
Introduction to Coding Theory CMU: Spring 2010

Notes 6: Reed-Solomon, BCH, Reed-Muller, and concatenated codes

February 2010

Lecturer: Venkatesan Guruswami Scribe: Eric Blais & Venkat Guruswami

In this lecture, we begin the algorithmic component of the course by introducing some explicit
families of good algebraic codes. We begin by looking at Reed-Solomon codes.

1 Reed-Solomon codes

Reed-Solomon codes are a family of codes defined over large fields as follows.

Definition 1 (Reed-Solomon codes) For integers 1 ≤ k < n, a field F of size |F| ≥ n, and a
set S = {α1, . . . , αn} ⊆ F, we define the Reed-Solomon code

RSF,S [n, k] = { (p(α1), p(α2), . . . , p(αn)) ∈ Fn |
p ∈ F[X] is a polynomial of degree ≤ k − 1 }.

A natural interpretation of the RSF,S [n, k] code is via its encoding map. To encode a message
m = (m0,m1, . . . ,mk−1) ∈ Fk, we interpret the message as the polynomial

p(X) = m0 +m1X + · · ·+mk−1X
k−1 ∈ F[X].

We then evaluate the polynomial p at the points α1, α2, . . . , αn to get the codeword corresponding
to m.

To evaluate the polynomial p on the points α1, α2, . . . , αn, we multiply the message vector m on
the left by the n× k Vandermonde matrix

G =


1 α1 α 2

1 · · · α k−1
1

1 α2 α 2
2 · · · α k−1

2
...

...
...

. . .
...

1 αn α 2
n · · · α k−1

n

 .

The matrix G is a generator matrix for RSF,S [n, k], so we immediately obtain that Reed-Solomon
codes are linear codes over F.

1.1 Properties of the code

Let’s now examine the parameters of the above Reed-Solomon code. The block length of the code
is clearly n. As we will see, the code RSF,S [n, k] has minimum distance n− k+ 1. This also means
that the encoding map is injective and therefore the code has dimension equal to k.

1

The key to establishing the minimum distance of Reed-Solomon codes is the ‘degree mantra’ that
we saw in the previous lecture: A non-zero polynomial of degree d with coefficients from a field F
has at most d roots in F.

Theorem 2 The Reed-Solomon code RSF,S [n, k] has distance n− k + 1.

Proof: Since RSF,S [n, k] is a linear code, to prove the theorem it suffices to show that any non-zero
codeword has Hamming weight at least n− k + 1.

Let (m0,m1, . . . ,mk−1) 6= 0. The polynomial p(X) = m0 + m1X + · · · + mk−1X
k−1 is a non-zero

polynomial of degree at most k − 1. So by our degree mantra, p has at most k − 1 roots, which
implies that (p(α1), . . . , p(αn)) has at most k − 1 zeros.

By the Singleton bound, the distance cannot exceed n− k+ 1, and therefore must equal n− k+ 1.
The upper bound on distance can also be seen by noting that the codeword corresponding to the
polynomial

∏k−1
i=1 (X − αi) has Hamming weight exactly n− k + 1. �

Note that the minimum distance of Reed-Solomon codes meets the Singleton bound. This is quite
interesting: Reed-Solomon codes are a simple, natural family of codes based only on univariate
polynomials, and yet their rate is optimal.

In our definition above, we have presented Reed-Solomon codes in the most general setting, where
S can be any arbitrary subset of F of size n. This presentation highlights the flexibility of Reed-
Solomon codes. In practice, however, there are two common choices of S used to instantiate
Reed-Solomon codes:

1. Take S = F, or

2. Take S = F∗ to be the set of non-zero elements in F.

These two choices attain the best possible trade-off between the field size and the block length.

1.2 Alternative characterization

We presented Reed-Solomon codes from an encoding point of view. It is also possible to look at
these codes from the “parity-check” point of view. This approach is used in many textbooks, and
leads to the following characterization of Reed-Solomon codes.

Theorem 3 (Parity-check characterization) For integers 1 ≤ k < n, a field F of size |F| =
q = n+1, a primitive element α ∈ F∗, and the set S = {1, α, α2, . . . , αn−1}, the Reed-Solomon code
over F with evaluation set S is given by

RSF,S [n, k] = { (c0, c1, . . . , cn−1) ∈ Fn | c(X) = c0 + c1X + · · ·+ cn−1X
n−1

satisfies c(α) = c(α2) = · · · = c(αn−k) = 0 }. (1)

In other words, Theorem 3 states that the codewords of the Reed-Solomon code with evaluation
points 1, α, . . . , αn−1 correspond to the polynomials of degree n − 1 that vanish at the points
α, α2, . . . , αn−k.

2

The characterization of Reed-Solomon codes in Theorem 3 has the same dimension as the code
obtained with our original definition; to complete the proof of Theorem 3, we only need to check
that every codeword obtained in Definition 1 satisfies the parity-check condition (1).

Exercise 1 Complete the proof of Theorem 3. (Hint: The proof uses the fact that for every x 6= 1
in F∗,

∑n−1
`=0 x

` = 1−xn

1−x = 0.)

1.3 Applications

Reed-Solomon codes were originally introduced by Reed and Solomon in 1960 [6]. There have been
many other codes introduced since – we will see some of those more recent codes soon – and yet
Reed-Solomon codes continue to be used in many applications. Most notably, they are extensively
used in storage devices like CDs, DVDs, and hard-drives.

Why are Reed-Solomon codes still so popular? One important reason is because they are optimal
codes. But they do have one downside: Reed-Solomon codes require a large alphabet size. In a
way, that is unavoidable; as we saw in Notes 4, any code that achieves the Singleton bound must
be defined over a large alphabet.

The large alphabet brings to the fore an important issue: if we operate on bits, how do we convert
the codewords over the large field in the binary alphabet? There is one obvious method. Say, for
example, that we have a code defined over F256. Then we can write an element in this field as an
8-bit vector.

More precisely: if we have a message that corresponds to the polynomial p(X) in F[X], its encoding
in the Reed-Solomon code is the set of values p(α1), p(α2), . . . , p(αm). We can simply express these
values in a binary alphabet with log |F| bits each. So provided that the Reed-Solomon code is
defined over a field that is an extension field of F2, then this simple transformation yields a code
over F2. In fact, there is way to represent field elements as bit vectors so that the resulting code is
a binary linear code.

This method is in fact what is done in practice. But then it leads to the natural question: What
are the error correction capabilities of the resulting binary code?

Let’s look at an example: say we have a Reed-Solomon code with n = 256 and k = 230. The distance
of this code is d = 27, so the code can correct 13 errors. The transformation to a binary code yields
a binary code where n′ = 256 · 8 and k′ = 230 · 8, since all we have done in the transformation
is scale everything. And at worst the distance of the resulting binary code is d′ ≥ d = 27, so the
binary code can also correct at least 13 errors.

Let us now generalize the example. If we have a [N,K,D]F code where |F| = N and N is a power
of 2, then the transformation described above yields a [N logN,K logN,D′]2 binary linear code,
where D′ ≥ D. Writing n = N logN and considering the case where K = N−D+1, we observe that
the transformation of a Reed-Solomon code to a binary code results in a [n, n−(D−1) logN,≥ D]2
code.

The resulting binary code has a decent rate, but it is not optimal: BCH codes are even better, as
they are [n, n− dD−1

2 e log(n+ 1),≥ D]2 codes. BCH codes are very interesting in their own right,
and we will examine them in the next section. But first we return to the question that we posed at

3

the beginning of this section: why are Reed-Solomon codes still so popular? If BCH codes have the
same distance guarantees as Reed-Solomon codes and a better rate, one would expect these codes
to have completely replaced Reed-Solomon codes.

The main reason that Reed-Solomon are still frequently used is that in many applications – and in
particular in storage device applications – errors often occur in bursts. Reed-Solomon codes have
the nice property that bursts of consecutive errors affect bits that correspond to a much smaller
number of elements in the field on which the Reed-Solomon code is defined. For example, if a binary
code constructed from the RSF256 [256, 230] code is hit with 30 consecutive errors, these errors affect
at most 5 elements in the field F256 and this error is easily corrected.

2 BCH codes

BCH codes were discovered by independently by Bose and Ray-Chaudhuri [1] and by Hocquenghem [3]
in the late 1950s. As we saw in the previous section, BCH codes have better rate than binary codes
constructed from Reed-Solomon codes. In fact, as we will see later in the section, the rate of BCH
codes is optimal, up to lower order terms.

BCH codes can be defined over any field, but for today’s lecture we will focus on binary BCH codes:

Definition 4 (Binary BCH codes) For a length n = 2m − 1, a distance D, and a primitive
element α ∈ F∗2m, we define the binary BCH code

BCH[n,D] = { (c0, . . . , cn−1) ∈ Fn
2 | c(X) = c0 + c1X + · · ·+ cn−1X

n−1

satisfies c(α) = c(α2) = · · · = c(αD−1) = 0 }.

This definition should look familiar: it is almost exactly the same as the alternative characterization
of Reed-Solomon codes in Theorem 3. There is one important difference: in Theorem 3, the
coefficients c0, . . . , cn−1 could take any value in the extension field, whereas here we restrict the
coefficients to take values only from the base field (i.e., the coefficients each take values from F2

instead of F2m).

The BCH codes form linear spaces. The definition gives the parity-check view of the linear space,
as it defines the constraints over the elements. The constraint c(α) = 0 is a constraint over the
extension field F2m , but it can also be viewed as a set of m linear constraints over F2.

The last statement deserves some justification. That each constraint over F2m corresponds to m
constraints over F2 is clear from the vector space view of extension fields. That the resulting
constraints are linear is not as obvious but follows from the argument below.

Consider the (multiplication) transformation Multα : x 7→ αx defined on F2m . This map is F2-
linear, since α(̇x+ y) = αx+ αy. Using the additive vector space structure of F2m , we can pick a
basis {β1 = 1, β2, . . . , βm} ⊂ F2m of F2m over F, and represent each element x ∈ F2m as the (column)
vector (x1, x2, . . . , xm)T ∈ Fm2 where x = x1β1 + x2β2 + · · · + xmβm. The F2-linear multiplication
map Multα then corresponds to a linear transformation of this vector representation, mapping
x = (x1, . . . , xm)T to Mαx for a matrix Mα ∈ Fm×m2 . And the coefficients ci ∈ F2 correspond
to vectors (ci, 0, . . . , 0)T ∈ Fm

2 so the constraint c(α) = c0 + c1α + c2α
2 + · · · + cn−1α

n−1 = 0 is

4

equivalent to the constraint
c0
0
...
0

+Mα


c1
0
...
0

+ · · ·+Mn−1
α


cn−1

0
...
0

 =


0
0
...
0

 ,

which yields m linear constraints over F2.

2.1 Parameters of BCH codes

The block length of the BCH[n,D] code is n, and its distance is at least D. The latter statement
is seen most easily by noting that the BCH code is a subcode of Reed-Solomon codes (i.e., the
codewords of the BCH code form a subset of the codewords of the corresponding Reed-Solomon
code), so the distance of the BCH code is bounded below by the distance of the Reed-Solomon
code.

The dimension of the BCH[n,D] code is a bit more interesting. The dimension of the code is at
least n− (D− 1) log(n+ 1), since in our definition we have D− 1 constraints on the extension field
that each generate m = log(n+ 1) constraints in the base field. But this bound on the dimension is
not useful: it is (almost) identical to the dimension of Reed-Solomon codes converted to the binary
alphabet (for a similar distance and block length), so if this bound were tight we would have no
reason for studying BCH codes. This bound, however, can be tightened, as the following more
careful analysis shows.

Lemma 5 For a length n = 2m − 1 and a distance D, the dimension of the BCH[n,D] code is at
least n− dD−1

2 e log(n+ 1).

Proof: In order to establish the tighter bound on the dimension of BCH codes, we want to show
that some of the constraints in Definition 4 are redundant. We do so by showing that for any
polynomial c(X) ∈ F2[X] and any element γ ∈ F2, if we have c(γ) = 0, then we must also have
c(γ2) = 0. We establish this fact below.

Let c(X) ∈ F2[X] and γ ∈ F2 be such that c(γ) = 0. Then we also have c(γ)2 = 0, so

(c0 + c1γ + c2γ
2 + · · ·+ cn−1γ

n−1)2 = 0.

For any two elements α, β ∈ F2m , (α+ β)2 = α2 + β2, so c(γ) = 0 also implies

c 2
0 + (c1γ)2 + (c2γ2)2 + · · ·+ (cn−1γ

n−1)2 = 0
⇔ c 2

0 + c 2
1 γ

2 + c 2
2 (γ2)2 + · · ·+ c 2

n−1(γ2)n−1 = 0.

Since the coefficients c0, c1, . . . , cn−1 are in F2, c 2
i = ci for all i = 0, 1, . . . , n−1. Therefore, c(γ) = 0

implies that
c0 + c1γ

2 + c2(γ2)2 + · · ·+ cn−1(γ2)n−1 = c(γ2) = 0,

which is what we wanted to show.

5

To complete the proof, we now observe that the fact we just proved implies that the constraints
c(α2j) = 0 for j = 1, 2, . . . , bD−1

2 c are all redundant (and implies by c(αj) = 0); we can remove
these constraints from the definition without changing the set of codewords in a BCH code. Doing
this operation leaves dD−1

2 em = dD−1
2 e log(n+ 1) constraints. �

Remark 6 The bound in Lemma 5 is asymptotically tight; the 2 can not be improved to 2− ε for
any ε > 0.

The asymptotic tightness of the bound in Lemma 5 follows from the Hamming bound.

2.2 Alternative characterization

Another interpretation of the BCH[n,D] code is that it is equivalent to taking the definition of
Reed-Solomon codes, and modifying it to keep only the polynomials where all the evaluations lie
in the base field. In fact, this interpretation leads to the following corollary to Theorem 3. The
proof follows immediately from Theorem 3 and Definition 4 of BCH codes.

Corollary 7 BCH codes are subfield subcodes of Reed-Solomon codes. Specifically,

BCH[n,D] = RSF,F∗ [n, n−D + 1] ∩ Fn
2 .

An important implication of Corollary 7 is that any decoder for Reed-Solomon codes also yields a
decoder for BCH codes. Therefore, in later lectures, we will only concentrate on devising efficient
algorithms for decoding Reed-Solomon codes; those same algorithms will immediately also give us
efficient decoding of BCH codes.

2.3 Analysis and applications

Just like Hamming codes, BCH codes have a very good rate but are only useful when we require a
code with small distance (in this case, BCH codes are only useful when D ≤ n

logn). In fact, there
is a much closer connection between Hamming codes and BCH codes:

Exercise 2 For n = 2m − 1, show that the BCH[n, 3] code is the same (after perhaps some coor-
dinate permutation) as the Hamming code [2m − 1, 2m − 1−m, 3]2.

As we mentioned above, we are not particularly interested in BCH codes from an algorithmic point
of view, since efficient decoding of Reed-Solomon codes also implies efficient decoding of BCH codes.
But there are some applications where the improved bound in the dimension of BCH code is crucial.

In particular, one interesting application of BCH codes is in the generation of k-wise independent
distributions. A distribution over n-bit strings is k-wise independent if the strings generated by this
distribution look completely random if you look only at k positions of the strings. The simplest way
to generate a k-wise independent distribution is to generate strings by the uniform distribution.
But this method requires a sample space with 2n points. Using BCH codes, it is possible to generate
k-wise independent distributions with a sample space of only ≈ nk/2 points.

6

3 Reed-Muller codes

The BCH codes we introduced were a generalization of Hamming codes. We now generalize the
dual of Hamming codes – Hadamard codes. The result is another old family of algebraic codes
called Reed-Muller codes. We saw in Notes 1 that Hadamard codes were related to first-order
Reed-Muller codes; we now obtain the full class of Reed-Muller codes by considering polynomials
of larger degree.

Reed-Muller codes were first introduced by Muller in 1954 [4]. Shortly afterwards, Reed provided
the first efficient decoding algorithm for these codes [5]. Originally, only binary Reed-Muller codes
were considered, but we will describe the codes in the more general case. The non-binary setting
is particularly important: in many applications of codes in computational complexity, Reed-Muller
codes over non-binary fields have been used to obtain results that we are still unable to achieve with
any other family of codes. We saw one such example, of hardness amplification using Reed-Muller
codes, in the Introduction to Computational Complexity class last year.

Definition 8 (Reed-Muller codes) Given a field size q, a number m of variables, and a total
degree bound r, the RMq[m, r] code is the linear code over Fq defined by the encoding map

f(X1, . . . , Xm)→ 〈f(α)〉 |α∈F m
q

applies to the domain of all polynomials in Fq[X1, X2, . . . , Xm] of total degree deg(f) ≤ r.

Reed-Muller codes form a strict generalization of Reed-Solomon codes: the latter were defined
based on univariate polynomials, while we now consider polynomials over many variables.

There is one term in the definition of Reed-Muller codes that we have not yet defined formally: the
total degree of polynomials. We do so now: the total degree of the monomial X k1

1 X k2
2 · · ·X km

m is
k1 + k2 + · · · + km, and the total degree of a polynomial is the maximum total degree over all its
monomials that have a nonzero coefficient.

3.1 Properties of the code

The block length of the RMq[m, r] code is qm, and the dimension of the code is the number of
polynomials in Fq[X1, X2, . . . , Xm] of degree at most r.

When q = 2, the size of the RM2[m, r] can be computed explicitly: there are
(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
r

)
(≈ mr) such polynomials.

In general, for any q ≥ 2 the number of polynomials on m variables of total degree at most r is∣∣∣∣∣∣
(i1, . . . , im) | 0 ≤ ij ≤ q − 1,

m∑
j=1

ij ≤ r


∣∣∣∣∣∣ .

When q > 2 this count does not have a simple expression.

As with Reed-Solomon codes, the interesting parameter of Reed-Muller codes is their distance.
To compute the distance parameter, we look for the minimum number of zeros of any non-zero

7

polynomial. Since αq = α for α ∈ Fq, when considering m-variate polynomials over Fq which will
be evaluated at points in Fmq , we can restrict the degree in each variable Xi to be at most q−1. The
distance property of Reed-Solomon codes was a consequence of the following fundamental result: a
non-zero univariate polynomial of degree at most d over a field has at most d roots. The Schwartz-
Zippel Lemma extends the degree mantra to give a bound on the number of roots of multi-variate
polynomials.

Theorem 9 (Number of zeroes of multivariate polynomials) Let f ∈ Fq[X1, . . . , Xm] 6= 0
be a polynomial of total degree r, with the maximum individual degree in the Xi’s bounded by q− 1.
Then

Pr
α∈F m

q

[f(α) 6= 0] ≥ 1
qa

(
1− b

q

)
where r = a(q − 1) + b, 0 ≤ b < q − 1.

The proof of the Schwartz-Zippel Lemma follows from two slightly simpler lemmas. The first lemma
provides a good bound on the number of roots of a multi-variate polynomial when its total degree
is smaller than the degree of the underlying field.

Lemma 10 (Schwartz [7]) Let f ∈ Fq[X1, . . . , Xm] be a non-zero polynomial of total degree at
most ` < q. Then

Pr
(a1,...,am)∈F m

q

[f(a1, . . . , am) = 0] ≤ `
q .

Proof: The proof of Lemma 10 is by induction on the number of variables in the polynomial.
In the base case, when f is a univariate polynomial, the lemma follows directly from the degree
mantra.

For the inductive step, consider the decomposition

f(X1, . . . , Xm) = X dm
m gm(X1, . . . , Xm−1) + · · ·
+Xm g1(X1, . . . , Xm−1) + g0(X1, . . . , Xm−1)

where dm is the degree of f in Xm. Then gm is a non-zero polynomial of total degree at most
`− dm. By the induction hypothesis,

Pr
(α1,...,αm−1)∈F m−1

q

[gm(α1, . . . , αm−1) = 0] ≤ `− dm
q

. (2)

Also, when gm(α1, . . . , αm−1) 6= 0, then f(α1, . . . , αm−1, Xm) is a non-zero univariate polynomial
of degree at most dm, so we have

Pr
(α1,...,αm)∈F m

q

[f(α1, . . . , αm) = 0 | gm(α1, . . . , αm−1) 6= 0] ≤ dm
q
. (3)

Therefore,

Pr
(a1,...,am)∈F m

q

[f(a1, . . . , am) = 0] ≤ Pr
(α1,...,αm−1)∈F m−1

q

[gm(α1, . . . , αm−1) = 0]

+ Pr
(α1,...,αm)∈F m

q

[f(α1, . . . , αm) = 0 | gm(α1, . . . , αm−1) 6= 0]

≤ `− dm
q

+
dm
q

=
`

q
.

8

�

Remark 11 A version of Lemma 10 can also be stated for infinite fields (or integral domains).
Specifically, the same proof shows that for any field F and any subset S ⊆ F, the probability that
a non-zero polynomial of total degree ` is zero is at most `

|S| when the values of the variables are
chosen independently and uniformly at random from S.

In many computer science applications, the field size q is very large, and the bound of Lemma 10
is sufficient. As a result, that lemma is often presented as the Schwartz-Zippel Lemma. For our
analysis of Reed-Muller codes, however, we also need to bound the probability that a multi-variate
polynomial is zero when the degree of the underlying field is small. The following lemma gives us
a good bound in this setting.

Lemma 12 (Zippel [8]) Let f ∈ Fq[X1, . . . , Xm] be a non-zero polynomial with maximum degree
degXi

(f) ≤ di for i = 1, . . . ,m. Then

Pr
(a1,...,am)∈F m

q

[f(a1, . . . , am) 6= 0] ≥
∏m
i=1(q − di)
qm

.

Proof: We again proceed with a proof by induction on the number of variables. When f is
univariate, the lemma follows since a degree d polynomial has at most d zeroes.

For the inductive step, consider again the decomposition

f(X1, . . . , Xm) = X dm
m gm(X1, . . . , Xm−1) + · · ·
+Xm g1(X1, . . . , Xm−1) + g0(X1, . . . , Xm−1).

The decomposition say that we can think of the (multi-variate) polynomial f as a univariate
polynomial in Fq[X1, . . . , Xm−1][Xm]. That is, f can be viewed as a polynomial on the variable Xm

with coefficients coming from K = Fq(X1, . . . , Xm−1), the field of rational functions in variables
X1, X2, . . . , Xm−1. By the degree mantra for univariate polynomials, we get that there are at most
dm values β ∈ K for which f(X1, X2, . . . , Xm−1, β) = 0 (in the field K). Thus there are certainly at
least q − dm values α ∈ Fq that can be assigned to Xm such that f(X1, . . . , Xm−1, α) is a non-zero
polynomial (on m− 1 variables). Applying the induction hypothesis to this polynomial completes
the proof of the lemma. �

To complete the proof of Theorem 9, we can apply Lemma 12 repeatedly to a polynomial, removing
one variable at a time, until the total degree ` of the polynomial on the remaining variables satisfies
` < q, and then we can apply Lemma 10. We leave the details of the proof to the reader.

It is reasonable to ask if the bound of Theorem 9 could be improved. In general, it can’t. Consider
the polynomial

f(X1, . . . , Xa+1) =
a∏
i=1

∏
α∈F∗q

(Xi − α)
∏

β∈{β1,...,βb}⊂F∗q

(Xa+1 − β).

The polynomial f(X1, . . . , Xa+1) has total degree r = a(q − 1) + b and maximum degree q − 1.
The value of f(X1, . . . , Xa+1) is non-zero only when X1 = · · · = Xa = 0 and Xa+1 6∈ {β1, . . . , βb}.
The first condition is satisfied with probability 1

qa and the second with probability (1− b
q). So the

bound of Theorem 9 is tight.

9

4 Reed-Muller codes

We can now use the Schwartz-Zippel Lemma to establish the distance parameter of binary Reed-
Muller codes.

Recall that the RM(m, r) binary Reed-Muller code is defined by

RM(m, r) = {〈f(α)〉α∈F m
2
| f has total degree ≤ r}.

The block length of this code is n = 2m, and the dimension of this code is

k =
(
m

0

)
+
(
m

1

)
+ · · ·+

(
m

r

)
,

which is can be roughly approximated by k ≈ mr.

Applying Theorem 9 (or Lemma 12) to q = 2, we can conclude that the distance of RM(m, r) is at
least 2m−r. We will reprove with a more specialized argument and also show that the distance is
exactly 2m−r.

4.1 Decoding Reed-Muller codes

The Reed-Muller codes were first introduced by Muller in 1954 [4]. Muller showed that the family
of codes he introduced had good distance parameters, but he did not study the problem of decoding
these codes efficiently.

The näıve method of decoding the RM(m, r) code is to enumerate all the codewords, compute their
distance to the received word and to output the one with the minimum distance. This algorithm
runs in time 2k ≈ 2m

r
= 2(logn)r

. The running time of the näıve decoding algorithm is therefore
quasi-polynomial (but not polynomial!) in the block length n.

Reed introduced the first efficient algorithm for decoding Reed-Muller codes [5] shortly after the
codes were introduced by Muller. Reed’s algorithm also corrects up to half the minimum distance
(i.e., up to 2m−r−1 − 1 errors) and further runs in time polynomial in the block length n.

We will not cover Reed’s decoding algorithm for Reed-Muller codes in this class. At a very high
level, the idea of the algorithm is to apply a majority logic decoding scheme. The algorithm was
covered in previous iterations of this class; interested readers are encouraged to consult those notes
for more details on the algorithm.

4.2 Distance of Reed-Muller codes

Let us now give a self-contained argument proving that the distance of the RM(m, r) code is 2m−r.

We begin by showing that the distance of binary Reed-Muller codes is at most 2m−r. Since Reed-
Muller codes are linear codes, we can do so by exhibiting a non-zero codeword of RM(m, r) with
weight 2m−r. Consider the polynomial

f(X1, . . . , Xm) = X1X2 · · ·Xr.

10

The polynomial f ∈ F2[X1, . . . , Xm] is a non-zero polynomial of degree r, and clearly f(α1, . . . , αm) 6=
0 only when α1 = α2 = · · · = αr = 1. There are 2m−r choices of α ∈ Fm

2 that satisfy this condition,
so wt(〈f(α)〉α∈F m

2
) = 2m−r.

Let us now show that the distance of binary Reed-Muller codes is at least 2m−r by showing that the
weight of any non-zero codewords in RM(m, r) is at least 2m−r. Consider any non-zero polynomial
f(X1, . . . , Xm) of total degree at most r. We can write f as

f(X1, . . . , Xm) = X1X2 · · ·Xs + g(X1, . . . , Xm)

where X1X2 · · ·Xs is a maximum degree term in f and s ≤ r. Consider any assignment of values
to the variables Xs+1, . . . , Xm. After this assignment, the resulting polynomial on X1, . . . , Xs is a
non-zero polynomial, since the term X1X2 · · ·Xs cannot be cancelled. Therefore, for each of the
2m−s possible assignment of values to the variables Xs+1, . . . , Xm, the resulting polynomial is a
non-zero polynomial.

When you have a non-zero polynomial, then there is always at least one assignment of values
to its variables such that the polynomial does not evaluate to 0. Therefore, for each assignment
αs+1, . . . , αm to the variables Xs+1, . . . , Xm, there exists at least one assignment of values α1, . . . , αs
to X1, . . . , Xs such that f(α1, . . . , αm) 6= 0. This implies that wt(〈f(α)〉α∈F m

2
) = 2m−s ≥ 2m−r.

In summary, when the maximum degree r is constant, binary Reed-Muller codes have good distance,
but a poor rate (≈ mr2−m → 0 for large m). Increasing the parameter r increases the rate of the
code but also decreases the distance of the code at a faster pace. So there is no setting of r that
yields a code with constant rate and constant distance.

In the following section, we introduce a family of binary codes that can be constructed efficiently
and has both a good rate and a good distance simultaneously.

5 Concatenated codes

Concatenated codes were introduced by Forney in his doctoral thesis in 1966 [2]. In fact, Forney
proved many wonderful properties about these codes; in this lecture we only give a brief overview
of the definitions and key properties of concatenated codes.

The starting point in our search for binary codes with good rate and good distance is the idea
that we have already seen codes with good rate and good distance when we have large alphabets:
the distance of Reed-Solomon codes meets the Singleton bound, so they in fact are optimal codes.
So let’s start with Reed-Solomon codes and see if we can use them to construct a family of good
binary codes.

We already saw in the last lecture a simple transformation for converting Reed-Solomon codes to
binary codes. In this transformation, we started with a polynomial f of degree k− 1 and evaluated
it over α1, . . . , αm to obtain the values f(α1), . . . , f(αm) ∈ Fn

2m . We then encoded each of the values
f(αi) in the binary alphabet with m bits.

The binary code obtained with the simple transformation has block length N = nm and distance
D ≥ d = n− k + 1. This distance is not very good, since the lower bound on the relative distance
D
N ≥

n−k+1
nm is quite weak. Still, the lower bound D ≥ d follows from a very simple analysis; one

11

may hope that a better bound – ideally of the form D ≥ Ω(dm) – might be obtained with a more
sophisticated analysis or by applying some neat trick (like, say, by encoding the bits in some clever
basis). Unfortunately, that hope is not realizable: there is a nearly tight upper bound showing that
with the simple transformation, the distance of the resulting binary code is at most D ≤ 2d.

So if we hope to obtain a binary code with good distance from the Reed-Solomon code, we need
to introduce a new idea to the transformation. One promising idea is to look closely at the step
where we took the values from the field F2m and encoded them with m bits in the binary alphabet:
instead of using the minimum number of bits to encode those elements in the binary alphabet, we
could use more bits – say 2m bits – and use an encoding that adds more distance to the final code.
That is indeed the idea used to obtain concatenated codes.

5.1 Binary concatenated codes

The concatenated code C = Cout�Cin is defined by two codes. The outer code Cout ⊂ Σn1
1 converts

the input message to a codeword over a large alphabet Σ1, and the inner code Cin ⊂ Σn2
2 is a much

smaller code that converts symbols from Σ1 to codewords over Σ2. When Σ2 = {0, 1}, the code C
is a binary concatenated code.

x

↓ Cout
c1 c2 · · · cn

↓ Cin ↓ Cin ... ↓ Cin
Cin(c1) Cin(c2) · · · Cin(cn)

Figure 1: Binary concatenated codes.

A key observation in the definition of concatenated codes is that the inner code Cin is a small code,
in the sense that it only needs one codeword for each symbol in Σ1. The size of the alphabet Σ1

is (typically) much smaller than the total number of codewords encoded by C, and will let us do a
brute-force search for good inner codes in our construction of good concatenated codes. But first,
let us examine the rate and distance parameters of general concatenated codes.

5.2 Facts of concatenated codes

The rate of the concatenated code C = Cout � Cin is

R(C) =
log |Cout|

n1n2 log |Σ2|
=

log |Cout|
n1 log |Σ1|

· log |Σ1|
n2 log |Σ2|

= R(Cout) ·R(Cin),

where the last equality uses the fact that |Cin| = |Σ1|.
The simple transformation of Reed-Solomon codes to binary codes used an inner code Cin with
rate 1 (which did not add any redundancy). The rate equation R(C) = R(Cout) ·R(Cin) says that
we can replace the trivial inner code with any other code and incur a rate cost proportional to the
rate of Cin.

12

Let’s now look at the distance of concatenated code. We do not get an exact formula for the
distance of these codes, but a simple argument does give us a lower bound that will be sufficient
to construct concatenated codes with good distance:

Proposition 13 The distance of the concatenated code C = Cout � Cin satisfies

∆(C) ≥ ∆(Cout) ·∆(Cin).

Proof: Let x and y be two distinct messages. The distance property of the outer code guarantees
that the encodings Cout(x) and Cout(y) will differ in at least ∆(Cout) symbols. For each of the
symbols where they differ, then the inner code will encode the symbols into codewords that differ
in at least ∆(Cin) places. �

The lower bound of Proposition 13 is not tight, and in general the distance of concatenated codes
can be much larger. This may seem counter-intuitive at first: at the outer level, we can certainly
have two codewords that differ in only ∆(Cout) places, and at the inner level we can also have two
different symbols in Σ1 whose encodings under Cin differ in only ∆(Cin) places. But the two events
are not necessarily independent – it could be that when there are two codewords at the outer level
that differ at only ∆(Cout) symbols, then they must differ in a pattern that the inner code can take
advantage of so that for those cases, the inner code does much better than its worst case.

In fact, a probabilistic argument shows that when the outer code is a Reed-Solomon code and
the inner codes are “random projections” obtained by mapping the symbols of Σ1 to codewords
in Σ2 with independently chosen random bases, then the resulting concatenated code reaches the
Gilbert-Varshamov bound with high probability. (And thus has distance much larger than the
lower bound suggested by Proposition 13.) This construction is randomized; it is an interesting
problem to give a family of explicit codes for which the inequality of Proposition 13 is far from
tight. (There are some codes called multilevel concatenated codes where the Zyablov bound can be
improved, but this still falls well short of the GV bound.)

5.3 Constructing good concatenated codes

In this section, we construct a family of binary concatenated codes with good rate and good
distance. Fix 0 < R < 1 to be our target rate. We will build a code with rate R and distance as
large as possible.

For our construction, take Cout = [n, k, n − k + 1]2m to be the Reed-Solomon code with block
length n = 2m. The rate of this outer code is Rout = k

n and the relative distance of this code is
δout = n−k+1

n ≥ 1− Rout. Take Cin to be a binary linear code with parameters [mr ,m, d]2, so that
the rate of the inner code is R(Cin) = r. The rate of the concatenated code C = Cout � Cin is
R = Rout · r, so Rout = R

r .

We now have a partial construction. The outer code is the Reed-Solomon code, which we know is
optimal so we’re done with this part of the construction. The inner code, however, is not yet defined:
we have only specified that we want Cin to be a linear code with rate r. For our concatenated code
C to have good distance, we want the distance of Cin to be as large as possible.

13

The asymptotic Gilbert-Varshamov bound guarantees that there exists a linear code Cin with rate
r ≥ 1 − h(δin). Rearranging the terms, this means that there is a code with rate r and distance
δin ≥ h−1(1 − r). So if we find an inner code that matches this distance bound, we obtain a
concatenated code C with distance

δ(C) ≥ δout · δin ≥ (1−Rout) · h−1(1− r) =
(
1− R

r

)
· h−1(1− r).

The question remains: how can we find an inner code Cin with minimum distance δin ≥ h−1(1−r)?
Since Cin is a small code, so we can do a brute force search over the linear codes to find one with
large distance.

We have to be a little careful in the algorithm that we use to search for Cin. A näıve searching
algorithm simply enumerates all the possible generator matrices for Cin and checks the distance of
each corresponding code. But there are 2m×m/r = nlog(n)/r possible generator matrices G, so this
search does not run in time polynomial in the block length of the code.

There is a more efficient algorithm for finding an inner code Cin with minimum distance d. The
algorithm uses the greedy method to build a parity check matrix H such that every set of d − 1
columns in H is linearly independent: Enumerate all the possible columns. If the current column
is not contained by the linear span of any d− 2 columns already in H, add it to H.

The greedy algorithm examines 2m/r−m = n1/r−1 columns, and as long as 2m/r−m >
∑d−2

i=0

(
n−1
i

)
,

the process is also guaranteed to find a parity-check matrix H of distance d. So this method can
be used to find a linear code that meets the Gilbert-Varshamov bound in time polynomial in the
block length.

This completes our construction of a binary concatenated code with good rate and good distance. In
the next section, we examine the best rate-distance trade-off obtained by optimizing the parameters
of the concatenated code. But first, we mention one more useful property of the code we have
constructed: it is a linear code.

Exercise 3 Prove that the concatenated code C is linear over F2.

5.4 Zyablov radius

In our construction of good concatenated codes, we are free to set the rate r of the inner code.
Optimizing the value of r over all the choices that guarantee an overall rate of R for the concatenated
code yields the following result.

Theorem 14 Let R ∈ (0, 1). Then it is possible to efficiently construct a code of rate R and
distance

δZyablov(R) = max
R≤r≤1

(1− R
r)h−1(1− r).

The function δZyablov is called the Zyablov trade-off curve, or sometimes the Zyablov bound, and
is named after Zyablov, who first observed it in 1971 [9]. For any value of R ∈ (0, 1), the value of
δZyablov(R) is bounded away from 0, so we get the following corollary.

14

Corollary 15 Asymptotically good codes of any desired rate R ∈ (0, 1) can be constructed in poly-
nomial time.

So how good is the resulting bound? Quite a bit weaker than the Gilbert-Varshamov bound, as
the figure shows.

Another aspect of our construction of concatenated codes that is somewhat unsatisfactory is that
whilt it it is constructed in polynomial time, it involves brute-force search for a code of logarithmic

15

block length. It would be nice to have an explicit formula or description of how the code looks like.
From a complexity view point, we might want a linear code the entries of whose generator matrix
we can compute in polylogarithmic time.

In the next lecture, we will see an asymptotically code that is constructedexplicitly without any
brute-force search of smaller codes, and which further achievs the Zyablov trade-off between rate
and relative distance for rates more than 0.31.

References

[1] Ray C. Bose and Dwijendra K. Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and Control, 3(1):68–79, 1960. 4

[2] G. David Forney. Concatenated codes. MIT Press, 1966. 11

[3] Alexis Hocquenghem. Codes correcteurs d’erreurs. Chiffres, 2:147–156, 1959. 4

[4] David E. Muller. Application of boolean algebra to switching circuit design and to error de-
tection. IEEE Trans. on Computers, 3:6–12, 1954. 7, 10

[5] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme. IEEE
Trans. on Information Theory, 4:38–49, 1954. 7, 10

[6] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. J. Soc. Indust.
Appl. Math., 8(2):300–304, 1960. 3

[7] Jack T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980. 8

[8] Richard Zippel. Probabilistic algorithms for sparse polynomials. Symbolic and Algebraic Com-
putation, Springer LNCS 72:216–226, 1979. 9

[9] Victor V. Zyablov. An estimate of the complexity of constructing binary linear cascade codes.
Probl. Peredachi Inf., 7(1):5–13, 1971. 14

16

	Reed-Solomon codes
	Properties of the code
	Alternative characterization
	Applications

	BCH codes
	Parameters of BCH codes
	Alternative characterization
	Analysis and applications

	Reed-Muller codes
	Properties of the code

	Reed-Muller codes
	Decoding Reed-Muller codes
	Distance of Reed-Muller codes

	Concatenated codes
	Binary concatenated codes
	Facts of concatenated codes
	Constructing good concatenated codes
	Zyablov radius

