in the interaction.).

Definition 5 (Special-sound Proof) Let (P, V) be a k-round public-coin interactive proof for the
language L € NP with witness relation Ry. We say that the protocol (P,V') is special sound with
respect to Ry, if the k — 1’st-round of (P, V') is a verifier-round and there exits a polynomial-time
extractor machine X, such that for all x € L and all consistent transcripts T1,Ts it holds that if
ACCEPTy (z,T1) = 1, ACCEPTy (2,T1) = 1 then X(T1,T2,x) € Rr(x).

In the sequel we often employ the expression verifier challenge (or simply challenge) to denote the
message sent by the verifier in the k& — 1’st round.

We will require the use of special-sound proofs for which extraction can be performed “very”
efficiently. We say that (P,V) is special-sound with linear extraction, if the predicate ACCEPTy can
be computed in linear time (in its inputs length) and the extractor X in definition 5 has a linear
running time.

Remark: Note that every special-sound proof can be turned into a special-sound proof with linear
precision by “harmless” padding — the prover can always prepend a “dummy” string to its first mes-
sage. Furthermore, note that this padding preserves properties such as WZ of the original protocol.

It can be seen that all special-sound interactive proofs are proofs of knowledge [19, 20]. We here
show that appropriate sequential repetition of a special-sound proof results in an precise proof of
knowledge.

3.1.1 Linear precision using w(logn) rounds

We show that w(logn) sequential repetitions of a special-sound proof with linear extraction, yields
a statistically-sound proof of knowledge with linear precision. More precisely, if assuming that a
Turing machine can emulate another Turing machine at no cost, then this extraction will take at
most 2t + poly(n) steps, on input a view where the prover takes ¢ steps.

Lemma 3 (Statistical Knowledge Precision Lemma - Linear Precision) Let (P, V') be a special-
sound proof system with linear extraction for the language L with witness relation Ry. Let m(n) =
w(logn), and let (P, V) denote the m-sequential repetition of (P, V). Then (P, V) is a statistically-
sound proof of knowledge with linear precision for the language L with witness relation Ry. If,
furthermore (P, V) is (statistical /perfect) W, then (P, V) is so as well.

Proof: Let | = [(n) denote the length of the verifier challenge in an execution of (P, V') on common
input x € {0,1}". We describe an extractor £ that uses ”almost” black-box access to the malicious

19

prover P’. On a high-level, E on input a view viewps of an execution on common input z performs
the following two steps:

1. In the first step, E feeds the view viewp: to P’ while recording the number of computational
steps required by P’ to answer each query.

2. In the second step, E uses the running-time statistics collected in the first step to attempt
extracting a witness. This is done by rewinding P’ a fized number of times for each verifier
challenge (in fact once will be sufficient), but in each rewinding cutting the execution of P’
whenever P’ exceeds the actual number of computational steps used by P’ to answer the same
challenge in the view viewp.

Note that both of the above steps require a non-black box use of P’ (even if in a quite minimal
sense). In particular, we use the code of P’ to learn the number of computational steps that P’ uses
to answer each challenge.

We proceed to a more formal description of E. E proceeds as follows on input a view viewps of
an execution on common input z.

1. E checks (by applying the predicate ACCEPT) if the verifier V rejects any of the m proofs in
the view view's. If so, it halts outputting L.

2. Let (r1,r2,..,7m) denote the verifier challenges in each of the m sequential repetitions of the
atomic protocol (P, V) in the viewp:. E starts by feeding the view viewps to P’, while at the
same time keeping track of the number of computational steps that P’ requires to answer each
challenge r;. Let t; denote the number of computational steps used by P’ to answer the i’th
challenge (i.e., the challenge r; of the i’th atomic protocol)

3. For each repetition i € {1,..,m} of the atomic protocol, E performs the following extraction
procedure.

(a) E rewinds P’ to the point where the i’th challenge is supposed to be sent. (This results
in the same state as if restarting P’ and feeding it the viewps up until the message r; is
supposed to be sent.)

(b) E feeds P’ a new truly random challenge 7} & {0,1}!, and lets P’ run for at most t; steps
to compute an answer.

(c) If an accepting answer has been obtained within ¢; steps, and if the new challenge 7} is
different from 7;, £ computes a witness w by applying the special-soundness extractor
X to the two obtained accepting transcripts (since now two consistent and accepting
transcripts of the atomic protocol (P, V'), have been obtained) and halts outputting w.

4. If the extraction did not succeed in any of the m repetitions of the atomic protocol, F outputs
1.

Running time of E. Let ¢; denote the number of computational steps required by P’ to provide
an answer to the challenge in the ¢’th atomic protocol in the view viewps. Furthermore, let ¢ denote
the total running time of P’ in the same view. Since for each atomic protocol i, E only rewinds P’

20

once, and this time cuts the execution after t; steps, it follows that attempted extraction from all
m atomic protocols requires running P’ for at most

m
t+ <2t
=1

steps. Since we assume that emulation of a Turing Machine by another Turing Machine can be done
with only linear overhead, and since (by the special-soundness with linear extraction property) both
checking if a transcript is accepting, and extracting a witness from two accepting transcripts, can
be done it time proportional to the length of the transcript, we conclude that the running time of
FE is a linear function of ¢.

Success probability of £. We show that the probability that the extraction procedure fails, on
input a uniformly chosen view of P’, viewps, of an execution between P’(z) and V' on common input
x € {0,1}", is a negligible function in n, for any z € {0, 1}*.

Towards this goal, we first analyze the probability that extraction fails for a singe instance of
the atomic protocol. We assume without loss of generality that P’ is a deterministic machine (this
is w.l.o.g. since P’ could always obtain its random tape as part of its auxiliary input z).

Consider any i € [m]. We start by introducing some notation:

1. Given any view viewpr, let m’ewﬁy denote the prefix of the view up until the point where P’
is about to receive its i’th challenge.

2. Given any view viewps, let steps(vz'ew};,, a) denote the number of steps P’ takes to correctly
answer the i'th challenge, when first feed the view view},, and then the i’th challenge a; if
the answer by P’ is incorrect (i.e., if the proof is rejecting) we set steps(view',,a) = oo

Note that extraction (by E, on input a view viewps) from the i’th atomic protocol only fails if either
of the following happens, letting r; denote the #’th challenge in viewps, and r} the new challenge
sent by E:

Lor=r]
2. steps(viewﬁg,, ri) < steps(view}'g,,rg)

We start by noting that only for a fraction

of challenges r;, 7, € {0, 1}, it holds that r; = rf. Secondly, note that for any pair of challenges
a,b € {0,1}!, a # b and any prefix view v it holds that if extraction fails when r; = a,r] = b, and
m’ew};, = v, then extraction will succeed when r; = b, 7, = a, and m’ew};, = v. Thus, any pair of
challenges (a, b) has a “companion” pair (b, a) such that at most one of the pairs will result in a failed
extraction. Furthermore, any two pairs (a, b), (¢, d) that are not each others companion, have disjoint
companion pairs. We conclude that for any prefix view v, the number of pairs (a,b) € {0,1}?, such
that extraction succeeds if r; = a, 7} = b and view’, = v is

22l . 21
2

21

It thus holds that the fraction of pairs (a,b) € {0,1}?, such extraction fails if 7; = a, r} = b and
viewﬁ'g/ =0 is
22[_ (22l _ 21)/2 _ 1 B 2_1_1
22 2

Since for any two pairs (a, b), (¢,d) € {0,1}?, and any prefix view v, the probability (over a random
input view viewps and the internal random coins of E) that r; = a, r} = b and view’, = v (where
r; denotes the i’th challenge in viewps, and r; the new challenge sent by E) is the same as the
probability that r; = ¢,7;, = d, and m’ew}}, = v we have that the probability that extraction fails
from the i’th executions is

1 —i-1
—+2
5 +

We proceed to show that the overall failure probability of attempted extraction from all execu-
tions i € [m] is negligible. Note that by the definition of (P, V) it holds that the distribution of
the i’th challenge r; sent by V is independent of the messages sent by V in prior executions. It
also holds that the distribution of the new challenge 7} sent by E is independent of all previously
sent challenges, as well as the view it receives. We conclude that the failure probability for any
execution 7 is independent of the failure probability of all other executions. Thus, the overall failure

probability is bounded by
-2y e (™

Witness Indistinguishability. It follows directly from the fact that WZ is closed under sequen-
tial composition [27] that (P', V') is WZ if (P,V)isso. W

3.1.2 Polynomial precision using w(1) rounds

We proceed to show that w(1) sequential repetitions of a special-sound proof (with negligible sound-
ness error) yields a statistically-sound proof of knowledge with precision p(n,t) where p is a poly-
nomial in both n and ¢. More precisely, if assuming that a Turing machine can emulate another
Turing machine at no cost, then this extraction will take at most nt + poly(n) steps on input a
view where the prover takes t steps. If, furthermore, the special-sound proof has the property that
any prover is required to take at least || steps to make the verifier accept a proof of x (e.g., it
needs to communicate at least |z| bits) it additionally holds that the resulting protocol is ZK with
polynomial precision.

Lemma 4 (Statistical Knowledge Precision Lemma - Polynomial Precision) Let (P,V) be
a special-sound proof system for the language L with witness relation Ry. Let m(n) = w(1), and
let (P,V) denote the m-sequential repetition of (P,V). If in the execution of (P,V) on common
input x the length of the verifier challenge is w(log(|x|), and V always rejects unless it receives less
than |z| bits from the prover, then (P, V) is a statistically-sound proof of knowledge with polynomial
precision for the language L with witness relation Ry,. If, furthermore (P,V') is (statistical/perfect)
WZI, then (P,V) is so as well.

Proof: Let I = I(n) denote the length of the verifier challenge in an execution of (P, V') on common
input z € {0,1}". Again, we describe an extractor E that uses almost black-box access to the
malicious prover P’. The extractor E proceeds in exactly the same way as the extractor in the proof
of Lemma 3, with the only exception that for each repetition i of the atomic protocol (P,V), E

22

rewinds P’ n times (instead of only once) each time feeding it a new truly random challenge rgj),
for j € [n].
For convenience, we repeat a full description of E. E proceeds as follows on input a view viewpr

of an execution on common input = € {0,1}".

1. E checks (by applying the predicate ACCEPT) if the verifier V' rejects any of the m proofs in
the view view's. If so, it halts outputting L.

2. Let (r1,r2,..,mm) denote the verifier challenges in each of the m sequential repetitions of the
atomic protocol (P,V), in the viewp. E starts by feeding the view viewp to P’, while at
the same time keeping track of the number of computational steps that P’ requires to answer
each challenge r;. Let t; denote the number of computational steps used by P’ to answer the
i’th challenge (i.e., the challenge r; of the i’th atomic protocol)

3. For each repetition i € {1,..,m} of the atomic protocol, E iterates the following extraction
procedure n times.

(a) E rewinds P’ to the point where the i’th challenge is supposed to be sent.

(b) In the j’th iteration, E feeds P’ a new truly random challenge rz(j Uyl {0,1}!, and lets P’
run for at most t; steps to compute an answer.

(c) If an accepting answer has been obtained within ¢; steps, and if the new challenge rgj)

is different from r;, E computes a witness w by applying the special-soundness extractor

X to the two obtained accepting transcripts (since now two consistent and accepting

transcripts of the atomic protocol (P, V'), have been obtained) and halts outputting w.

4. If the extraction did not succeed in any of the m repetitions of the atomic protocol, F outputs
1.

Running time of E. Let ¢; denote the number of computational steps required by P’ to provide
an answer to the challenge in the i’th atomic protocol, in the view viewps. Furthermore, let ¢ denote
the total running time of P’ in the same view. Since for each atomic protocol i, E only rewinds P’
n times, and each time cuts the execution after t; steps, it follows that attempted extraction from
all m atomic protocols requires running P’ for at most

m
t+> nt; < (n+ 1)t
=1

steps. Since we assume that emulation of a Turing Machine by another Turing Machine can be
done with only linear overhead, and since both checking if a transcript of (P, V') is accepting, and
extracting a witness from two consistent accepting transcripts of (P, V'), can be done it time that is
polynomial to the length of the transcript, we conclude that the running time of F is at most

nt + poly(n)

Finally, since P’ must communicate at least n bits in order to convince V, we conclude that ¢ > n,
and thus the running-time of F is a polynomial function of .

23

Success probability of . We show that the probability that the extraction procedure fails, on
input a uniformly chosen view of P’, viewp:, of an execution between P’(z) and V' on common input
x € {0,1}", is a negligible function in n, for any z € {0,1}*.

As in the proof of Lemma 3 it suffices to analyze the probability that extraction fails for a
singe instance of the atomic protocol. Again, we assume without loss of generality that P’ is a
deterministic machine.

Consider any i € [m]. We use the same notation as in the proof of Lemma 3: Given any view
viewpr, let viewip, denote the prefix of the view up until the point where P’ is about to receive its
7’th challenge. Given any view viewpr, let steps(viewﬁm, a) denote the number of steps P’ takes to
correctly answer the i’th challenge, when first feed the view m’ewﬁg,, and then the i’th challenge a.

Note that if extraction (by F, on input a view viewps) from the ¢’th atomic protocol fails, then
either of the following events must have happened (letting r; denote the ¢’th challenge in viewpr,
ZQ) the j’th new challenge sent by E):
)

%

and r
1. r; =r;’ for some j € [n]

2. steps(viewb,, ;) < steps(view},,rf) for all j € [n]

We start by noting that the fraction of distinct challenges r; € {0, 1}, (r},...r?) € {0,1}™ is

2l—1 20—2 ol _p
g g =
1 2 n
A=) =5)..(1-5)=
nn 1 n __
(1= 5)" ==)" =1 p(n)

where p is a negligible function in n. In the sequel we therefore focus only on distinct sets of
challenges r; € {0, 1}/, (rl(l), - rgn)) € {0,1}™. We show that extraction fails only for a fraction n%rl
of such challenges.

Towards this goals, we define an equivalence class over distinct sets of challenges:

° (a, (aD), .., a("))> and (b, (b, ., b(”))> are said to be in the same class if a = b, and (aV), .., a(™)

is a permutation of (b(l), o b(”)).

Note that for all challenges (a, (a(l), o a(”))> and (b, (b(l), . b(”))) which are in the same class and
(4)

any prefix view v it holds that if extraction fails (succeeds resp.) when r; = a,7;”) = al¥) for j € [n],
and view’, = v, then extraction also fails (succeeds resp.) when r; = b, ng) =) for J € [n], and
viewp, = v. We conclude that either all challenges (a,a) that belong to a class will result in a
successful extraction, or all of them will result in a failed extraction. Furthermore, note that the
number of elements in every class is the same.

Now, note that for every class'® (a, (a(l), ..,a(”))) and every prefix view v such that extrac-
tion fails when r; = a,rl(j) = a) for j € [n], and viewb, = v, there exists n other distinct

classes for which extraction will succeed, namely (a(l), (a,a®, ..,a("))>, (a(2), (aM), a, ..,a("))),...,

(a("), (aM, .. a1, a)). (Note that all the above classes indeed are distinct since we only consider

10We slightly abuse of notation and denote the class by an element that belongs to it.

24

challenges a, (a(l), ..,a™ that are all distinct.) Thus, every class has n “companion” classes such
that at most one of them will result in a failed extraction. Furthermore, it holds that any two distinct
classes that are not each others companions have disjoint companion classes; this follows from the

fact if two classes (a, (aD), .., a(")) and (b, (b, .., b(”))) have the same companion (c, (D, .., c(”))),
then the unordered set {b,b(1), ., b(”)} must be equal to the unordered set {a,a), .., a(”)}, which
means that (a, (aD), .., a(")> and (b, (bW, b("))) are each others companions.
We conclude that for any prefix view v, the fraction of distinct challenges a, (a(l), . a(")) for
which extraction fails if r; = a, rl(j) = 4 for j € [n] and view’, = v is
1
n+1

This in turn means that the fraction of all challenges for which extraction fails is bounded by

L (1) (1) =

1 wu(n) 1
— <
Wl npl TS

+ p(n)

As in the proof of lemma 3, we conclude that the probability that extraction fails in ¢’th execution

1
n+1

+ p(n)

Again, as in the proof of lemma 3, this implies that the overall failure probability is bounded by

1 m 2 w
(n+1+“m0 §<m+1ﬂ(n

which is negligible in n.

Witness Indistinguishability. As in the proof of lemma 3 it directly follows that (P’, V') is WZ
if (P,V)isso. [

3.2 Computational Knowledge Precision Lemmas

We show how to obtain precise computational proofs of knowledge by sequential repetition of a so-
called computationally special-sound proof. (Looking ahead, we mention that the protocol of Blum
when instantiated with public-coin statistically-hiding commitments is known to be computationally
special-sound.)

We extend the definition of special-soundness to a computational notion of soundness as follows.
Let (P, V) be a k-round public-coin interactive proof for the language L € NP with witness relation
Ry, such that the k — 1-round is a verifier round. Then, (P,V) is said to be computationally
special-sound if there exists a polynomial-time extractor machine X such that for every polynomial-
time machine P*, and every polynomial p(-), there exists a negligible function p such that the
following holds for every z € L and every auxiliary input z for P*. Let T = (Ty, Ty, ... T?(*)
denote transcripts in p(|z|) random executions between P*(z,z) and V(z) where V uses the same
randomness for the first kK — 2 rounds (thus, the first £ — 2 rounds in 7; and Tj are the same for

all 4,7). Then, the probability (over the randomness needed to generate T that there exists some

25

i,7 such that the k — 1’st rounds in 7; and 7} are different, V' accepts in both T; and T} (i.e.,

ACCEPTy (2,T;) = ACCEPTy (x,T;) = 1), but X (7;,T;) does not output a witness w € Rp(x), is

smaller than u(|z|). If, furthermore, the predicate ACCEPTy can be computed in linear time and X

has a linear running time, we say that (P, V') is computationally special-sound with linear extraction.
We show the following lemmas:

Lemma 5 (Computational Knowledge Precision Lemma - Linear Precision) Let (P, V) be
a computationally special-sound proof system with linear extraction for the language L, with witness
relation Ry,. Let m(n) = w(logn), and let (P, V) denote the m-sequential repetition of (P,V). Then
(P V) is a computationally-sound proof of knowledge with linear precision, for the language L with
witness relation Ry. If, furthermore (P, V) is (statistical /perfect) WI, then (P, V) is so as well.

Lemma 6 (Computational Knowledge Precision Lemma - Polynomial Precision) Let (P,V)
be a computational special-sound proof system for the language L, with witness relation Rp. Let
m(n) = w(l), and let (P,V) denote the m-sequential repetition of (P,V). If in the execution

of (P,V) on common input x the length of the verifier challenge is w(log|z|), then (P,V) is a
computationally-sound proof of knowledge with polynomial precision, for the language L with wit-
ness relation Rp. If, furthermore (P, V) is (statistical /perfect) WZI, then (P, V) is so as well.

Proof of Lemma 5 and Lemma 6: Both lemmas follow essentially directly from the proofs of
Lemma 4 and Lemma 3. The only point that needs to be addresses it that the special-soundness
extractor only is require to function properly when it receives transcripts that have been gener-
ated by a polynomial-time machine. Furthermore, this extractor might also fails (with some small
probability).

However, since the definition of computationally-sound precise proofs of knowledge only consider
computationally-bounded malicious provers P’ it follows that also the extractors constructed in
Lemma 4 and Lemma 3 are polynomial-time. We conclude that the probability that the special-
soundness extractor fails to output a valid witness on input two consistent and accepting transcripts
that have been generated by the extractors of Lemma 4 and Lemma 3 is negligible. By the union-
bound we thus get that the total failure probability also is negligible. This concludes the proof of
Lemma 5 and Lemma 6.

3.3 Constructions of WI Precise Proofs of Knowledge

We provide constructions of WZ precise proof of of knowledge for all languages in NP by combining
our knowledge precision lemmas with known WZ proof of knowledge protocols.

3.3.1 WZ Precise Proofs of Knowledge

By combining Lemma 4 and Lemma 3 with the Blum’s proof system for Hamiltonicity [11] (relying
on [46] and [59]), we obtain:

Theorem 1 Assume the existence of one-way functions. Then, there exists an (efficient-prover)
w(1)-round WZI statistically-sound proof of knowledge for N'P with polynomial precision. There also
exists an (efficient-prover) w(logn)-round WZI statistically-sound proof of knowledge for N'P with
linear precision.

Proof:

26

Polynomial Precision Case. Recall that Blum’s proof system for Hamiltonicity [11] is a special-
sound proof. Since the proof system is ZKC, it is also WZ [27]. Furthermore, since WZ is closed under
parallel composition [27], the parallelized version of Blum’s protocol (i.e., the protocol resulting from
running n parallel copies of the protocol) is also a WZ special-sound proof, which additionally has
the property that the length of the verifier challenge in a proof of statements x € {0,1}", is Q(n).
Furthermore, it trivially holds due to the construction of the protocol that the verifier will always
reject if the prover communicates less than n bits. The first part of the theorem is obtained by
combining the above proof system with lemma 4.

Linear Precision Case. It can be seen that, if using an appropriate representation of graphs,
Blum’s Hamiltonicity protocol is special-sound with linear extraction. The second part of the
theorem is obtain by combining this proof system with lemma 3. i

3.3.2 Statistical-WWZ Precise Proofs of Knowledge

By instead combining Lemma 5 and 6 with a statistical Z/C variant Blum’s Hamiltonicity protocol
(obtained by instantiating the commitments in Blum’s protocol with statistically hiding commit-
ment), we instead obtain:

Theorem 2 Assume the ezistence of k(n)-round public-coin statistically-hiding commitments. Then,
there exists an (efficient-prover) w(k(n))-round statistical-WI computationally-sound proof of knowl-
edge for N'P with polynomial precision. There also exists an (efficient-prover) w(k(n)logn)-round
statistical-WZI computationally-sound proof of knowledge for N'P with linear precision.

Proof: We start by observing that Blum’s protocol when instantiated with public-coin statistically-
hiding commitments is both

1. computationally special-sound, and
2. statistically WZ

The rest of the proof is concluded in the same way as the proof of Theorem 1. [

3.3.3 Emulatable Precise Proofs of Knowledge

Since all the above-constructed WZ precise proofs of knowledge protocols are public-coin, it directly
follows that they are ZIC for the prover with precision p(n,t) = O(t). The following theorems then
follow from Theorem 1 and 2 by applying Lemma 2.

Theorem 3 Assume the existence of one-way functions. Then, there exists an (efficient-prover)
w(1)-round WZI statistically-sound emulatable proof of knowledge for N'P with polynomial precision.
There also exists an (efficient-prover) w(logn)-round WZI statistically-sound emulatable proof of
knowledge for N'P with linear precision.

Theorem 4 Assume the existence of k(n)-round public-coin statistically-hiding commitments. Then,
there exists an (efficient-prover) w(k(n))-round statistical-WZ computationally-sound emulatable
proof of knowledge for N'P with polynomial precision. There also exists an (efficient-prover) w(k(n)logn)-
round statistical-WZI computationally-sound emulatable proof of knowledge for N'P with linear pre-
cision.

27

4 Constructions of Precise ZK

In this section we provide our constructions of Precise ZK protocols. We construct the following
Precise ZIC protocols:

1. Statistically Precise ZX Arguments for NP (assuming statistically hiding commitments).
2. Computationally Precise ZK Arguments for NP (assuming one-way function).

3. Computationally Precise ZK Proofs for NP (assuming statistically hiding commitments).
4. Computationally Precise ZX Proofs for ZP (assuming statistically hiding commitments).

5. Unconditional Statistically Precise ZX Proofs for specific languages such as Graph Non-
Isomorphism.

4.1 Precise ZK Arguments for NP

We start by showing the following theorem :

Theorem 5 Assume the existence of k(n)-round public-coin statistically-hiding commitments. Then,
there exists an (efficient-prover) k(n)+w(1)-round statistically precise ZK argument with polynomial
precision for every language in N'P. There also exists an (efficient-prover) k(n) + w(logn)-round
statistically precise ZK argument with linear precision for every language in N'P.

Proof: We begin by constructing a ZX argument with polynomial precision. This protocol is then
modified to obtain a ZXC argument with linear precision.

ZK arguments with polynomial precision. Recall the protocol of Feige-Shamir. Their proto-
col proceeds in the following two stages, on common input a statement x € {0,1}" :

1. In Stage 1, the Verifier picks two random strings 71,72 € {0,1}", and sends their image
c¢1 = f(r1),co = f(r2) through a one-way function f to the Prover. The Verifier furthermore
provides a WZ proof of knowledge of the fact that ¢; and ¢o have been constructed properly
(i.e., that they are in the image set of f).

2. In Stage 2, the Prover provides a statistical-VWWZ proof of knowledge of the fact that either x
is in the language, or (at least) one of ¢; and ¢y are in the image set of f.

We obtain a statistical ZK argument PolyPreciseStatZKArg with precision p(n,t), where p is a
polynomial in both n and ¢, by simply replacing the WZ proofs of knowledge used in Stage 1 of the
protocol, with a WZ emulatable proof of knowledge with polynomial precision. If, furthermore, the
resulting protocol has the property that V' always rejects before Stage 2 is reached unless the prover
has communicated less than |z| bits (this for instance directly holds if w.l.o.g. choosing a length
preserving one-way function), the protocol has polynomial precision.

More precisely, let f:{0,1}" — {0,1}" be a one-way function and let the witness relation Ry,
where ((z1,22), (y1,y2)) € Rp/ if f(x1) = y1 or f(x2) = ya, characterize the language L’. Let the
language L € N'P. Protocol StatPolyPreciseZKArg for proving that x € L is described in Figure
1. Note that the protocol relies on the existence of one-way functions, public-coin statistically-
hiding commitments and a WZ emulatable proof of knowledge with polynomial precision. However,

28

since the existence of statistically-hiding commitments, implies the existence of one-way functions,
and since by Theorem 3, one-way functions imply the existence of an w(1)-round WZ emulatable
proof of knowledge with polynomial precision, we only require the existence of statistically-hiding
commitments. We conclude that the resulting protocol has round complexity k(n) + w(1).

Protocol StatPolyPreciseZKArg
Common Input: an instance x of a language L with witness relation Ry.
Auxiliary Input for Prover: a witness w, such that (z,w) € Rp(x).
Stage 1:

V uniformly chooses 71,72 € {0,1}".
V = P c1 = f(Tl),CQ = f(?“g).

V — P: a WZT statistically-sound emulatable proof of knowledge with polynomial
precision of the statement

either there exists a value r1 s.t ¢; = f(r1)
or there exists a value ry s.t co = f(r2)

The proof of knowledge is with respect to the witness relation R .
Stage 2:

P < V: a statistical-WZ argument of knowledge of the statement
either there exists values 7,75 s.t either ¢; = f(r]) or co = f(1}).
orx €L

The argument of knowledge is with respect to the witness relation
Rpvp(er,e2,x) = {(r],r5, w)[(r1,73) € Rps(c1,¢2) Vw € Rp(2)}.

Figure 1: Statistical ZK argument for NP with polynomial precision

Proposition 3 Protocol StatPolyPreciseZKArg is a statistical ZIC argument with polynomial pre-
C1810N.

Proof: Soundness and Completeness of the protocol follows directly from the proof of Feige and
Shamir [28] as protocol StatPolyPreciseZKArg is a particular instantiation of their protocol. Let us
turn to the precise ZK property. The simulator S for V'’ proceeds as follows:

1. The simulator S internally incorporates V'’ and follows the honest prover strategy during the
initial commit sent by V’. If V/ send an invalid message during the commitment, S halts
outputting the view generated for V'

2. Let E denote the precise emulator-extractor for residual verifier V' after V/ has committed to
7 (recall that V' acts as a prover in Stage 1 of the protocol).

3. S runs the emulator-extractor F, obtaining a triplet (views, views, w’ = (1}, %)), where view;
denotes the view of V' (since V' is acting as a prover).

29

4. If views contains a rejecting view, or if w’ ¢ R} (¢1,¢2), S outputs view; and halts.
5. Otherwise, S performs the following steps:

(a) S invokes an “internal” copy of V.
(b) S feeds the view view; to V.

(¢) S then interacts with V' following the honest prover strategy in Stage 2 of the protocol,
using w’ = (], %) as witness.

(d) S finally outputs the view of V'’ and halts.

Running-time of S. Let v denote the view output by S. We show that the running time of S is
polynomial in the running time of V'’ on the view v. First note that since F is an emulator-extractor
with polynomial precision for V', it follows that the time invested by S to generate stage 1 of the
view v is polynomial in the running time of V'’ when feed stage 1 of v. Secondly, since stage 2 of the
view v is generated by S emulating the honest prover strategy (using witness w’) in an interaction
with V’) it follows that time invested by S in order to generate stage 2 of v is the time needed to
emulate V' in stage 2 of the view v plus the time needed to generate the honest prover messages,
which is a polynomial in in |z|. Finally, since S only proceeds to generate stage 2 of the view if
stage 1 has been successfully completed, it holds that V’ must have communicated at least |z| bits
(in order to send the strings ¢, c2), which concludes that the total time invested by S to generate
both stage 1 and stage 2 of v is polynomial in the running time of V’ on the view v.

Indistinguishability of the simulation. We show that for the following ensembles are statisti-
cally close over L

. {VIEWz[P.(:v, y) < Vi(z, Z)]}xeLyeRL(x) se{0.1

o {S.(ZL‘, z)}

Towards this goal, consider the following “intermediate” simulator S’ that receives a witness y to
the statement x. S’, on input x, y (and auxiliary input z), proceeds just like S in order to generate
Stage 1 of the view, but proceeds as the honest prover in order to generate Stage 2 of the view.
Indistinguishability of the simulation by S follows from the following two claims:

z€L,yeRr (x),2€{0,1}*

Claim 1 The following ensembles are statistically close over L

o {views[Pu(2,y) & Vi(2,2)]} SRy o]

!

y {S.(.%', (y’ Z))}xEL,yERL(x),zE{O,l}*

Proof: Assume that E always outputs a witness w’ € R} (z) if the view output is accepting. Under
this (unjustified) assumption if follows from the perfect emulation condition on E that the view of
V' in a real interaction is identical to the output of S’. However, by the precise statistically-sound
proof of knowledge property of Stage 1 it follows that the probability that E fails in outputting a
witness is negligible. We conclude that the ensembles in the statement of Claim 1 are statistically
close. W

30

Claim 2 The following ensembles are statistically close over L

o {S.(x, z)}

z€L,yeRL (),2€{0,1}*

!

* {S.(l', (y’ Z))}wEL,yERL(x),ZE{O,l}*
Proof: The claim follows directly from the statistical-WZ property!! of Stage 2 of the protocol,
and from the fact that the only difference between S and S’ is the choice of the witness used in
Stage 2 of the protocol. For completeness, we provide a proof.

Assume for contradiction that the claim is false, i.e., that there exists a deterministic verifier
V' (we assume w.l.o.g that V' is deterministic, as it can always receive it random-tape as auxiliary
input), a polynomial g(n), and a distinguisher D such that for infinitely many x € L there exists
y € Rr(z),z € {0,1}* such that

‘Pr [U — Se(x,2): D(z,2,v) = 1} —Pr [v — Sl(x,(y,2)) : D(x,z,v) = 1”
1
g(lz)

>

Fix generic x, 4, z for which this happens. Since S’ proceeds exactly as S in Stage 1 of the protocol,
there must thus exists a partial view v! for V', of only Stage 1 of the protocol, such that D also
distinguishes the output of S and S’ conditioned on the event that S and S’ feed V' the view v! as
part of its Stage 1 view.

Note that the partial view v! defines an instance 2’ € LV L that V’ expects to hear a proof of,
and that the only difference between the executions of S and S’ given the view v! is the choice of
witness used in the proof. We have thus reached a contradiction to the WZ property of Stage 2 of
the protocol. W

ZK arguments with linear precision. We proceed to construct an argument system that is
ZIC with linear precision. We obtain the new argument system, called StatLinPreciseZKArg, by
modifying the previously constructed one, StatPolyPreciseZKArg, in the following ways:

1. In Stage 1 of the protocol, V start by sending the string 1"(*D where W(|z|) denotes the
number of computation steps required by P to complete stage 2 of the protocol on input z,
given any witness w’. (The prover directly aborts the proof if V' sends a string that is shorter.)
This message serves as a “zero-knowledge proof” that the malicious verifier has performed
roughly as much computation as the honest verifier. (Since we require that simulation is
linear in the running time of the malicious verifier, it is imperative that we can simulate also
verifiers that run much faster than then honest verifier. This additional message makes it
possible to simulate also such verifiers.)

2. In Stage 1 of the protocol, P and V engage in a WZ statistically-sound proof of knowledge
with linear precision (instead of one with polynomial precision).

1We here rely on the fact that the statistical-WZ property holds also for unbounded verifiers.

31

More precisely, let f be a one-way function and let Ry/, L' be defined as above. Let the language
L € N'P. Protocol StatLinPreciseZKArg for proving that x € L is depicted in Figure 2. Since by
Theorem 3 the existence of one-way functions (which are implied by the existence of statistically
hiding commitments) implies the existence of an w(logn)-round WZ emulatable proof of knowledge
with linear precision, the resulting protocol has round complexity k(n) + w(logn).

Protocol StatLinPreciseZKArg
Common Input: an instance x of a language L with witness relation Ry.
Auxiliary Input for Prover: a witness w, such that (z,w) € Rp(x).

Stage 1:

Let W(|z|) denotes (an upper bound) on the number of computational steps re-

quired by P to complete stage 2 of the protocol on input z, given any witness

w'.

Vs P Wl
P verifies that V sent a string of length 1 (=D (If not, it aborts.)
V uniformly chooses r1,72 € {0,1}".

V = P ey = f(r1),ca = f(ra).

V — P: a WT statistically-sound proof of knowledge with linear precision of the
statement

either there exists a value r1 s.t ¢; = f(r1)
or there exists a value ry s.t co = f(r2)

The proof of knowledge is with respect to the witness relation R}

Stage 2:

P < V: a statistical-WZ argument of knowledge of the statement
either there exists values 1,75 s.t either ¢; = f(r]) or co = f(1}).
orx €L

The argument of knowledge is with respect to the witness relation
RL\/L’(Clv €2, x) = {(T/h Tév w)|(r’1, T/Q) € Ry (617 02) Vwe RL(x)}

Figure 2: Statistical ZK argument for NP with linear precision

Proposition 4 Protocol StatLinPreciseStatZKArg is a statistical ZKC argument with polynomial
PTecision.

Proof: Soundness and Completeness of the protocol follows directly as in the proof of Claim 3. To
argue the ZJC with linear precision property consider the same simulator S as in the proof of Claim
3. It directly follows (using the proof of Claim 3) that the output of S is “correctly” distributed. It
only remains to analyze the running time of S.

32

Running-time of S. As in the proof of Claim 3, let v denote the view output by S. Since E is
an emulator-extractor with linear precision for V', it follows that the time invested by S to generate
stage 1 of the view v is linear in the running time of ¥V’ when feed stage 1 of v. Furthermore, note
that if V' “completed” stage 1 of the protocol then V' must have spent at least W (|z|) computation
steps.

As in the proof of Claim 3) since stage 2 of the view v is generated by S emulating the honest
prover strategy (using witness w’ extracted in Stage 1) in an interaction with V| it follows that the
time invested by S in order to generate stage 2 of v, is the time needed to emulate V' in stage 2 of
the view v plus the time needed to generate the honest prover messages. By our assumption that
a Turing machine can be emulated at only linear overhead, it follows that the first term is a linear
function of the running time of V' in stage 2 of v. The second quantity is (by definition) W (|z|),
which is smaller than the total running time of V’ on the view v. We conclude that the total time
invested by S to generate both stage 1 and stage 2 of v is linear in the running time of V’/ on the
view v. B

This concludes the proof of Theorem 5. W

Remark: We note that if we use a precise POK in Stage 2 of protocols StatPolyPreciseZKArg
and StatLinPreciseStatZK Arg, we would get a protocol that is both precise ZK and a precise POK.

4.1.1 Computationally Precise ZK Arguments from Any One-way Function

Just as in the protocol of Feige and Shamir [28], it follows that if replacing the statistical-WZ
proof of knowledge in stage 2 of the protocols StatPolyPreciseZKArg, StatLinPreciseZKArg with a
computational-WZ proof of knowledge, we instead obtain a computational precise Z/ argument.
Since constant-round computational-WZ proof of knowledge can be based on the sole assumption
of the existence of one-way functions [27, 34, 59, 46], we thus obtain:

Theorem 6 Assume the existence of one-way functions. Then, there exists an (efficient-prover)
w(1)-round precise computational ZK argument with polynomial precision, for every language in
NP. There also exists an (efficient-prover) w(logn)-round precise computational ZK argument
with linear precision, for every language in N'P.

Proof: The proof essentially follows from the proof of Theorem 5. If relying on the same simulator
S as in the proof of Theorem 5, the only point that needs to be addressed is the proof of the indis-
tinguishability of the simulation. In particular, since Stage 2 of the protocol is only computational
WZ (instead of statistical YWWZ) Claim 2 no longer holds; however, it follows using exactly the same
argument that the following claim holds instead, which is sufficient to conclude that the simulation
is computationally indistinguishable from the view of the verifier in a true interaction with a prover.

Claim 3 The following ensembles are computationally indistinguishable over L

o {S.(x, z)}

z€L,yeRL (z),z€{0,1}*
REACN
|

z€L,yER (x),2€{0,1}*

33

4.2 Precise ZK Proofs for NP
We show:

Theorem 7 Assume the existence of k(n)-round statistically hiding commitments. Then, there
exists an (efficient-prover) w(k(n))-round precise computational ZIC proof with polynomial preci-
sion, for every language in N'P. There also exists an (efficient-prover) w(k(n)logn)-round precise
computational ZK proof with linear precision, for every language in N'P.

Proof: We start by constructing a Z/XC proof with polynomial precision.

ZK proofs with polynomial precision. Recall the ZK proof system for (GRAPH3COL) of
Goldreich and Kahan [33]. Their protocol proceeds in two stages. In the first stage the verifier
commits, using a statistically hiding commitment, to n pairs of edges in the graph. In the second
stage, the prover and the verifier execute n parallel (and using independent random coins) instances
of GMW’s (GrRAPH3COL) protocol, with the exception that the verifier does not pick random
challenges, but instead reveals the edges it committed to in the first stage.

We modify their protocol as follows: In the first stage of the protocol, we additionally let the
verifier provide a statistical-WZ computationally-sound emulatable precise proof of knowledge of
the values it has committed. (This modification can be seen as a generalization of the protocol of
[65, 67].) To obtain a precision p(n,t) that is polynomial in only ¢, we furthermore require that the
verifier must communicate at least |x| bits in order to successfully complete stage 1.

More precisely, let the language L € NP. Our protocol for proving that x € L is called
CompPolyPreciseZK Proof and is depicted in Figure 3.

Note that the protocol relies on the existence of statistically-hiding commitment, statistically-
binding commitment and a statistically-WWZ computationally-sound emulatable proof of knowl-
edge with polynomial precision. However, since the existence of statistically-hiding commitments,
implies the existence of one-way functions, which in turns implies the existence of (constant-
round) statistically-binding commitments, and since by Theorem 4, the existence of a k(n)-round
public-coin statistically-hiding commitment implies the existence of a w(k(n)) round statistical-WZ
computationally-sound emulatable proof of knowledge with polynomial precision, we only require
the existence of statistically-hiding commitments. We conclude that the resulting protocol has round
complexity w(k(n)).

Proposition 5 Protocol CompPolyPreciseZKProof is a computational ZK proof with polynomial
Precision.

Proof: Note that CompPolyPreciseZKProof is a particular instantiation of the protocol of Gol-
dreich and Kahan [33]. This follows since, by the statistical WZ property of the proof in Stage 1
of PolyPreciseZKProof, it holds that the whole of Stage 1 is a statistically-hiding commitment.'?
Thus, Soundness and Completeness of CompPolyPreciseZKProof follows directly from the proof of
Goldreich and Kahan [33]. Let us turn to the precise ZXC property. For a given malicious verifier V",
let E denote the precise extractor for V' (recall that V/ acts as a prover in Stage 1 of the protocol).
The simulator S for V'’ proceeds as follows:

121f not, we could break the hiding property of the original commitment CoM, by in exponential-time finding a
decommitment to CoM, and next emulating the Stage 1 proof using this decommitment as witness. By the Statistical-
Wlproperty, this emulated view is statistically close to a valid Stage 1 commitment to the same value as COM was a
commitment to.

34

Protocol CompPolyPreciseZK Proof
Common Input: an instance x of a language L with witness relation Ry,.
Auxiliary Input for Prover: a witness w, such that (z,w) € Rp(x).
Stage 1:

V uniformly chooses 7 = 71,79, ...,7, € {0,1}", s € {0,1}Pol(™),

V — P: ¢ = CoMm(T;s), where CoOM is a statistically hiding commitment, which
has the property that the committer must communicate at least m bits in order
to commit to m strings.

V — P: a statistical-WZ computationally-sound proof of knowledge with polyno-
mial precision of the statement
there exists values 7,5 s.t ¢ = CoMm(7';s)

The proof of knowledge is with respect to the witness relation R} (c) =

{(v,s)|lc= CoMm(v;s)}.
Stage 2:

P <> V: P and V engage in n parallel executions of the GMW’s (3-round) Graph
3-Coloring protocol, where V' uses the strings 71, .., 7, as its challenges:

1. P —» V: n (random) first messages of the GMW proof system for the
statement x.
2. V « P: V decommits to 7 = rq, .., 7y.

3. P — V: For i = 1..n, P computes the answer (i.e., the 3’rd message of the
GMW proof system) to the challenge 7; and sends all the answers to V.

Figure 3: Computational ZK Proof for NP with Polynomial Precision

35

1. S runs the emulator-extractor F, obtaining a triplet (viewn, views, w’ = (¥, s’)), where view,
denotes the view of V' (since V' is acting as a prover).

2. If views contains a rejecting view, or if w’ ¢ R} (z), S outputs view; and halts.
3. Otherwise, S perform the following steps:

(a) Just asin [33], S generates a “random-looking” execution (my,7,mg) of the “parallelized”
GMW protocol, where the verifier query 7 = 7. (This property of the GMW protocol is
sometimes called special honest-verifier ZK.)!3

) S feeds the view view; to V.
) S feeds my to V.
d) If V' decommits to 7, S feeds mg to V', outputs the view of V'’ and halts.
) If V' fails to decommit, S outputs the view of V' and halts.
)

If V' succeeds in decommit to a different value than 7, S output fail and halts.

Running-time of S. Let v denote the view output by S. We show that the running time of S
is polynomial in the running time of V' in the view v. First note that since F is an extractor with
polynomial precision for V', it follows that the time invested by S to generate stage 1 of the view v
is polynomial in the running time of V' when feed stage 1 of v. Secondly, since stage 2 of the view v,
is generated by S by emulating the honest prover strategy (using the knowledge of the verifier query
7) in an interaction with V', it follows that time invested by S in order to generate stage 2 of v, is
the time needed to emulate V' in stage 2 of the view v plus the time needed to generate the honest
prover messages, which is a polynomial in in |z|. Finally, since S only proceeds to generate stage 2
of the view if stage 1 has been successfully completed, it holds that V/ must have communicated at
least |x| bits, which concludes that the total time invested by S to generate both stage 1 and stage
2 of v is polynomial in the running time of V' on the view v.

Indistinguishability of the simulation. We show that the following ensembles are computa-
tionally indistinguishable over L.

. {VIEWQ[P.(LE, y) < Vi(x, Z)]}IEL Ve R (@) e {01}

o {S.(a:, z)}

Towards this goal, consider the following “intermediate” simulator S’ that receives a witness y to
the statement x. S’, on input x, y (and auxiliary input z), proceeds just like S in order to generate
Stage 1 of the view, but proceeds as the honest prover in order to generate Stage 2 of the view. The
indistinguishability of the simulation by S follows from the following two claims:

z€L,yeR (x),z€{0,1}*

Claim 4 The following ensembles are statistically close over L

. {VIEWz[P.(x, y) < Vi(z, Z)]}xeLyeRL(x) se{0.1

13Note that this is possible since it is easy to commit to a coloring such that the two vertices on a particular
(predetermined) edge have different colors.

36

o {Six.(5,2)]

Proof: The proof is essentially identical to the proof of claim 1; the only difference is that the
proof of knowledge protocol in stage 1 is now only computationally-sound.

Assume that E always output a witness w’ € R/ (z) if the view output is accepting. Under this
(unjustified) assumption if follows from the perfect emulation condition on E that view of V' in
a real interaction is identical to the output of S’. However, by the precise computationally-sound
proof of knowledge property of Stage 1 it follows that the probability that E fails in outputting a
witness is negligible. (Note that we here rely on the fact that V' is a polynomial-time machine).
We conclude that the ensembles in the statement of Claim 4 are statistically close. Il

z€L,yER (x),z€{0,1}*

Claim 5 The following ensembles are computationally indistinguishable over L

° {S.(:L‘, z)}

z€L,yeR(x),2€{0,1}*

* {S‘(@g (y7 Z))}:EEL,yERL(:c),ZE{O,l}*

Proof Sketch: We start by noting that it follows directly from the computational-binding property
of the commitment scheme used in Stage 1, that the probability of either S or S’ outputting fail
is negligible. It also follows from the special honest-verifier ZXC property of the GMW protocol that
the output of Se(z, 2), conditioned of not being fail, and the output of S,(z, (v, 2)), conditioned of
not being fail are computationally indistinguishable. We conclude that Se(z,z) and S,(z, (y,2))
are computationally indistinguishable.

ZK proofs with linear precision. As for the case of ZK arguments (see Proposition 4), we
obtain a ZK proof for N'P with linear precision, called Protocol CompLinPreciseZKProof by mod-
ifying Stage 1 of protocol CompPolyPreciseZKProof in the following two ways:

1. V start by sending the string 121 where W (|z|) denotes the number of computation steps
required by S to perform a simulation of Stage 2 of the protocol. (The prover directly aborts
the proof if V' sends a string that is shorter.)

2. P and V then engage in a statistical-WZ computationally-sound proof of knowledge with
linear precision (instead of one with polynomial precision).

Since by Theorem 4 the existence of k(n)-round statistically hiding commitments implies the exis-
tence of an w(k(n)logn)-round statistically-WWZ computationally-sound emulatable proof of knowl-
edge with linear precision, the resulting protocol has round complexity w(k(n)logn).

It follows exactly as in the proof of Proposition 4 that Protocol ComplLinPreciseZKProof is
computational Z/X with linear precision. This concludes the proof of Theorem 7. W

4.3 Everything Provable is Provable in Precise ZK

We extend the results from the previous section to show that every language that has an interactive
proof also has a ZXC proof with linear precision.

37

Theorem 8 Assume the existence of statistically hiding commitments. Then, every language in
IP has a computational ZIC proof with linear precision.

Proof Sketch: Recall that [10] show that every language having an interactive proof also has a
computational ZX proof. In fact, they provide a transformation from an interactive proofs for a
language L, to a ZK proof for the same language by relying on any ZX proof for NP (such as
the GMW protocol). We note that if instead relying on a precise ZK protocol for NP in their
transformation, the resulting protocol will be ZKC with precision p(n,t) where p is a polynomial in
both n and ¢. If furthermore V' on common input z is required to communicate at least |z| bits as
part of its first message, the protocol is ZK with polynomial precision.

As in Proposition 4, we obtain a Z/ proof with linear precision, by relying on a ZK proof with
linear precision in the transformation of [10], and by additionally letting the verifier V' start by
sending the string 1 (#) where W (|z|) denotes the number of computation steps required by S
to perform a simulation of the first stage of the protocol (i.e., the “encrypted” interactive proof).!4
(The prover directly aborts the proof if V' sends a string that is shorter.) W

4.4 Existence of Statistically Precise ZK Proofs

We provide unconditional constructions of precise statistical ZJXC proofs for certain specific lan-
guages. We here exemplify our approach by showing a precise ZXC proof for Graph Non-Isomorphism.
Roughly speaking, our construction proceeds in the following steps:

1. We first recast (a variant, due to Benaloh [3], of) Goldreich, Micali and Wigderson’s protocol
[34] for Graph Non-Isomorphism as an instance of the Feige-Shamir protocol.

2. We then essentially rely on the same construction paradigm as in our previous (conditional)
constructions; namely, we use our knowledge precision lemmas to transform a special-sound
proof of knowledge into a precise proof of knowledge, and then use the precise proof of knowl-
edge protocol as a sub-protocol to obtain a precise Z/C proof.

4.4.1 Unconditional W7 Precise Proof of Knowledge for a Specific Language

We provide an example of a statistical-WZ statistically-sound precise proof of knowledge for a specific
language. As mentioned above, this protocol will then be used in order to construct a precise ZK
proof for GRAPHNONISO.

Consider the language 10F2GRAPHISO of triplets of graphs Go, G1, H, such that H isomorphic to
either G or G1, and the corresponding witness relation Rq5poGrapulso Which describes the two
isomorphism. VVle show how to construct a 3-round special-sound WZ proof for R{spoGraPHISO

with soundness 5. The protocol (which is a variant of a protocol implicit in [34] and the protocol

of Benaloh [3]) is depicted in Figure 4.

Proposition 6 Protocol 10f2GraphlsoProof is a special-sound statistical-WWI proof for 10F2GRAPHISO
with witness relation R1opoGRAPHISO"

" Note that although the prover strategy is not necessarily efficient, the simulator is. Thus, W (|z|) is always a
polynomial.

38

Protocol 10f2GraphlsoProof
Common Input: an instance Gy, G1, H of the language 10F2GRAPHISO.

Auxiliary Input for Prover: a witness w, such that ((Go,Gi,H),w) €
R10r2GRAPHISO (?)-

P uniformly selects a bit 7, and lets C; be a random isomorphic copy of Gy and
C1_; be a random isomorphic copy of G;.

P—V: C(),Cl.
V — P: a random bit b.
P—-V:

1. If b= 10, P sends the permutation from C;, Ci_; to Gg, G1.
2. If b=1, P sends the permutation from H to one of C;, Ci_;.

V checks the validity of the permutations received.

Figure 4: Statistically Precise ZK proof for 10F2GRAPHISO

Proof: Soundness and Completeness follow directly using the same proof as in [34]. Statistical-WZ
follows from the fact that protocol 10f2GraphlsoProof is honest-verifier perfect zero-knowledge (see
[34]), or can be directly argued. W

By using parallel repetition and an appropriate representation of the graphs, we thus obtain:
Proposition 7 There exists a 3-round statistical-WZ special-sound proof system (P, V') with linear

extraction for 10F2GRAPHISO with witness relation R{gpoGrapulso- Furthermore, the verifier
query in (P, V') for a statement x € {0,1}" is of length Q(n).

By combining Proposition 7 with Lemma 4 and Lemma 3 we obtain:

Theorem 9 There exists an w(1)-round statistical- WL statistically-sound proof of knowledge for
10F2GRAPHISO with polynomial precision. There also exists an w(logn)-round statistical-WZI
statistically-sound proof of knowledge for 10F2GRAPHISO with linear precision.

Since the above-constructed WZ precise proofs of knowledge protocols are public-coin, it directly
follows that they are ZK for the prover with precision p(n,t) = O(t). The following theorem then
follows from Theorem 9 by applying Lemma 2.

Theorem 10 There exists an w(1)-round statistical-WZ statistically-sound emulatable proof of
knowledge for 10F2GRAPHISO with polynomial precision. There also exists an w(logn)-round
statistical-WZ statistically-sound emulatable proof of knowledge for 10F2GRAPHISO with linear pre-
C1810N.

4.4.2 Statistically Precise ZX Proof for Graph Non-Iso

Let GRAPHNONISO denote the language of non-isomorphic graphs.

39

Theorem 11 There ezists an w(1)-round statistical ZIC proof for GRAPHNONISO with polynomial
precision. There also exists an w(logn)-round statistical ZKC proof of knowledge for GRAPHNONISO
with linear precision.

Proof: Let 10F2GRAPHISO and R{npoGrapulso Pe defined as in Section 4.4.1. Consider the
protocol depicted in Figure 5 for proving that x € GRAPHNONISO. (Note that this protocol does
not necessarily have an efficient prover strategy. This is potentially unavoidable, as GRAPHNONISO
might not be in N'P.)

Protocol PreciseZKGraphNonlso
Common Input: an instance Gy, G of the language GRAPHNONISO.
Stage 1:

V uniformly chooses a bit ¢ and let H be a random isomorphic copy of G;.
V- P: H.

V < P: V provides a statistically-WZ statistically-sound emulatable proof of knowl-
edge, with polynomial precision, that Gy, G1, H € 10F2GRAPHISO. The proof
of knowledge is with respect to the witness relation RqopoGrapHISO-

Stage 2:

P — V: The bit 7’ such that H is isomorphic to G;.

V accepts if i/ = 1.

Figure 5: Statistically Precise ZK proof for GRAPHNONISO

The following claim concludes the first part of the theorem.

Proposition 8 Protocol PreciseZKGraphNonlso is a statistical ZK proof for GRAPHNONISO with
polynomzial precision.

Proof: Soundness and Completeness of the protocol follows as in [34]. ZK with polynomial
precision follows directly from the statistically-sound emulatable proof of knowledge with polynomial
precision property of Stage 1.

In order to obtain a ZK proof with linear precision we proceed in exactly the same way as in the
proof of Theorem 5. W

4.4.3 Other Unconditional Statistically Precise ZX Proofs

The same approach as above can directly be applied to Goldwasser, Micali and Rackoff’s [38]
protocol for Quadratic Non-Residuosity, QNR. Furthermore, by instead relying on a protocol of
Micciancio, Ong, Sahai, and Vadhan [56] (extending [65] and [57]) we can obtain statistical precise
ZK proof with polynomial and linear precision for all problems in SD% /2 [57, 69]. (The general,
i.e., non-restricted, Statistical Difference problem is complete for statistical Z/C [69]). We note that
although GRAPHNONIsO and QNR actually reduces to SD% /25 the protocol resulting from relying
on the protocol of [56] require a “large” round-complexity and non-efficient provers, whereas our
direct approach avoids this.

40

5 Black-Box Lower Bounds for Precise ZK

We show that only Z/C proof/argument systems for ‘trivial” languages can have black-box simulators
with precision p(n,t), where p is a polynomial in both n and ¢. Intuitively, this lower bound follows
from the following observations:

e A black-box simulator S for a zero-knowledge proof of a non-trivial language must rewind the
verifier at least once (otherwise the simulator could be used as a cheating prover).

e Since the simulator only uses the verifier as a black-box it is oblivious of the running time of
the verifier on the view output. Furthermore, it is oblivious of the running time of the verifier
in the rewound execution. Therefore, if the malicious verifier decides how long to run based
on (in a randomized way) the queries that the simulator sends, we can with relatively high
probability end up in a situation where the simulator outputs a view in which the verifier runs
very fast, but the running time of the verifier in the rewound execution is long.

We proceed to a formal treatment relying on the above intuition.

5.1 Definition of Black-Box Precise ZK

Our definition of black-box precise Z/C is a straight-forward restriction of the definition of precise
ZK to only allow for black-box simulators, in analogy with the definition of black-box ZK (see
Definition 14 in Section B.4). For simplicity (and since we are proving a lower), we only state the
definition for the weakest form of precise ZK, namely computational precise ZX. In fact, to make
the lower-bound even stronger we present a definition where we only require that with overwhelming
probability, the running-time of the simulator is related to that of the verifier.

Definition 6 (Weak Precise Black-box ZK) Let (P,V') be an interactive proof (argument) sys-
tem for the language L € NP with the witness relation Ry, and let and p : N x N — N be a
monotonically increasing function. We say that (P, V') is weak computational black-box Z/C with
precision p(n,t) if there exists a probabilistic oracle machine S such that for every probabilistic
polynomial-time interactive machine V', the following two conditions hold:

1. The following two ensembles are computationally indistinguishable over L.
o {ViEWs[Pi(2,9) & Vi(2,2)]}

V) (z,z)
[{So (x)}xGL,yGRL(I)vz’Te{O’l}*

zeL,yeRy (z),2,r€{0,1}*

2. There exists a negligible function, such that for every x € L and every z,r € {0,1}* it holds
that)
Pr {STEPSSVT/(W)() < p(|x],STEPsV/(SYr(z,z) (x))} >1— p(n)
. T

(We emphasize that in the above expression the two occurrences of Se refer to the same random
variable.)

41

5.2 The Lower Bound
We prove the following theorem:

Theorem 12 Let (P, V) be an m-round weak black-box computational ZK interactive proof (or
arqument) with precision p(n,t) € poly(n,t) for the language L. Then,

L € BPTIME[O(p(n, TIMEy (n)))]

Before proceeding to the proof, we make the following remarks:

1. First, note that Theorem 12 shows that only languages in BPP have black-box zero-knowledge
proofs with polynomial precision. However, recall that precise zero-knowledge proofs with
linear precision might be interesting also for languages in BPP or P. Concerning such proof
systems, Theorem 12 states that the honest verifier of the zero-knowledge proof (argument)
system needs to perform “essentially” as much computation as is needed to decide the language,
completely trivializing the proof system.

2. Also, note that Theorem 12 is “tight” in the sense that if we relax the restriction on polynomial
precision, then black-box simulation can be useful. In particular, Pass’ interactive arguments
for NP [63] (which are based on the existence of one-way functions with sub-exponential
hardness) are black-box zero-knowledge with quasi-polynomial precision.'®

Proof of Theorem 12: Suppose, for contradiction, that there exists an m-round (where m = m(n))
interactive argument (P, V'), that has a black-box simulator S with precision p(n,t). Consider the
malicious verifier V'’ defined below. V' proceeds just as V, except for the following differences:

1. V' receives as auxiliary input the description of an (m + 1)-wise independent hash function
H : {0,1}™ — {0,1}", where I(n) denotes an upper-bound on the length of a transcript of
the protocol (P, V).

2. Let T'(n) be a polynomial in n, soon to be determined. Each time V' is given a query, V'
applies H to the partial transcript up until this query (including the query) to generate a
random number s. Based on this randomness, V'’ decides to, with probability 1/m “pause” for

2
(p(n, T(n))) steps before proceeding as V', and otherwise directly proceeds as V. More pre-

2
cisely, if the first log m positions of s are zero, then V' runs (p(n, T(n))) dummy instructions
and then proceeds to do what V would. Otherwise it directly does what V would do.
The polynomial T'(n) used above is defined as the upperbound on the time invested by V',
except for the “pauses” (i.e., T'(n) is essentially TIMEy plus the time needed to evaluate the

hasfunction H, m times). Note that in case V' does not “pause” in a view, its running time
is thus trivially bounded by T'(n).

We show that unless L € BPTIME[O(p(n, TIMEy (n)))] there exist some non-negligible function
g(n) such that with probability at least g(n), SV’ outputs a view in which V’ runs at most T'(n)

2
steps but which took S at least (p(n,T(n))) steps to generate. Towards this goal we start by
showing the following claim.

5Those protocols are ZK with precision p(n,t) = O(npdleg" +t). As an additional interesting feature they are
constant-round, whereas we don’t know if constant-round zero-knowledge protocols with polynomial precision can be
constructed.

42

Claim 6 Unless L € BPTIME[O(p(n, TIMEy (n)))], there exists some non-negligible function g(n)
such that with probability at least g(n), sV’ queries V' on a message m' that is not part of the view
output by S.

Proof: Assume, for contradiction, that S with overwhelming probability (i.e., with probability
1 — p(n), where p is a negligible function), only queries V' on messages that are part of the view
output by S. We show how this implies that S combined with V' can be used to decide the language.
More precisely, consider the deciding machine D defined as follows. On input an instance x, D
performs the following steps:

1. D picks a random tape r for V, and executes view <— S.Vr(z’z) (). If S attempts to perform

more than p(n, TIMEy (n)) computational steps, halt outputting L.

2. Unless D has already halted, it finally outputs ouTy (view) (i.e., it outputs 1 if and only if V'
accepts in the view view.)

We start by noting that the running-time of D on input an instance z € {0, 1}" is O(p(n, TIMEy (n))).
We proceed to show that D decides L. First note that it directly follows from the validity of S
that D outputs L only with negligible probability. (Recall that D only outputs L when S attempts
to take more than O(p(n, TIMEy(n))) steps. Since the running-time of V' is upper-bounded by
TIMEy (n) this thus only happens with negligible probability). In the sequel of the analysis we
therefore disregard this rare event.

e Given an instance x € L, it follows directly from the Z/C and completeness properties of
(P, V) that, except with negligible probability, SY r(@2) () outputs a view in which V' accepts;

we conclude that De(z) — 1 except with negligible probability.

e Given an instance z ¢ L it instead holds that except with negligible probability, S outputs a
view in which V rejects. If this was not the case S could be used as a cheating prover. This
follows since S only queries the verifier on a message that is not part of the view output, with
negligibly small probability.

More precisely, assume for contradiction that S.T(x’z) (z) outputs a view in which V' accepts
with non-negligible probability. As in [33], we may without loss of generality make two simpli-
fying assumption about S: 1) it never asks the same query twice to its oracle, and 2) whenever
it queries the oracle with a transcript, it has previously queried it on all partial transcripts.

We now construct a cheating prover P’ as follows.

1. P’ internally runs Se(z).

2. Whenever S makes a query to its oracle, externally forwards the last prover messages in
the query and provides S with the answer received back.

We start by noting that as long as S only asks queries that are consistent with a single execution
of (P,V), the view of S in the emulation by P’ is identical to the view of S when interacting
with V’. (Note that we here rely on the two simplifying assumptions about S so ensure that
the queries are forwarded out in the “right” order.) Since, except with negligible probability,
S in an execution with V' only asks questions that are consistent with a single execution of
(P, V), it holds that also in the emulation by P’, S, except with negligible probability, only
asks questions that are consistent with a single execution of (P,V). We conclude that the

43

view of S in the emulation by P’ is statistically close to the view of S when interacting with
V', which implies that the success probability of P’ is non-negligible. This contradicts the
Soundness of (P, V).

Relying on Claim 6 we show the following claim, which concludes the proof of Theorem 12.

Claim 7 There exists some auziliary input z for V' such that the probability that S takes more than

2
(p(n,T(n))) computation steps in order to generate a view v in which the running time of V'(z)

is T'(n), is X - o)
O(g(m)—(1 - —)") ~0(=)

m m-e
Proof: We show that for a random choice of an (m+ 1)-wise independent hash function H, it holds

2
that the probability that S invests at least (p(n, T(n))) computation steps S in order to output a
view in which the running time of V/(H) is T'(n), is

1 1
Olg(n)—(1 ——)"
(9t0)—(1 = ™)
By an averaging argument, this concludes that there exists at least one auxiliary input z = H
satisfying the conditions of the claim.
Note that due to the construction of V' it holds that for any fized view of V, the probability
(over the choice of the hash function H) that the running time of V' is at most T'(n) steps is

1
1 _ . \m
(1--)
This follows since V' uses the (m 4+ 1)-wise independent hash function to decide whether to “pause”
or not, and from the fact that V’ only applies this function m times.
By Claim 6 it holds that with probability g(n), S feeds a query to V' that is not part of the
view v output. Since this query (by definition) is different to the queries in the view, it holds that

with (independent) probability
1

m
V' will run in time p(n, T(n))? when feed this query. (Here, independence follows since V' uses an
(m + 1)-independent hash function, and since we are only applying this function on m + 1 different
points). We conclude that with probability

O(g(m) (1~ ")

m

2
S takes time (p(n, T(n))) in order to generate a view in which V' takes at most T'(n) steps. W
[

Extensions to precise proofs of knowledge. We note that (assuming the existence of one-way
function) our black-box lower bound also extends to rule out the existence of WZ precise proofs of
knowledge for NP. This follows from the fact that (assuming the existence of one-way functions)
we show how to construct precise ZK arguments for NP given a WZ precise proof of knowledge for

NP.

44

6 Precise Encryption

We provide a definition of precise public-key encryption. For generality, we consider security under
CPA, CCA1 or CCA2 attacks.

Definition 7 (Encryption Scheme) A triple (Gen, Enc, Dec) is an encryption scheme, if Gen and
Enc are p.p.t. algorithms and Dec is a deterministic polynomial-time algorithm,

1. Gen on input 1™ produces a tuple (PK,SK), where PK,SK are the public and private keys,

2. Enc: Pk x {0,1}* — {0,1}* runs on input a public key PK and a message m € {0,1}* and
produces a ciphertext c,

3. Dec : sk x {0,1}* — {0,1}* U {L} runs on input (SK,c) and produces either a message
m € {0,1}* or a special symbol L,

4. There exists a polynomial p(k) and a negligible function p(k) such that for every message m,
and every random tape 7,

Pr(r, & {0, l}p(k); (PK, SK) < Gen(1";7); Decsk(Encpk(m;re)) #m] < u(k).

Let IT = (Gen, Enc, Dec) be an encryption scheme, A,S PPTs, and M a non-uniform PPT. Then, let
realy o m,A(17, 2), ideal,; g(1™, z) denote the probability distributions resulting from the followings

experiments.
realr ark m,A(2) : ideal, 5(1", 2) :
(PK, SK) < Genge(1") (PK, SK) < Gene(1™)
(m, hist) < MZ1(PK) (m, hist) < MO (PK)
¢ < Encpk(m;e) view <— Se(1™, PK, hist, z)
x < ADQ2(1" PK, ¢, hist, 2) T+ Aq(view)
Output z. Output z.

If ATK=CPA, then O; = Oy = e. If ATK=CCA1 then O; = Decgk(-), O2(c) = e. If ATK=CCA2
then Op = Decgk (+), O2(c) = Decgk (c) if ¢ # y and otherwise L.

Definition 8 (Precise Encryption) We say that the encryption scheme II = (Gen, Enc, Dec) is
perfectly /statistically /computationally secure with precision p under ATK, if, for every PPT ITM
A, there exists a probabilistic algorithm S such that for every non-uniform PPT M, the following
holds.

1. The following two ensembles are identical/statistically close/computationally indistinguishable
overn € N.

(a) {rea|7r,ATK,M,A(1"7Z)}
(b) {idealmg(ln,z)}

2. For everyn € N, every z € {0, 1}*,

neEN,ze{0,1}*

neN,ze{0,1}*

Pr (K, $K) < Geng(1"); (m, hist) < MO (PK);7 - {0,1}>

STEPSg, (17 PK hist,z) < P(1, STEPSA(S,(1", PK, hist,z)))} =1

45

The notion of precise private-key encryption is obtained by adapting experiments real and ideal in
the straight-forward way (namely, removing PK, letting ¢ + Encgk(m), and additionally providing
M, A with an encryption oracle, in the case of CCA security).

Our main result is stated below.

Theorem 13 If 7 is a CPA-secure public-key encryption scheme that on input a message of length n
outputs a pseudo-random ciphertext of length l(n), and furthermore the length l(n) can be computed
in time O(n), then is (computationally) secure with precision p(n,t) = O(t) under CPA.

Proof: We construct a simulator S(PK, z, hist) for A. Assume, for simplicity, that A has 1", PK, z, hist
hard-coded in its description; they can be easily handled as S can simply send the appropriate bit
of any of them to A whenever A request to read it; this only incurs a linear overhead.

S(1™, PK, z, hist) next feeds random bits to A(1", PK, z, hist) until A halts, or until it has feed
A n bits. If A has halted, simply output the view of A; otherwise compute [(n) (note that I(n) > n
or else we could not encrypt n-bit messages) and continue feeding A random bits until it halts, or
until /(n) bits has been fed. Finally, output the view of A.

As we assumed that a TM can emulate another at only linear overhead, we conclude that the
running-time of S is linear in the running-time of A (given any view). Additionally, it follows from
the pseudorandom ciphertext property of 7 that the simulation by S is valid. [

Using the same proof we also get:

Theorem 14 The one-time pad is perfectly secure encryption scheme with precision p(n,t) = O(t)
under CPA.

We point out that not necessarily every perfectly secure encryption scheme has linear precision.
Consider for instance a family of functions {f,}, such that f, : {0,1}/*l — {0,1}* is 1-1 for every
s; assume further that given s one can compute in polynomial-time (say, in time|s|°) both f and
1. Such a family could very well give rise to a perfectly secure encryption scheme (when picking
a random s as a key), yet it is not clear that one can simulate an encryption in time smaller than
|s|?, even if the adversary runs much faster.

CCA2-secure Encryption We show how to turn any CCA2-secure encryption scheme into one
that is CCA2-secure with linear precision; the transformation relies on a padding argument and
should only be taken as a feasibility results (showing that linear precision can be obtained). We
leave open the question of constructing “practical” CCA2-secure precise encryption schemes.

Theorem 15 Assume the existence of CCAZ2-secure encryption schemes. Then there exist a CCA2-
secure encryption scheme with precision p(n) = O(n).

Proof: Let m = (Gen, Enc, Dec) be a CCA2 secure encryption scheme. Let tGens tEnc(7)) tDec(?)
denote the respective running-times of Gen, Enc, Dec. Let g(n) be a function that is:

1. lower-bounded by tGepn (1) 4 tEpc () + tpec(n);
2. upper-bounded by a polynomial;
3. computable in time linear in n.

Note that since tGen(7) +tgpc(n) + tpec(n) is a polynomial, such a functions is easy to find.
Consider the encryption scheme 7/ = (Gen’, Enc’, Dec’) defined as follows.

46

e Gen/(): run PK, SK < Encpk(m), let Pk’ = 19(")||pK, Sk’ = SK, and output (PK/, SK').
e Encpy/(m): interpret PK’ as 190")||PK, run ¢ + Encpg(m) and output ¢/ = 19M||c.

e Deciy(c)): check if ¢ starts with g(n) leading 1’s. If so, interpret ¢ as 19(*||c and output
Decgk (c). Otherwise output L.

We show that 7’ is CCA2-secure with precision p(n) = O(n). Again, we assume for simplicity that
the adversary A has 1", PK, z, hist hard-coded in its description. Consider the simulator S that start
by feeding A 1’s as part of its public-key and as part of the ciphertext, until A halts, or until it has
feed A n bits. If A has halted, simply output the view of A; otherwise compute g(n) (note that
g(n) > n or else we could not encrypt n-bit messages) and continue feeding A 1’s until it halts, or
until g(n) bits has been fed. Again, if at any point A halts, S does so as well (outputting the view
of A). Once A has read all the ones, S let (PK,SK) < Gen(1"), PK’ = 19M||PK, ¢ < Encpy(0")
and feeds ¢ to A. Next S answers all decryption queries in the following way: it reads the string
¢ sent out by A bit by bit; if it starts by 19(") leading ones, and ¢ # ¢, let 7 < Decly (&) and
output m; otherwise output L. Finally output the view of A in this execution. It directly follows
from the construction that the running-time of S is linear in the running-time of A given any view.
Additionally, it direct follows from the (standard) C'C A2 security of 7 that the view output by S is
correctly distributed. Il

7 Precise Secure Computation

We provide a precise analogue of the notion of secure computation [34]. We consider a malicious
static computationally bounded (i.e., probabilistic polynomial-time) adversary that is allowed to
corrupt a t(m) of the m parties—that is, before the beginning of the interaction the adversary
corrupts a subset of the players that may deviate arbitrarily from the protocol. The parties are
assumed to be connected through authenticated point-to-point channels. For simplicity, we here
assume that the channels are synchronous.

A multi-party protocol problem for m parties Py, ..., P, is specified by a random process that
maps vectors of inputs to vectors of outputs (one input and one output for each party). We refer
to such a process as a n-ary functionality and denote it f : ({0,1}*)™ — ({0,1}*)™, where f =
(f1, .-, fm)- That is, for every vector of inputs z = (x1,...,Zm), the output-vector is a random
variable (f1(Z), ..., fn(Z)) ranging over vectors of strings. The output of the i’th party (with input
x;) is defined to be f;(Z).

As usual, the security of protocol 7 for computing a function f is defined by the real execution
of m with an “ideal” execution where all parties directly talk to a trusted party.

The ideal execution. Let f: ({0,1}*)™ — ({0,1}*)™ be a n-ary functionality, where f = (f1, ..., fm)-
Let S be a probabilistic polynomial-time machine (representing the ideal-model adversary) and let
I C [m] (the set of corrupted parties) be such that for every ¢ € I, the adversary S controls party
P;. The ideal execution of f with security parameter n, inputs £ = (z1, ..., Z,,) and auxiliary input
z to S, denoted ideals ; s(n,Z, 2), is defined as the output vector of the parties P, .., P, and the
adversary S, resulting from the process below:

Each party P; receives it input z; from the input vector z = (x1,..,2,,). Each honest party P,
sends x; to the trusted party. Corrupted parties P; can instead send any arbitrary value z, € {0, 1}'”“|
to the trusted party. When the trusted third party has received messages x; from all parties (both

47

honest and corrupted) it sets ' = (2, ..,2},), computes y; = f(Z’) and sends y; to P; for every
i € I. When the adversary sends the message (send-output, i) to the trusted party, the trusted party
delivers y; to P;. Finally, each honest party P; outputs the value y; received by the trusted party.
The corrupted parties, and also S, may output any arbitrary value.

Additionally, let view!, ()¢ r.s(n,Z, z) denote (probability distribution) describing the view of
S in the above experiment.

The real execution. Let f, I be as above and let II be a multi-party protocol for computing f.
Furthermore, let A a probabilistic polynomial-time machine. Then, the real execution of II with
security parameter n, inputs = (1, ..., Zy,) and auxiliary input z to A, denoted realy 1 4(n, Z, 2),
is defined as the output vector of the parties Py, .., Py, and the view of the adversary A resulting
from executing protocol 7 on inputs Z, when parties ¢ € I are controlled by the adversary A(z).

Definition 9 (Precise Secure Computation) Let f and II be as above, andp : Nx N x N — N
a monotonically increasing function. Protocol 11 is said to t-securely compute f with precision p
and perfect/statsitical /computational security if for every probabilistic polynomial-time real-model
adversary A, there exists an probabilistic ideal-model adversary S, such that for every m € N,
T = (z1,...;xm) € ({0,1}*)™ and every I C [m], with |I| < t, the following conditions hold:

1. The following two ensembles are identical/statistically close/computationally indistinguishable,
overn € N.

(a) {idealy s s(k,7,2)}
(b) {realra(k,7,2)}

2. For everyn € N, every T € ({0,1}*)™, and every z € {0,1}*,

keN,ze{0,1}*

ke N,z€{0,1}*

Pr [m'ew — viewy (z)f1,.5(n, %, z) : STEPSg(view) < p(|x|, STEPSA(S(view)} =1.

Theorem 16 Assume the existence of enhanced trapdoor permutations. Then, for any m-party
functionality f there exists a protocol I1 that (m—1)-securely computes f with precision p(n) = O(n)
and computational security.

Proof Sketch: We only provide a proof sketch. Our construction proceeds in two steps:

1. We first show how to construct a precise secure computation protocol when having access
to an idealized ZK proof of knowledge functionality [16]. We here rely on the protocols of
[34, 17, 64] and on padding. This is possible since given access to a idealized ZK functionality,
we can construct a straight-line simulatable secure computation protocol (see [17, 64]); this
means that the overhead o(t,n) of the simulator is some fixed polynomial p(n) only in the
security parameter n, independent of the running-time of the verifier ¢ (plus the linear time
needed to simulate the adversary). Now, if we pad all protocol messages with 1P() we can
make sure that the adversary spends at least p(n) steps before it will see any “real” protocol
messages. Thus, we get linear precision.

2. In the next step we simply implement the idealized ZX proof of knowledge functionality with
a protocol that is both precise ZK and a precise proof of knowledge.

48

[
By appropriately modifying the protocols of [8] and [68] (using padding), we instead get

Theorem 17 For any m-party functionality f there exists a protocol I that (m/2 — 1)-securely
computes f with precision p(n) = O(n) and statistical security (assuming a broadcast channel).
For any m-party functionality f there exists a protocol 11 that (m/3 — 1)-securely computes f with
precision p(n) = O(n) and perfect security.

These protocol additionally satisfies a stronger definition, where fairness is guaranteed; we omit the
definition and refer the reader to [32].

References

[1] W. Aiello, J. Hastad. Statistical Zero-Knowledge Languages can be Recognized in Two Rounds.
JCSS. Vol. 42(3), pages 327-345, 1991

[2] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages 106-115,
2001.

[3] J.D. Benaloh. Cryptographic Capsules: A disjunctive primitive for interactive protocols. In
Crypto86, Springer LNCS 263, pages 213-222, 1987.

[4] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a hierarchy of
complexity classes. JCSS, Vol. 36, pages 254276, 1988.

[5] B. Barak and O. Goldreich. Universal Arguments and their Applications. 17th CCC, pages
194203, 2002.

[6] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In CRYPT0’92, Springer
(LNCS 740), pages 390-420, 1993.

[7] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. In 34th STOC,
pages 484-493, 2002.

[8] D. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. In 20’th STOC, pages 1-10, 1988.

[9] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in Compu-
tationally Sound Protocols? In 38th FOCS, pages 374383, 1997.

[10] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian ,S. Micali and P. Rogaway.
Everything provable is provable in zero-knowledge. In Crypto88, Springer LNCS 0403, pages
37-56, 1988.

[11] M. Blum. How to prove a Theorem So No One Else Can Claim It. Proc. of the International
Congress of Mathematicians, Berkeley, California, USA, pages 1444-1451, 1986.

[12] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and Its Applications. In
20th STOC, pages 103-112, 1988

49

[13]

G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS,
Vol. 37, No. 2, pages 156-189, 1988. Preliminary version by Brassard and Crépeau in 27th
FOCS, 1986.

M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM J.
Computing, 20(6):1084-1118, 1991.

R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In 34th STOC, pages 494-503, 2002.

R. Canetti and M. Fischlin. Universally Composable Commitments. In Crypto2001, Springer
LNCS 2139, pages 19-40, 2001.

R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and
Multi-Party Computation. In 3/th STOC, pages 494-503,2002.

D. Chaum and H. van Antwerpen. Undeniable Signatures. In Crypto89, Springer LNCS 435,
pages. 212-216, 1989.

R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and Simplified
Design of Witness Hiding Protocols. In Crypto94, Springer LNCS 839, pages. 174-187, 1994.

I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In Furo-
Crypt00, Springer LNCS 1807, pages 418-430, 2000.

Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically Secure Computation,
In Crypto00, Springer LNCS 1880 74-92, 2000.

I. Damgard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding Bit Com-
mitment Schemes and Fail-Stop Signatures. In Crypto93, Springer-Verlag LNCS Vol. 773, pages
250-265, 1993.

C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages 409418,
1998.

U. Feige. Ph.D. thesis, Alternative Models for Zero Knowledge Interactive Proofs. Weizmann
Institute of Science, 1990.

U. Feige, D. Lapidot and A. Shamir. Multiple Noninteractive Zero Knowledge Proofs under
General Assumptions. Siam Jour. on Computing 1999, Vol. 29(1), pages 1-28.

U. Feige, A. Fiat and A. Shamir. Zero Knowledge Proofs of Identity. Journal of Cryptology,
Vol. 1, pages 77-94, 1988.

U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd
STOC, pages 416—426, 1990.

U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds. In Crypto89,
Springer LNCS 435, pages. 526-544, 1989.

A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Sig-
nature Problems. In Crypto86, Springer LNCS 263, pages 181-187, 1987.

50

[30]

31]
32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. Fischer, S. Micali, and C. Rackoff. A Secure Protocol for the Oblivious Transfer. Journal
of Cryptology, 9(3): 191-195, 1996.

O. Goldreich. Foundations of Cryptography — Basic Tools. Cambridge University Press, 2001.

O. Goldreich. Foundations of Cryptography — Basic Applications. Cambridge University Press,
2004

0. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems
for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167-189, 1996.

O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity or All
Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38(1), pp. 691-729, 1991.

O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Jour.
of Cryptology, Vol. 7, No. 1, pages 1-32, 1994.

S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No 2, pages 270-299,
1984.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-
systems. In STOC 85, pages 291-304, 1985.

S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Sys-
tems. SIAM Jour. on Computing, Vol. 18(1), pp. 186-208, 1989.

S. Goldwasser, S. Micali and R.L. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen Message Attacks. SIAM Jour. on Computing, Vol. 17, No. 2, pp. 281-308, 1988.

V. Goyal, A. Jain, R. Ostrovsky. Password-Authenticated Session-Key Generation on the In-
ternet in the Plain Model. In Crypto10, Springer LNCS 6223, pages 277-294, 2010.

Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In Cryptol1,
Springer LNCS 6841, pages 297315, 2011.

S. Goldwasser, M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems. In
18’th STOC, pages 59-68, 1986.

I. Haitner, M. Nguyen, S. Ong, O. Reingold and S. Vadhan. Statistically-Hiding Commitments
and Statistical Zero-Knowledge Arguments from Any One-Way Function. To appear in Siam
Journal of Computing, 2010.

S. Halevi and S. Micali. Conservative Proofs of Knowledge. MIT/LCS/TM-578, May 1998.

S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes from Collision-
Free Hashing. In Crypto96, Springer LNCS 1109, pages 201-215, 1996.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Generator
from any One-Way Function. STAM Jour. on Computing, Vol. 28 (4), pages 13641396, 1999.

J. Halpern and R. Pass. Game Theory with Costly Computation: Formulation and Applications
to Protocol Security. In ICS 2010, pages 120-142, 2010.

o1

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

J. Halpern and R. Pass. I Don’t Want to Think about it Now: Decision Theory with Costly
Computation. In KR 2010.

J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 2/th STOC, pages
723-732, 1992.

J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-logarithmic
Rounds. In 33rd STOC, pages 560-569, 2001.

J. Katz and Y. Lindell. Handling Expected Polynomial-Time Strategies in Simulation-Based
Security Proofs. In 2nd TCC, Springer-Verlag (LNCS 3378), pages 128-149, 2005.

Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In
Crypto01, Springer LNCS 2139, pages 171-189, 2001.

Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assumptions.
In 35th STOC, pages 683-692, 2003.

S. Micali. CS Proofs. SIAM Jour. on Computing, Vol. 30 (4), pages 1253-1298, 2000.
S. Micali and R. Pass. Local Zero Knowledge. In 38th STOC, 2006.

D. Micciancio, S. Ong, A. Sahai, S. Vadhan. Concurrent Zero Knowledge without Complexity
Assumptions. In 3st TCC, pages 1-20, 2006.

D. Micciancio, S. Vadhan. Statistical zero-knowledge proofs with efficient provers: lattice prob-
lems and more. In Crypto03. Springer LNCS 2729, pages. 282-298, 2003.

S. Micali and P. Rogaway. Secure computation. Unpublished manuscript, 1992. Preliminary
version in Crypto91, Springer LNCS 576, pages 392-404, 1991.

M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4, pages 151-158,
1991.

M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-Knowledge Arguments for
NP Using any One-Way Permutation. Jour. of Cryptology, Vol. 11, pages 87-108, 1998.

Y. Oren. On the Cunning Power of Cheating Verifiers: Some Observations about Zero-
Knowledge Proofs. In 28th FOCS, pages 462-471, 1987.

O. Pandey, R. Pass, A. Sahai, W. Tseng, and M. Venkitasubramaniam. Precise Concurrent
Zero Knowledge. In EuroCrypt08, Springer LNCS 4965, pages 397414, 2008.

R. Pass. Simulation in Quasi-polynomial Time and its Application to Protocol Composition.
In EuroCrypt03, Springer LNCS 2656, pages 160-176, 2003.

R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest Majority. In
36th STOC, 2004, pages 232-241, 2004.

M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with Logarithmic Round
Complexity. In 43rd FOCS, pages 366-375, 2002.

52

[66] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In
FEuroCrypt99, Springer LNCS 1592, pages 415-431, 1999.

[67] A. Rosen. A note on constant-round zero-knowledge proofs for NP. In 1st TCC, pages 191-2002,
2004.

[68] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest
Majority. In 21st STOC, pages 73—85, 1989.

[69] A.Sahaiand S. Vadhan. A complete problem for statistical zero knowledge. J. ACM, 50(2):196—
249, 2003.

[70] A. Shamir. IP = PSPACE. In 31st FOCS, pages 11-15, 1990.

[71] M. Tompa, H. Woll. Random Self-Reducibility and Zero Knowledge Interactive Proofs of Pos-
session of Information. In 28th FOCS, pages 472482, 1987.

[72] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, MIT, 1999.

53

A Basic Notation

A.1 General Notation

We employ the following general notation.

Integer and String representation. We denote by IV the set of natural numbers: 0, 1, 2,
Unless otherwise specified, a natural number is presented in its binary expansion (with no leading
0s) whenever given as an input to an algorithm. If n € N, we denote by 1" the unary expansion of
n (i.e., the concatenation of n 1’s). We denote by {0,1}" the set of n-bit long string, by {0, 1}* the
set of binary strings, and by [n] the set {1,..,n}.

We denote the concatenation of two strings = and y by z|y (or more simply by zy). If a is a
binary string, then |a| denotes a’s length and «; - - - a; denotes a’s i-bit prefix.

Probabilistic notation. We employ the following probabilistic notation from [39]. We focus on
probability distributions X : S — R™ over finite sets S.

Probabilistic assignments. If D is a probability distribution and p a predicate, then “x & pr
denotes the elementary procedure consisting of choosing an element x at random according to
D and returning x, and “x ED | p(x)” denotes the operation of choosing z according to D
until p(z) is true and then returning z.

Probabilistic experiments. Let p be a predicate and D1, Do, ... probability distributions, then the
notation Pr[x; E Dy g & Dy o p(z1,x2,...)] denotes the probability that p(zi,xa,...)
will be true after the ordered execution of the probabilistic assignments 1 & Dy xo & Dq; ...

New probability distributions. If Dy, Ds, ... are probability distributions, the notation {z &
Di;y & Dy;---: (z,y,---)} denotes the new probability distribution over {(z,v,---)} gener-
ated by the ordered execution of the probabilistic assignments z & Dy, y < Ds, - - -.

Probability ensembles. Let I be a countable index set. A probability ensemble indexed by I is a
vector of random variables indexed by I: X = {X,}cr.

In order to simplify notation, we sometimes abuse of notation and employ the following “short-
cut”: Given a probability distribution X, we let X denote the random variable obtained by selecting
x + X and outputting x.

Algorithms. We employ the following notation for algorithms.

Deterministic algorithms. By an algorithm we mean a Turing machine. We only consider finite
algorithms, i.e., machines that have some fixed upper-bound on their running-time (and thus
always halt). If M is a deterministic algorithm, we denote by STEPS,s(,) the number of
computational steps taken by M on input x. We say that an algorithm M has time-complexity
TIMEy (n) = t(n), if Vo € {0,1}* STEPS)z(,) < #(|z]). (Note that time complexity is defined
as an upper-bound on the running time of M independently of its input.)

Probabilistic algorithms. By a probabilistic algorithms we mean a Turing machine that receives an
auxiliary random tape as input. If M is a probabilistic algorithm, then for any input z, the
notation “M,(z)” denotes the output of the M on input x when receiving r as random tape.

o4

We let the notation “M,e(z)” denote the probability distribution over the outputs of M on
input « where each bit of the random tape r is selected at random and independently(note
that this is a well-defined probability distribution since we only consider algorithms with finite
running-time.)

Oracle algorithms. Given two algorithms M, A, we let M“(z) denote the output of the algorithm
M on input z, when given oracle access to A.

Emulation of algorithms. In counting computational steps, we assume that an algorithm M, given
the code of a second algorithm A and an input z, can emulate the computation of A on input
x with only linear overhead.

Negligible functions. The term “negligible” is used for denoting functions that are asymp-
totically smaller than the inverse of any fixed polynomial. More precisely, a function v(-) from
non-negative integers to reals is called negligible if for every constant ¢ > 0 and all sufficiently large
n, it holds that v(n) < n=°.

A.2 Protocol Notation

We assume familiarity with the basic notions of an Interactive Turing Machine [38] (ITM for brevity)
and a protocol. Briefly, an I'TM is a Turing Machine with a read-only input tape, a read-only auxiliary
input tape, a read-only random tape, a read/write work-tape, a read-only communication tape (for
receiving messages) a write-only communication tape (for sending messages) and finally an output
tape. The content of the input (respectively auxiliary input) tape of an ITM A is called the input
(respectively auxiliary input) of A and the content of the output tape of A, upon halting, is called
the output of A.

A protocol (A, B) is a pair of ITMs that share communication tapes so that the (write-only) send-
tape of the first ITM is the (read-only) receive-tape of the second, and vice versa. The computation
of such a pair consists of a sequence of rounds 1,2, In each round only one ITM is active, and
the other is idle. A round ends with the active machine either halting—in which case the protocol
ends—or by it entering a special idle state. The string m written on the communication tape in a
round is called the message sent by the active machine to the idle machine.

In this paper we consider protocols (A, B) where both ITMs A, B receive the same string as
input (but not necessarily as auxiliary input); this input string will be denoted the common input
of A and B.

We make use of the following notation for protocol executions.

Rounds. In a protocol (A, B), a round r € N is denoted an A-round (respectively B-round) if A
(respectively B) is active in round 7 in (A, B). We say that a protocol has r(n) rounds (or sim-
ply is an r(n)-round protocol) if the protocol (A, B) consists of r(n)-rounds of communication
between A and B when executed on common input x € {0, 1}".

Ezecutions, transcripts and views. Let M4, Mg be vectors of strings M4 = {m}ﬁx,mi‘, o}y, Mp =
{ml,m%, ...} and let z, 71,79, 21,72 € {0,1}*. We say that the pair ((x, 21,71, Ma), (z, 22,72, MB))
is an execution of the protocol (A, B) if, running ITM A on common input z, auxiliary input
z1 and random tape ry with ITM B on x, zo and ry, results in mf'A being the i'th mes-
sage read by A and in m’ being the i’th message read by B, and 71,79 are the parts of

95

the random tapes consumed by A and B respectively. We also denote such an execution by
Ay, (x,21) <> Bry(z, 22).

In an execution ((x, 21,71, Ma), (z, 22,72, Mp)) = (Va,Vp) of the protocol (A, B), we call V4
the view of A (in the execution), and Vg the view of B. We let VIEW;[A,, (z, 21) > By, (x, 22)]
denote A’s view in the execution A, (x,z1) <> By, (z, 22) and VIEW3[A,, (z,21) <> By, (x, 22)]
B’s view in the same execution. (We occasionally find it convenient referring to an execution
of a protocol (A, B) as a joint view of (A, B).)

In an execution ((x, z171, Ma), (x, 22,72, MpB)), the pair (M4, Mp) is called the transcript of
the execution.

Outputs of executions and views. If e is an execution of a protocol (Aj, A2) we denote by ouT;(e)
the output of A;, where ¢ € {1,2}. Analogously, if v is the view of A, we denote by ouT(v)
the output of A in v.

Random executions. We denote by Ae(x, 21) <> By, (2, 22), Ar, (2, 21) <> Be(x, 22) and Ae(x, 21) <>
Be(x, z2) the probability distribution of the random variable obtained by selecting each bit
of r1 (respectively, each bit of r9, and each bit of r; and r) randomly and independently,
and then outputting A,, (z, z1) <> By, (2, 22). The corresponding probability distributions for
VIEW and OUT are analogously defined.

Counting ITM steps. Let A be an ITM and v = (z, 2,7, (m1, ma,..my)). Then by STEPS4(v) we
denote the number of computational steps taken by A running on common input z, auxiliary
input z, random tape r, and letting the ith message received be m;.

Time Complexity of ITMs. We say that an ITM A has time-complexity TIME4(n) = ¢(n), if for
every ITM B, every common input x, every auxiliary inputs zg, zp, it holds that A(x, z,)
always halts within ¢(|z|) steps in an interaction with B(x, z,), regardless of the content of
A and B’s random tapes). Note that time complexity is defined as an upperbound on the
running time of A independently of the content of the messages it receives. In other words,
the time complexity of A is the worst-case running time of A in any interaction.

B Preliminaries
B.1 Indistinguishability
The following definition of (computational) indistinguishability originates in [36].

Definition 10 (Indistinguishability) Let X andY be countable sets. Two ensembles { Ay y}rex yey
and {Byy}zex yey are said to be computationally indistinguishable over X, if for every probabilis-
tic “distinguishing” algorithm D whose running time is polynomial in its first input, there exists a
negligible function v(-) so that for every x € X,y € Y:

| Pria <= Ay y: D(z,y,a) =1 — Pria < By, : D(z,y,b) =1]| < v(|z|)

{Azy}eexyey and {Byytaex yey are said to be statistically close over X if the above condition
holds for all (possibly unbounded) algorithms D.

56

B.2 Interactive Proofs and Arguments

We state the standard definitions of interactive proofs (introduced by Goldwasser, Micali and Rackoff
[38]) and arguments (introduced by Brassard, Chaum and Crepeau [13]).

Definition 11 (Interactive Proof (Argument) System) A pair of interactive machines (P, V')
is called an interactive proof system for a language L if machine V is polynomial-time and the
following two conditions hold with respect to some negligible function v(-):

e Completeness: For every x € L there exists a (witness) string y such that

Pr [OUTV[P.(x,y) & Va(z)] = 1} =1

e Soundness: For every x ¢ L, every interactive machine B and every y € {0,1}*

Pr [ouTy[Pa(2,y) < Va(2)] = 1] < w(Ja])

In case that the soundness condition is required to hold only with respect to a computationally bounded
prover, the pair (P, V') is called an interactive argument system.

Definition 11 can be relaxed to require only soundness error that is bounded away from 1—v(|z|).
This is so, since the soundness error can always be made negligible by sufficiently many parallel
repetitions of the protocol. However, in the case of interactive arguments, we do not know whether
this condition can be relaxed. In particular, in this case parallel repetitions do not necessarily reduce
the soundness error (cf. [9]).

B.3 Commitment Schemes

Commitment schemes are the digital equivalent of physical envelopes. They enable a first party,
referred to as the sender, to commit itself to a value while keeping it secret from a second party,
the receiver; this property is called hiding. Furthermore, the commitment is binding, and thus in a
later stage when the commitment is opened, it is guaranteed that the “opening” can yield only a
single value determined in the committing phase. The opening phase traditionally consists of the
sender simply sending the receiver the value v it committed to, as well as the random coins r it
used. The receiver accepts the opening to v if the messages it received during the committing phase
are produced by running the honest sender algorithm on input v and the random tape r.
Commitment schemes come in two different flavors, perfectly-binding and perfectly-hiding.

Perfect-binding. In a perfectly-binding commitments, the binding property holds against un-
bounded adversaries, while the hiding property only holds against computationally bounded adver-
saries. Loosely speaking, the perfectly-binding property asserts that the transcript of the interaction
fully determines the value committed to by the sender. The computational-hiding property guaran-
tees that commitments to any two different values are computationally indistinguishable; actually,
in most applications (and in particular for the construction of zero-knowledge proofs) we require
that the indistinguishability of commitments holds even when the distinguisher receives an auxiliary
“advice” string (this is sometimes called non-uniform computational hiding).

For simplicity, we present a definition of a commitment scheme for enabling a sender to commit
to a single bit.

o7

Definition 12 (Perfectly-binding commitment) A perfectly-binding bit commitment scheme is
a pair of probabilistic polynomial-time interactive machines (S, R) satisfying the following properties:

e Perfect Binding: For all r1,7r9,r" € {0,1}*,n € N it holds that

VIEW2[Sy, (1",0) <> R,/ (1™)] # VIEW3[S,, (1", 1) <> R,/ (1")]

e Computational Hiding: For every probabilistic polynomial-time ITM R’ the following ensem-
bles are computationally indistinguishable over N

_ {VIEWQ[S.(ln; 0) > R/.(ln7 Z)]}neN 2€{0,1}*

_ {VIEWQ[S.(ln, 1) <~ R/.(lna Z)]}neN 2€{0,1}*

Above, the variable n is a parameter determining the security of the commitment scheme.

Perfect-hiding. In perfectly-hiding commitments, the hiding property holds against unbounded
adversaries, while the binding property only holds against computationally bounded adversaries.
Loosely speaking, the perfectly-hiding property asserts that commitments to any two different values
are identically distributed. The computational-binding property guarantees that no polynomial time
adversary algorithm is able to construct a commitment that can be opened in two different ways;
again, for our applications, we actually require that the binding property holds also when providing
the adversary with an “advice” string (this property is sometimes called non-uniform computational
binding). We omit a formal definition of perfectly-hiding commitments and refer the reader to [31].

Statistical Binding/Hiding. We mention that it is often convenient to relax the perfectly-
binding or the perfectly-hiding properties to only statistical binding or hiding. Loosely speaking,
the statistical-binding property asserts that with overwhelming probability (instead of probability 1)
over the coin-tosses of the receiver, the transcript of the interaction fully determines the committed
value. The statistical-hiding property asserts that commitments to any two different values are
statistically close (i.e., have negligible statistical difference, instead of being identically distributed).

Existence of Commitment Schemes. Non-interactive perfectly-binding commitment schemes
can be constructed using any 1-1 one-way function (see Section 4.4.1 of [31]). Allowing some minimal
interaction (in which the receiver first sends a single message), statistically-binding commitment
schemes can be obtained from any one-way function [59, 46]. Perfectly-hiding commitment schemes
can be constructed from any one-way permutation [60] and statistically-hiding commitment can be
constructed from any one-way function [43]. Constant-round schemes are only known to exist under
stronger assumptions. Specifically, perfectly hiding commitment can be constructed assuming the
existence of a collection of certified clawfree permutations [33] (see also [31], Section 4.8.2.3), and
statistically-hiding commitments can be constructed under the potentially weaker assumption of
collision-resistant hash functions [22, 45]. All the above commitments are public coin—that is, the
receiver only uses public random coins.

58

B.4 Zero Knowledge

We recall the standard definition of ZK proofs. Loosely speaking, an interactive proof is said to be
zero-knowledge (ZK) if a verifier V' learns nothing beyond the validity of the assertion being proved,
it could not have generated on its own. As “feasible” computation in general is defined though
the notion of probabilistic polynomial-time, this notion is formalized by requiring that the output
of every (possibly malicious) verifier interacting with the honest prover P can be “simulated” by
a probabilistic expected polynomial-time machine S (a.k.a. the simulator). The idea behind this
definition is that whatever V* might have learned from interacting with P, he could have learned
by himself by running the simulator S.

The notion of ZK was introduced and formalized by Goldwasser, Micali and Rackoff in [37, 38].
We present their definition below.'6

Definition 13 (ZK) Let L be a language in N'P, Ry, a witness relation for L, (P, V) an interactive
proof (argument) system for L. We say that (P, V) is perfect/statistical/computational ZIC, if for
every probabilistic polynomial-time interactive machine V' there exists a probabilistic algorithm S
whose expected running-time is polynomial in the length of its first input, such that the following
ensembles are identical/statistically close/computationally indistinguishable over L.

. {vmw2 [Pa(z,y) < V(z, z)]}zeL s e ton)-

o {S.(x, z)}

z€L,yeR, (I),ZG{O,I}*

Black-box Zero-knowledge. One can consider a particularly “well-behaved” type of ZIC called
black-box ZK. Most known ZKC protocols (with the exception of [2]) and all “practical” ZXC protocols
indeed satisfy this stronger notion. Loosely speaking, an interactive proof is black-box ZK if there
exists a (universal) simulator S that uses the verifier V’ as a black-box in order to perform the
simulation. More precisely (following [31])

Definition 14 (Black-box ZK) Let (P,V) be an interactive proof (argument) system for the lan-
guage L € N'P with the witness relation Ry,. We say that (P, V') is perfect/statistical /computational
black-box ZIC, if there exists a probabilistic expected polynomial time oracle machine S such that for
every probabilistic polynomial-time interactive machine V', the following two ensembles are identi-
cal/statistically close/computationally indistinguishable over L.

. {VIEWQ[P.(x,y) < V(x, 2)]}

V! (2,2)
[J {S. (x)}xeL,yGRL(x):Z’TG{O’I}*

J?EL,yERL(Z’),Z,T’e{O,l}*

At first sight the definition of black-box Z/XC might seems very restrictive: the simulator is supposed
to act as the prover, except that the simulator does not have a witness, and is required to runs
in polynomial-time! Note, however that the simulator has an important advantage that the prover
does not have—namely that it can rewind and restart the verifier. Indeed, this seemingly small
advantage is sufficient to perform an efficient simulation, without knowing a witness.

'The definition we present here appears in the journal version [38] or [37]. It differs from the original definition
of [37] in that “simulation” is required to hold also with respect to all auxiliary “advice”-string z € {0,1}", where
both V* and S are allowed to obtain z as auxiliary input. The authors of [38] mention that this refinement was
independently suggested by the Oren [61], Tompa and Woll [71] and the authors.

99

Knowledge Tightness. Goldreich, Micali and Wigderson [34], and more recently Goldreich [31]
proposes the notion of knowledge tightness as a refinement of ZX. Knowledge tightness is aimed
at measuring the “actual security” of a ZIK proof system, and is defined as the ratio between the
expected running-time of the simulator and the (worst-case) running-time of the verifier [31].17 More
precisely,

Definition 15 Lett: N — N be a function. We say that a ZIC proof for L has knowledge-tightness
t(-) if there exists a polynomial p(-) such that for every probabilistic polynomial-time verifier V'
there exists a simulator S (as in Definition 13) such that for all sufficiently long x € L and every
z € {0,1}* we have
Exp [STBPS S, (1.2 | — p(|2])
TIMEV’(I,Z)

< t(Jxl)

where TIMEy(,) denotes an upper-bound on the running time of V' on common input x and auz-
iliary input z when receiving arbitrary messages.

Since black-box simulators only query the oracle they have access to an (expected) polyno-
mial number of times, it directly follows that black-box ZX protocols have polynomial knowledge
tightness. Furthermore, many known ZXC protocols have constant knowledge tightness.

We emphasize, however, that the knowledge tightness of ZXC proof systems only refers to the
overhead of the simulator with respect to the worst-case running time of the verifier.

B.5 Witness Indistinguishability

The notion of Witness Indistinguishability (WZ) was introduced by Feige and Shamir in [27] as a
weaker alternative to zero-knowledge. Intuitively an interactive proof of an NP relation, in which
the prover uses one of several secret witnesses is WZ if the verifier can not tell what witness the
prover has used.

Note that WZ proofs of statements with multiple witnesses provide the guarantee that the
(whole) witness used by the prover is not revealed, as this would breach WZ. Also note that
WZ provides no guarantees when considering proofs of statements with a single witness, i.e., such
proofs might reveal the whole witness; as such WZ is a significantly weaker property than ZK.
Nevertheless, WZ proofs have proved very useful in the design of zero-knowledge protocols, e.g.,
[28, 25, 66, 2].

We proceed to a formal definition (following [31]),

Definition 16 (Witness Indistinguishability) Let (P,V) be an interactive proof for the lan-
guage L € NP, and Ry be a fized witness relation for L. We say that (P,V) is WZ for Ry, if
for every probabilistic polynomial-time algorithm V' and every two sequences W' = {wl}.er and
W? = {w2}er, such that wl,w? € Ry(x), the following two ensembles are computationally indis-
tinguishable over L.

"To be precise, the authors of [34] define the tightness of zero-knowledge proof as the ratio between the expected
running-time of S and the ezpected running-time of V', where the latter expectation is taken only over the random-
coins of V, and not over the messages V receives. In other words, in the notation of [34] the expected running-time
of V denotes the worst-case expected running-time of V' in any interaction (i.e., an upper-bound on the expected
running-time of V' that holds when V is receiving all possible messages.) The definition of [31], on the other hand,
defines the tightness as the ratio between the expected running-time of S and an upper bound on the running-time of
V taken also over all possible random-tapes (as well as all possible messages). Note that this difference is insubstantial
as we without loss of generality can consider only deterministic malicious verifiers that receive their random-coins as
part of their auxiliary input.

60

o {viEwelP (e ud) o Vi AT}

2 l
o {ViEWs[Pu(2, uw?) & Vi(z, z)}}xewe{m}*
We further say that (P, V') is statistically (perfectly) WZI for Ry, if the above ensembles are statisti-
cally close (identically distributed) for every (possibly unbounded) verifier V'.

Remark: Our definitions of statistical and perfect WZ indistinguishability is slightly stronger
than the standard ones in that we require indistinguishability for all (possibly unbounded) verifiers,
whereas standard definitions only quantify over polynomial-time verifiers. We note however that all
known constructions of statistical (perfect) WZ proofs satisfy also our stronger notion.

B.6 Proofs of Knowledge

The notion of a proof of knowledge was intuitively introduced in the paper by Goldwasser, Micali
and Rackoff [37] and was formalized by Feige, Fiat and Shamir [26] and Tompa and Woll [71]. The
definition was further refined by Bellare and Goldreich [6]. Loosely speaking, an interactive proof is
a proof of knowledge if the prover convinces the verifier that it possesses, or can feasibly compute, a
witness for the statement proved. Again, as “feasible” computation is defined through the notion of
probabilistic polynomial-time, this notion is formalized by requiring the existence of a probabilistic
polynomial-time “extractor”-machine that can, given the description of any (malicious) prover that
succeeds in convincing the honest verifier, readily compute a valid witness to the statement proved.

We proceed to the actual definition of a proof of knowledge. Our definition follows most closely
that of Feige [24] (which in turn follows that of Tompa and Woll [71]).

Definition 17 (Proof of knowledge) Let (P,V) be an interactive proof system for the language
L. We say that (P,V') is a proof of knowledge for the witness relation Ry, for the language L it there
exists a probabilistic expected polynomial-time machine E (called extractor) and a negligible function
v(n) such that for every probabilistic polynomial-time machine P’, every statement x € {0,1}", every
random tape r € {0,1}* and every auziliary input z € {0,1}*,

PrlouTy[Pl(z, 2) < Va(z)] = 1] < Pr[EP®2)(z) € Rp(2)] + v(n)

C Known Non Black-box Simulators are Not Precise

In this section we review why known non black-box simulation techniques, due to Barak [2], result
in a non-precise simulation. We start by reviewing Barak’s Z/C protocol and then turn to discuss
its simulator.

Review of Barak’s protocol. The protocol of Barak requires the use of Universal Arguments [5],
which are a variant of CS-proofs introduced by Micali [54]. Such proofs systems are used in order
to provide “efficient” proofs to statements of the form y = (M, z,t), where y is considered to be a
true statement if M is a non-deterministic machine that accepts x within ¢ steps.

Let UARG be a Universal Argument. Let T : N — N be a “nice” function that satisfies
T(k) = k“() A high-level overview of Barak’s protocol is depicted in Figure 6.

61

Protocol BarakZK
Common Input: an instance x of a language L with witness relation Rj,.
Auxiliary Input for Prover: a witness w, such that (z,w) € Ry.
Stage 0:
V — P: Send h < Hy.
Stage 1:

P — V : Send ¢ = Com(0%).
V — P : Send r € {0,1}1.

Stage 2: (Proof Body)

P+ V: AWIT UARG proving the OR of the following two statements:

1. There exists w € {0, 1}poly(\x|) so that Ry (z,w) = 1.

2. ¢ is a commitment to a hash using the function h, of the program II, such
that II(¢) = r within 7'(|z|) steps.

Figure 6: Barak’s Non Black-Box ZK Argument for N'P

As shown in [2], Barak’s protocol is computationally sound, under appropriate assumptions on
the hash function h (either by assuming that h is collision resistant against circuits of size w(7T'(n)),
or by assuming that A is constructed by combing a specific tree-hashing approach with any standard
collision resistant hash function [5]).

Simulation of Barak’s protocol. Given access to the verifier’s code (or, equivalently, to the
verifier’s next message function), the protocol can be simulated without making use of rewinding:
To perform simulation, the simulator commits to the verifier’s next-message function (instead of
committing to zeros). The verifier's next message function is then a program whose output, on
input c is r; this provides the simulator with a valid “fake” witness to use in Stage 2 of the protocol.

The Simulation is Not Precise. It is easy to see that the above simulation is not precise:
Consider a verifier V' that has a very long auxiliary input tape, but most of the time only accesses
a small portion of it. The simulator will always commit to the whole description of V' (including
the whole auxiliary input tape) and will thus always take long time, while V' might run fast a
large portion of the time. (In fact, the running-time of the simulator, will be polynomial in the
worst-case running-time of the verifier, whereas we require that it is polynomial in the actual time
of the verifier.)

62

