
Introduction to Coding Theory CMU: Spring 2010

Notes 8: Expander Codes and their decoding

March 2010

Lecturer: Venkatesan Guruswami Scribe: Venkat Guruswami & Ankit Sharma

In this lecture, we shall look at Expander Codes, Tanner Codes which are a generalization of
Expander Codes and Distance amplification codes. These codes visualize the code as a graph
where the value of the ith bit of a codeword corresponds to, for example, the value associated with
the ith vertex or the ith edge of the graph. The properties of the graph determine the properties
such as distance and efficient decodability of the code. Further, the constraints such as parity
checks put on the codewords manifest as local constraints on vertices or edges such as constraints
on the set of the values the edges incident to a vertex can take.

The motivation to view linear codes as graphs and use a graph-theoretic approachto construct
them comes from the parity-check and generator matrix view of the code. For a [n, n −m]2, we
can interpret the parity check matrix as representing a n ×m bipartite graph and then describe
the properties of the code from the properties of the graph. An interesting class of codes are Low
Density Parity Check (LDPC) codes which have a small number of 1’s in each row and column of
the parity-check matrix and hence manifest, under the graph view, as sparse graphs.

Let us start with a few notations and definitions.

1. G(V,E) denotes a graph G with vertex set V and edge set E. For a bipartite graph G, we
shall denote by L the set of vertices in the left partition of G and by R the set of vertices in
the right partition of G. A bipartite graph G will usually be denoted as G(L ∪R,E).

2. A graph G is said to be d-regular if each vertex of G has degree d. A bipartite graph G is
said to be d-left regular if all vertices in the left partition of G have degree d. Similarly, we
can define a bipartite graph to be d-right regular.

3. For any vertex set S ⊆ V in a graph G(V,E), a vertex q ∈ V \S is said to be a neighbour of
S if it is adjacent to some vertex in S. We denote by N(S) the set of neighbours of S. For a
bipartite graph G(L ∪R,E), if S ⊆ L, then N(S) ⊆ R and vice-versa.

4. For any vertex set S ⊆ V in a graph G(V,E), a vertex q ∈ V \S is said to be a unique
neighbour of S if it is adjacent to exactly one vertex in S. We denote by U(S) the set of
unique neighbours of S. For a bipartite graph, if S ⊆ L, then U(S) ⊆ R and vice-versa.

1 Expander Codes

We first give the definition of a bipartite expander graphs. A bipartite expander graph essentially
has the property that every ‘small’ set of vertices in the left partition has a significantly ‘large’
neighbourhood in the right partition. Formally,

1

Definition 1 A (n,m,D, γ, α) bipartite expander is a D-left-regular bipartite graph G(L ∪ R,E)
where |L| = n and |R| = m such that ∀S ⊆ L with |S| ≤ γn, N(S) ≥ α|S|.

In the above definition, γ gives the measure of a ‘small’ set and α gives the measure of a ‘large’
neighbourhood. α is called the expansion factor. Note that α ≤ D trivially. The following theorem
shows the existence of expander graphs that approach this optimal bound.

Theorem 2 ∀ε > 0,m ≤ n, ∃γ > 0 and D ≥ 1 such that a (n,m,D, γ,D(1− ε)) expander exists.
Additionally, D = Θ(log(n/m)

ε) and γn = Θ(εmD).

Some remarks about the above expanders:

1. Note that m ≤ n, so we want expansion from the larger side to the smaller side. This is the
harder direction as there is less room to expand into.

2. For a given value of m and n, the parameters of the the above expander are optimal up to
O(1) factors and the expansion factor can be brought as close to D at the cost of increasing
D.

3. γnD is a trivial lower bound on m since sets of size up to γn expand by a factor of almost
D. The above result achieves a value of m that is 1/ε times larger than this trivial bound.

The proof of the above theorem is through the probabilistic method. Explicit constructions were
also known for α ≈ D/2, but for a long time there was no explicit construction known with
expansion better than D/2. Capalbo, Reingold, Vadhan, and Wigderson [2] in 2002 gave an
explicit construction of a constant degree expander with expansion D(1− ε) for any desired ε > 0,
and any desired imbalance ratio m/n.

We now come to the connection between expanders and codes. For this let us define Factor Graphs.
For an [n, n −m]2 linear code, construct the bipartite graph F corresponding to the (n −m) × n
parity-check matrix of C as follows

• there is a node in the left partition LF corresponding to each bit of a codeword in C (|LF)| =
n),

• there is a node in the right partition RF corresponding to each parity check (|RF | = n−m),

• and there is an edge between a node u in LF and node v in RF if and only if the bit
corresponding to u participates in the parity check corresponding to v in C.

Such a bipartite graph F is called the factor graph of C. We can see that the above construction
establishes a correspondence between linear codes and bipartite graphs. The nodes on the left are
the bits of the code and the nodes on the right are the parity checks. Each codeword assigns each
node on the left the value of the corresponding bit. An assignment of values to the nodes on the left
is a valid codeword if and only if it satisfies all parity checks i.e. if we denote by Vq the value of the
node q on the left, then V corresponds to a valid codeword if and only if ∀u ∈ RF ,

∑
j∈N(u) Vj = 0.

The above construction also indicates how we can construct a parity-check matrix corresponding
to a bipartite graph that has fewer nodes in the right partition compared to the left partition.

2

Expander codes are linear codes whose factor graphs are bipartite expander graphs. Let us denote
the code corresponding to an expander graph G by C(G).

We now establish a useful property of bipartite expander graphs with expansion close to degree D.

Lemma 3 Let G be a (n,m,D, γ,D(1 − ε)) expander graph with ε < 1/2. For any S ⊆ LG such
that |S| ≤ γn, U(S) ≥ D(1− 2ε)|S|.

Proof: The total number of edges going out of S is D|S| by virtue of G being D-left-regular. By
the expansion property, N(S) ≥ D(1 − ε)|S|. Hence, out of D|S| edges emanating out of S, at
least D(1− ε)|S| go to unique vertices which leaves at most εD|S| edges. Therefore, at most εD|S|
vertices out of the at least D(1 − ε)|S| vertices in N(S) can have more than one incident edge.
Hence, U(S) ≥ D(1− 2ε)|S|. �

The above already implies that the distance ∆(C(G)) of the code satisfies ∆(C(G)) ≥ γn. (Why?)
The next theorem indicates this bound by roughly a factor of two.

Theorem 4 Let G be a (n,m,D, γ,D(1− ε)) expander. Then ∆(C(G)) ≥ 2γ(1− ε)n.

Proof: Since C(G) is a linear code, it is sufficient to establish that the weight of any non-zero
codeword is at least 2γ(1 − ε)n. For contradiction, let p be a codeword of Hamming weight less
than 2γ(1− ε)n. Let S be the set of nodes in G which are set to 1 in p.

Clearly, the parity check of any node in U(S) cannot be satisfied since the parity-check-node shares
an edge with exactly one node in set S and this node has value 1 by virtue of being in S and edges
to nodes in L \ S cannot satisfy the parity since the value of those nodes is 0. Hence, if we show
that U(S) is non-empty, we have shown that the purported codeword does not satisfy all parity
checks which is a contradiction.

If |S| ≤ γn, then we are through since by Lemma 3, |U(S)| ≥ D(1−2ε)|S|. If |S| ≥ γn, then choose
a subset Q of S having exactly γn nodes. By Lemma 3, |U(Q)| ≥ D(1− 2ε)|Q| = D(1− 2ε)γn.

Now |S \ Q| < γ(1 − 2ε)n since |S| < 2γ(1 − ε)n. Hence, there are less than Dγ(1 − 2ε)n edges
emanating out of S \Q and since |U(Q)| ≥ D(1− 2ε)γn, there cannot be an edge incident to each
node in U(Q) from S \Q. Hence, there exists a node in U(Q) which has exactly one edge incident
to it from S and therefore U(S) 6= ∅ which completes the proof. �

The rate of expander code is at least 1 − m/n and hence if m is smaller by a constant factor
compared to n, the expander code has rate bounded away from 0. Thus codes whose factor grpahs
are unbalanced expanders with expansion factor (1 − ε)D for ε < 1/2 are asymptotically good,
and therefore explicit constructions of such expanders immediately gives an explicit construction
of asymptotically good odes. This was the first constructive method for asymptotically good codes
that did not rely on code concatenation. This is in itself a nice feature, but we will now see that
these expander codes also admit very efficient (linear time) decoding algorithms.

3

1.1 Decoding algorithm for Expander Codes

We now present a decoding algorithm for correcting all error patterns of Hamming weight less than
γ(1− 2ε)n assuming ε < 1/4 (i.e., when the expansion factor exceeds 3D/4). Let r be the received
word and let Vq be the value assigned to node q in LG by r. Each parity check in RG is either
satisfied or unsatisfied. The algorithm proceeds by flipping the value of those nodes in LG which
have more unsatisfied checks in their neighbourhood than satisfied checks. This process continues
till there no unsatisfied checks left.

Algorithm

While there exists a node y in LG with more unsatisfied than satisfied checks in N(y)

• Flip Vy and update the list of satisfied and unsatisfied checks in RG.

This completes the description of the algorithm. We now prove the correctness and analyze the
time complexity of the algorithm. First we prove that if the number of errors is at most γn, there
must exist a node on the left whose neighbourhood of D check nodes has more unsatisfied checks
than satisfied checks. This ensures that the algorithm will get started.

Lemma 5 If the number of errors is at most than γn (and at least 1), then there exists a node in
LG which is adjacent to more then D/2 unsatisfied checks. (This assumes that ε < 1/4.)

Proof: Let T 6= ∅ be the set of error locations. Since |T | ≤ γn, by Lemma 3, |U(T)| ≥ D(1 −
2ε)|T | > D

2 |T | if ε < 1/4. All checks in U(T) are clearly unsatisfied. Hence, there exists a node in
T that is adjacent to more than D/2 unsatisfied checks. Since each node in LG has D neighbours,
therefore the above lemma implies that the node would have more unsatisfied than satisfied checks.
�

Lemma 6 If we start with a received word having less than γ(1 − 2ε)n errors then we can never
reach a word with γn errors in any interim step of the algorithm.

Proof: We flip a node on the left only when the number of unsatisfied checks is greater than the
number of satisfied checks in its neighbourhood. Thus with each flip the number of unsatisfied
checks decreases by at least 1.

The received word has less than γ(1 − 2ε)n errors and therefore it has less than Dγ(1 − 2ε)n
unsatisfied checks (by D-left-regularity of the graph) to begin with. If we ever reach an intermediate
string with γn errors, then the set of error locations would have at least D(1 − 2ε)γn unique
neighbours (by Lemma 3) and hence there would be at least as many unsatisfied checks. This
contradicts the facts that we start with less than Dγ(1− 2ε)n unsatisfied checks and this number
cannot increase. �

4

1.1.1 Correctness of the algorithm

By Lemmas 5 and 6, we see that if we start with an erroneous codeword with less than γ(1− 2ε)n
errors, the algorithm will always find a node (participating in more unsatisfied checks than satusfied
checks) to flip. With each node flip, the number of unsatisfied checks goes down by at least 1 and
hence the algorithm terminates in at most m iterations. Lemma 6 proves that during the course
of the algorithm, there won’t be any stage at which the number of errors in the current word
(compared to the originally closest codeword) is at least γn. Since the distance of the code is at
least 2γ(1 − ε)n > γn (∵ ε < 1/2), the final codeword to which the algorithm converges must be
the original closest codeword.

1.1.2 Running Time of the algorithm

Let d be the maximum degree of a node in RG.

1. Preprocessing Stage: The computation of all unsatisfied nodes in RG as a preprocessing step
takes O(md) time. As part of preprocessing step, we also associate with each node in LG the
number of unsatisfied checks it is part of and make a list, call it Q, of nodes in LG which have
more unsatisfied than satisfied checks. This takes an additional O(Dn) = O(Dmd) time.

2. Time complexity of each iteration: In each iteration instead of searching for a node with more
unsatisfied than satisfied checks, we remove an element from list Q. Further, after flipping the
node, we update the list of unsatisfied checks in RG in O(D) time. We take further O(Dd)
time to update the number of unsatisfied checks associated with each element in LG and to
insert any element which now have more unsatisfied than satisfied check into Q and to remove
elements from Q which due to the flip have lesser unsatisfied than satisfied checks. Hence,
each iteration can be implemented in O(Dd) time.

3. Number of Iterations: The original number of unsatisfied checks can be at most m. As argued
above, in each iteration the number of unsatisfied checks reduces by at least 1. Thus the total
number of iterations is at most m.

Hence the algorithm can be implemented to run in O(Ddm) = O(n) time when D, d are constants.

Note: These codes being linear can be encoded in O(n2) time by multiplying the message vector
by the generator matrix.

2 Tanner Codes

Let G be a n×m bipartite graph which is d-right regular and let C0 ⊆ Fq2 be a binary linear code.

Definition 7 (Tanner code) The Tanner code X(G,C0) is defined as the set

{c ∈ Fn2 |∀u ∈ RG, c|N(u) ∈ C0}

where c|N(u) ∈ Fd2 denotes the subsequence of c formed by the bits corresponding to the neighbours
of u in LG.

5

Remark 8 We note the following:

1. Tanner codes are linear codes since C0 is a linear code.

2. Tanner Codes are a generalization of expander codes since in expander code C0 was chosen
to be the [d, d− 1, 2]2 parity check code.

We claim that the dimension of X(G,C0) is at least n − m(d − dim(C0)). This is because for
each i ∈ RG, the condition that c|N(i) ∈ C0 imposes d − dim(C0) independent linear constraints
on the bits of c. Therefore, the condition ∀i ∈ RG, c|N(i) ∈ C0 imposes at most m(d − dim(C0))
independent linear constraints and hence the claim follows.

The usefulness of Tanner codes comes from the fact that they require a much lower expansion factor
through the choice of an appropriate C0. In expander codes which are a special case of Tanner
codes, we used parity check codes for C0. Since parity check codes have distance 2, we required
that all sets of size at most γn expand by a factor of more than D/2 in order to argue that the code
had distance at least γn. However, if we use a local code C0 of distance d0, then we only require
an expansion factor exceeding D/d0 to ensure the same code distance. Hence a good choice of C0

allows us to construct explicit Tanner codes using graphs with weaker expansion properties which
are therefore easier to construct.

In order to construct codes with a high rate, we require a highly unbalanced bipartite graph so that
there are much fewer parity checks than the number of bits in a code word. One way of achieving
this is through the construction of Edge Vertex Incidence Graph which we define next.

Definition 9 The Edge Vertex Incidence Graph of a graph G = (V,E) is defined as the bipartite
graph H0 = (L ∪ R,E′) where L has a node corresponding to each edge in E, R has a node
corresponding to each node in V and an edge exists in E′ between each node e in L and corresponding
ue and ve in R where ue and ve are the nodes in R corresponding to the end-points of edge e in E.

In the graph-code correspondence which we had so far, the bits of the codeword used to sit on nodes
in the left partition and the constraints used to be imposed by nodes in the right partition. The
edges of graph G form the left partition of H0 and the nodes of graph G form the right partition
of H0. Hence, we can equivalently view the codeword bits as “sitting” on the edges of the graph
G, with each node of the graph G imposing a local constraint on the values on the d edges incident
at that node.

Let G be a d-regular graph with N vertices and Nd/2 edges. Under the modified view of code-bits
sitting on the edges of the graph, the Tanner code X(H0, C0) can alternately been defined directly
in terms of G as

T (G,C0) = {c ∈ F
Nd
2

2 |∀v ∈ V (H), c|Γ(v) ∈ C0} .

(We use the notation T (·, ·) instead of X(·, ·) to highlight this distinction.) Again, T (G,C0) is a
linear code of dimension at least Nd/2 − N(d − dim(C0)) and a sufficient condition for positive
dimension is that dim(C0) > d

2 .

We will now use for G a good “spectral” expander.

6

Definition 10 A graph G = (V,E) is said to be a (n, d, λ)-expander if G is a d-regular graph on
n vertices and λ = min{λ2, |λn|} where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of the adjacency
matrix of H.

What makes (n, d, λ) expander useful? This is because of Expander Mixing Lemma, which we state
next and crucially use in our analysis. We do not prove this lemma here, but it is not hard to prove
and a proof can be found in several places (eg. the book by Alon and Spencer).

Lemma 11 (Expander mixing lemma) Let G = (V,E) be a (n, d, λ) expander graph. Then
∀S, T ⊆ V we have ∣∣∣ |E(S, T)| − d|S||T |

n

∣∣∣ ≤ λ√|S||T | (1)

where |E(S, T)| is the number of edges between sets S and T with the edges in (S ∩ T) × (S ∩ T)
counted twice.

Remark 12 Some comments:

1. Since G is a d-regular bipartite graph, therefore the highest eigen value λ1 would be d.

2. Since G is a d-regular graph, we know that there are d|S| edges coming out of S. Now, if it
were a purely random graph, we would expect that |T |/n fraction of these edges to end up in
T . Thus the expected value of |E(S, T)| would be d|S||T |

n . The expander mixing lemma upper
bounds the deviation of |E(S, T)| from the random graph expected value in terms of how small
the second largest eigenvalue (in absolute value) is in comparison to d. Note that the lemma
bounds this deviation for all pairs of sets S, T .

For technical reasons, we will find it convenient to work with a “bipartite version” of G called its
double cover instead of G itself.

Definition 13 (Double cover) The Double Cover of a graph G = (VG, EG) is defined as the
bipartite graph H = (LH ∪RH , EH) with both left and right partitions of graph H being equal to VG
i.e. LH = RH = VG and ∀(u, v) ∈ EG, there is (u, v) and (v, u) in EH . Hence, the double cover
H of graph G has two copies of each node of G, one in the left partition and the other in the right
partition, and there are two copies of each edge (u, v) of G.

Our final code will be T (H,C0) for suitable C0 where H is the double cover of an (n, d, λ)-expander
G. Working with the bipartite graph H (instead of G) makes the description and analysis of the
decoding algorithm simpler and cleaner.

Hence, if G is (n, d, λ) expander, we now take H, the double cover of G. The code-bits still sit on
the edges of H as they were in G and the constraints on the values which the edges can take are
also essentially the same as they were in G. However, as we will see the analysis becomes a lot
more simplified.

Clearly H is a n×n d-regular bipartite graph i.e. there are n nodes in both left and right partition
and each node has d neighbours. What is the analogue of expander mixing lemma for H? It is

7

essentially the same. Consider the n× n matrix corresponding to H that has 1 in (i, j)th position
if there is an edge in H between the ith node in left partition and jth node in right partition else
it is 0. This is exactly the adjacency matrix of G. Hence d = λ1 ≥ λ2 ≥ λ3 · · · ≥ λn would be the
eigenvalues of the matrix (same as that of adjacency matrix of G) and define λ = min{λ2, |λn|}.

Lemma 14 (Expander mixing lemma: bipartite version) Let H be a n× n d-regular bipar-
tite graph with λ as defined above. Then ∀S ⊆ L, T ⊆ R,∣∣∣ |E(S, T)| − d|S||T |

n

∣∣∣ ≤ λ√|S||T |
where E(S, T) is the set of edges between sets S and T . The double counting which we had stated
explicitly in Lemma 11 is implicit here.

Theorem 15 Let C0 ⊂ Fd2 have distance ≥ δ0d. Then the relative distance of T (H,C0) is ≥
δ0(δ0 − λ

d)

Proof: Since T (H,C0) is a linear code, it will be sufficient to prove that no non-zero codeword
has weight less than δ0(δ0 − λ

d)nd.

Let c be a codeword in T (H,C0) and let F be the set of edges in H which have their corresponding
bits non-zero in c. Let S be the set of nodes in L which have at least one edge belonging to F
incident on them. Similarly, let T be the set of nodes in R which have at least one edge from F
incident on them.

Since the distance of C0 is δ0d any node in H which is incident to a non-zero edge (i.e., an edge
of F) should have at least δ0d edges from F incident to it. (This is because we know that any
codeword c ∈ T (H,C0) satisfies the condition that for each node in H, the values assigned to the
edges incident to the node forms a codeword in C0.)

This implies that each vertex in S and T must have at least δ0d non-zero edges incident to it.

Hence, |F | ≥ δ0d|S| and |F | ≥ δ0d|T | and therefore, |F | ≥ δ0d
√
|S||T |.

Now, |F | ≤ |E(S, T)| and by Expander Mixing Lemma, |E(S, T)| ≤ d|S||T |
n +λ

√
|S||T |. From above

we get,

δ0d
√
|S||T | ≤ d|S||T |

n
+ λ

√
|S||T |

which implies that
√
|S||T | ≥ (δ0 − λ

d)n. Recalling that |F | ≥ δ0d
√
|S||T |, we conclude |F | ≥

δ0(δ0 − λ
d)nd which completes the proof. �

Remark 16 Note that when H is the n× n complete bipartite graph, the code T (H,C0) is simply
the tensor product of C0 with itself and thus has relative distance exactly δ2

0. The above theorem
states that for a good expander with λ = o(d), in the limit of large degree d, the relative distance
becomes ≈ δ2

0. Thus we can obtain distance as good as the product construction, but we can get
much longer codes (compared to the product construction, which only gives a code of block length
d2 starting with a code of block length d).

8

2.1 Rate-Distance Tradeoff

Denote the rate of code C0 by R. Then rate of T (H,C0) is at least

nd− 2nd(1−R)
nd

= 2R− 1 .

Let δ = δ2
0 be approximately the relative distance of T (H,C0) in the limit of large d. By picking

C0 to satisfy R ≥ 1− h(δ0) (meeting the Gilbert-Varshamov bound), we obtain the following rate
vs relative distance for T (H,C0):

R(T (H,C0) ≥ 2(1− h(δ0))− 1 ≈ 1− 2h(
√
δ) .

The rate is positive δ < 0.01. This implies that we get a positive rate for T (H,C0) only when the
relative distance of T (H,C0) is rather small.

2.2 Algorithm for Decoding

Sipser and Spielman in 1995 [3] introduced the above construction Tanner codes and gave an
algorithm to correct a fraction δ2

0/48 of errors. Zémor in 2001 [4] gave an improved algorithm to
correct a fraction δ2

0/4 of errors for T (H,C0) by exploiting the bipartiteness of H. We describe this
algorithm and its analysis now.

Specifically, we will give an algorithm to decode a received word to the correct codeword assuming
that the number of errors is at most (1− ε) δ02 (δ02 −

λ
d)nd which is roughly a quarter of the distance

of the code.

Let y ∈ F|E|2 be the received word which we wish to decode. Denote by y|Γ(u) ∈ Fd2 the subsequence
of y formed by the bits corresponding to the edges incident to u.

Define a Left-decoding iteration to be the following step performed in parallel for all left nodes:

∀v ∈ L replace y|Γv by c ∈ C0 such that ∆(c, y|Γ(v)) is minimized.

We can efficiently find the closest c to y|Γv by brute force since code C0 is a small sized code. Note
that since this is a bipartite graph, therefore, no two v’s in L share an edge and hence there are no
conflicts when changing the value of an edge. Similarly, we can define Right-decoding iteration.

The algorithm for decoding is as follows:

alternately perform left-decoding and right-decoding iterations for A log n iterations

for a large enough constant A <∞.

2.2.1 Correctness of the decoding algorithm

Lemma 17 Assume that λ/d < δ0/3. When the number of errors is at most (1− ε) δ02 (δ02 −
λ
d)nd,

the above algorithm converges to the correct codeword when run for A(ε) log n iterations.

9

Proof: We use the terminology that an error is incident to a vertex if the value associated with
at least one edge incident to the node is incorrect in comparison to the correct codeword. Let

S1 = {v ∈ LH |∃ an error incident to v after the first left side decoding step} .

After the first left-decoding step a node v in LH has an error incident onto itself only if it had more
δ0d/2 error edges incident onto itself before the decoding step. This is because any v which had
less than δ0d/2 incident error edges would, after the decoding step, have corrected all the incident
errors. Let E0 denote the number of errors in y before the decoding step.

Since each node in S1 had more than δ0d/2 errors incident on itself, therefore E0 ≥ |S1| δ0d2 . However,
from assumption E0 ≤ (1− ε) δ02 (δ02 −

λ
d)nd and therefore, |S1| ≤ n(δ02 −

λ
d)(1− ε).

Now we run the right-side decoding over RH .

Let T1 = {v ∈ RH |∃ an error incident to v after the first right side decoding step}.
We want to show that |T1| ≤ α|S1| for some α < 1.

Using the same reasoning as above, after the right-decoding step, a node in RH would have error
incident onto itself only if it had more than δ0d/2 errors incident onto itself before the right-decoding
step. Now, |E(S1, T1)| is clearly an upper bound on the number of error edges incident onto the
nodes in T1 before the right-decoding step. Since each node in T1 had at least δ0d/2 errors incident
onto itself before the right decoding step, therefore, δ0d

2 |T1| ≤ |E(S1, T1)|.

However, by Expander Mixing Lemma, we can upper bound |E(S1, T1| by d|S1||T1|
n + λ

√
|S1||T1|.

On using the fact that |S1| ≤ n(δ02 −
λ
d)(1 − ε) and AM-GM inequality, |S1|+|T1|

2 ≥
√
|S1||T1|, we

can change the upper bound to

|E(S1, T1)| ≤ |T1|(
dδ0

2
− λ)(1− ε) + λ

|S1|+ |T1|
2

.

Together with δ0d
2 |T1| ≤ |E(S1, T1)|, we get

δ0d

2
|T1| ≤ |T1|(

dδ0

2
− λ)(1− ε) + λ

|S1|+ |T1|
2

which upon rearranging yields

|T1| ≤
λ

εδ0d+ (1− 2ε)λ
|S1| ≤

|S1|
1 + ε

provided δ0d > 3λ.

Hence, in each iteration set of nodes on which the error-edges are incident decreases geometrically
by a factor of (1 + ε). Therefore in Oε(log n) rounds, no error edges remain. �

2.2.2 Running Time

The above decoding algorithm can clearly be implemented in O(n log n) time since each iteration
takes O(n) time and the number of iteration by the Lemma 17 above is O(log(n)). We now show a

10

linear time implementation of the decoding algorithm.The key observation is that in each iteration,
the only vertices (in the relevant side for that iteration) that need to be locally decoded are those
that are adjacent to some vertex of the opposite side which had some incident edges flipped in the
local decoding of the previous iteration. The latter set shrinks geometrically in size by Lemma
17. Let us be somewhat more specific. After the first (left) iteration, for each v ∈ L, the local
subvector y|Γ(v) of the current vector y ∈ {0, 1}E belongs to the code C0. Let T (y) ⊂ R be the set
of right hand side vertices u for which y|Γ(u) does not belong to C0. Let z ∈ {0, 1}E be the vector
after the running the right side decoding on y. Note that for each w ∈ L that is not a neighbor of
any vertex in T (y), its neighborhood is untouched by the decoding and hence the incident edges
on such nodes still form a valid codeword in C0. This means that in the next iteration (left side
decoding), all these vertices w need not be examined at all.

The algorithmic trick therefore is to keep track of the vertices whose local neighborhoods do not
belong to C0 in each round of decoding. In each iteration, we only perform local decoding at a subset
of nodes Di that was computed in the previous iteration. (This subset of left nodes gets initialized
after the first two rounds of decoding as discussed above.) After performing local decoding at the
nodes in Di, we prepare the stage for the next round by computing Di+1 for the opposite side as
the set of neighbors of all nodes in Di some of whose incident edges were flipped during the current
iteration. Using an argument similar to Lemma 17 one can show that the Di’s are geometrically
decreasing in size. This implies that the total number of nodes whose local neighborhoods have to
be examined over all iterations is Oε(n). As each local decoding step can be performed in Od(1)
time, overall we get a linear time implementation of the decoding algorithm.

3 Distance Amplification of Codes

The expander codes constructed so far have rather small relative distance. We now see a way to
boost the distance of a code by combining it with certain expander-like graphs. The construction
is originally due to Alon, Bruck, Naor, Naor, and Roth [1].

Let G = (L,R,E) be a bipartite graph with L = {1, 2, . . . , n} and R = {1, 2, . . . ,m} which is
D-left-regular and d-right-regular. Let C be a binary linear code of block length n = |L|, so that
bits of codewords of C can be “placed” on the left vertices of G.

We define the distance amplified code G(C) ⊂ Σm where Σ = {0, 1}d as follows. Note that the
alphabet size of the code G(C) is 2d.

Definition 18 For c ∈ {0, 1}n, define G(c) ∈ ({0, 1}d)m by

G(c)j = (cΓ1(j), cΓ2(j), · · · , cΓd(j))

for j = 1, 2, . . . ,m where Γi(j) ∈ L denotes the i’th neighbor of j ∈ R. Now define the code G(C)
as

G(C) = {G(c) | c ∈ C} .

Since each bit of a codeword c ∈ C is repeated D times in the associated codeword G(c) ∈ G(C),
we get the following.

11

Lemma 19 Rate of Code G(C) is 1/D times the rate of C.

Lemma 19 follows from the definition of distance amplification code G(C).

Definition 20 A bipartite graph G = (L,R,E) is said to be (γ, β) disperser if ∀S ⊆ LG with
|S| ≥ γn, |N(S)| ≥ βm.

The lemma below follows from the definition of a (γ, β) disperser.

Lemma 21 If G is a (γ, β) disperser and ∆(C) ≥ γn, then ∆(G(C)) ≥ βm.

References

[1] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptotically good
low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Infor-
mation Theory, 38:509–516, 1992. 11

[2] M. R. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and
constant-degree lossless expanders. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 659–668, 2002. 2

[3] M. Sipser and D. Spielman. Expander codes. IEEE Transactions on Information Theory,
42(6):1710–1722, 1996. 9

[4] G. Zémor. On expander codes. IEEE Transactions on Information Theory, 47(2):835–837,
2001. 9

12

	Expander Codes
	Decoding algorithm for Expander Codes
	Correctness of the algorithm
	Running Time of the algorithm

	Tanner Codes
	Rate-Distance Tradeoff
	Algorithm for Decoding
	Correctness of the decoding algorithm
	Running Time

	Distance Amplification of Codes

