
Introduction to Coding Theory CMU: Spring 2010

Notes 11: List Decoding Folded Reed-Solomon Codes

April 2010

Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami

At the end of the previous notes, we defined folded Reed-Solomon codes, parameterized by an
integer folding parameter s ≥ 1, as follows.

Definition 1 (s-folded RS code) Let F be a field of size q whose nonzero elements are {1, γ, . . . , γn−1}
for n = q − 1. Let s ≥ 1 be an integer which divides n. Let 1 ≤ k < n be the degree parameter.

The folded Reed-Solomon code FRS(s)
F [k] is a code over alphabet Fs that encodes a polynomial

f ∈ F[X] of degree k as

f(X) 7→




f(1)
f(γ)

...
f(γs−1)

 ,


f(γs)
f(γs+1)

...
f(γ2s−1)

 , . . . ,


f(γn−s)
f(γn−s+1)

...
f(γn−1)

 ,
 . (1)

Observe that the folded RS code is a code of block length N = n/s and rate R = k/n (which is
the same as the original, unfolded Reed-Solomon code).

1 List decoding FRS codes

Now suppose such a codeword was transmitted and we received a string in y ∈ (Fs)N which we
view in matrix form as

y1 ys+1 yn−s+2

y2 ys+2
...

y3 ys+3
...

. . .
ys · · · yn

(2)

We would like to recover a list of all polynomials f ∈ F[X] of degree k whose folded RS encoding
(1) agrees with y in at least t columns, for some agreement parameter t. The goal would be to
give an algorithm for as small a t as possible, as this corresponds to list decoding up to n − t
errors. Note that we can solve this problem for t ≥

√
RN by simply unfolding the received word

and using the algorithm for Reed-Solomon codes. Our hope is to do better by exploiting the fact
that the agreements have some structure: when a column is correct we know the correct values of
all s values in the column. In other words, the number of errors patterns we have to worry about
is smaller and they have some structure, which could be potentially be exploited to correct from a
larger number of errors. This is in fact what we will do, exploiting in a crucial way the algebraic
structure of the folding.

1

As in the Reed-Solomon list decoding algorithm, we will use interpolation to fit a low-degree nonzero
polynomial Q through the data. The gain will come by interpolating in more than two dimensions.
This enables working with a smaller degree and offers the hope of leading to an algorithm that works
with smaller agreement. The fact that an entire column is correct when there is no error will be
used to argue that the interpolated polynomial Q and the message polynomial f must obey some
identity (the higher-dimensional analog of the identity Q(X, f(X)) = 0 from the Reed-Solomon
case). The algebraic crux is to argue that this identity suffices to pin down f to a small list of
possibilities, and to find this list efficiently.

1.1 Interpolation step

We will describe a decoding algorithm that can be viewed as a higher-dimensional generaliza-
tion of the Welch-Berlekamp algorithm. The algorithm will interpolate a “linear” polynomial
Q(X,Y1, Y2, . . . , Ys) which has degree 1 in the Yi’s through certain (s + 1)-tuples. We thank Salil
Vadhan for pointing out this variant of the algorithm, which is simpler to describe. The algorithm
described in the paper [1] uses higher degrees in Yi’s as well as multiplicities in the interpolation.
This leads to a stronger bound (as we will mention later), but the simpler “linear polynomial”
based algorithm suffices for the main message of this lecture. Jumping ahead, this message is the
explicit construction of codes of rate R which can be list decoded in polynomial time from a fraction
1−R− ε of errors, for any desired ε > 0.

Given a received word as in (2) we will interpolate a nonzero polynomial

Q(X,Y1, Y2, . . . , Ys) = A0(X) +A1(X)Y1 +A2(X)Y2 + · · ·+As(X)Ys

with the degree restrictions deg(Ai) ≤ D − 1 for i = 1, 2, . . . , s and deg(A0) ≤ D + k − 1 for
a suitable degree parameter. The number of monomials in a polynomial Q with these degree
restrictions equals Ds+D+ k. The polynomial Q ∈ F[X,Y1, . . . , Ys] must satisfy the interpolation
conditions

Q(γis, yis+1, yis+2, · · · , y(i+1)s) = 0 for i = 0, 1, . . . , n/s− 1 . (3)

Provided Ds+D + k > n
s = N , or in other words

D >
N − k
s+ 1

, (4)

such a nonzero polynomial Q must exist, and can be found in polynomial time by solving a homo-
geneous linear system. The following lemma shows that any such polynomial Q gives an algebraic
condition that the message polynomials f(X) we are interested in list decoding must satisfy.

Lemma 2 If f ∈ F[X] is a polynomial of degree k whose FRS encoding (1) agrees with y in at
least t columns for t ≥ D + k, then

Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 . (5)

Proof: Define R(X) = Q(X, f(X), f(γX), . . . , f(γs−1X)). Due to the degree restrictions on Q,
the degree of R(X) is easily seen to be at most D+ k− 1. If the FRS encoding of f agrees with y
in the i’th column (for some i ∈ {0, 1, . . . , N − 1}), we have

f(γis) = yis+1, f(γis+1) = yis+2, · · · , f(γis+s−1) = y(i+1)s .

2

Together with the interpolation conditions (3), this implies

R(γis) = Q(γis, f(γis), f(γis+1), · · · , f(γis+s−1)) = 0 .

Hence R has at least t zeroes. Since deg(R) ≤ D + k − 1, if t ≥ D + k, we must have R = 0. �

1.2 Root-finding step

The question that arises now is how restrictive is Equation (5) in terms of pinning down the number
of possible solutions f(X) to a small (polynomial in |F|) number? For purposes of illustration and
ease of notation, let us focus on the s = 2 case, so that we need to find the list of all degree k
solutions f(X) to

Q(X, f(X), f(γX)) = 0 . (6)

For this part we will have use the fact that γ ∈ F is not arbitrary but is a primitive element.
Indeed if γ = 1, then for the polynomial Q(X,Y, Z) = Y − Z, every polynomial f will satisfy
Q(X, f(X), f(X)) = 0. Likewise, if γ = −1, then every polynomial f(X) = g(X2) will satisfy
Q(X, f(X), f(−X)) = 0 for Q(X,Y, Z) = Y − Z. This argument shows that if the order of γ is
small, then there can be too many (|F|Ω(k)) degree k solutions.

We will next prove that for primitive γ, the number of f of degree less than q − 1 (and hence also
number with degree at most k) satisfying (6) is at most q. For this we need two lemmas.

Lemma 3 If deg(f) < q − 1, then f(γX) = f(X)q mod (Xq−1 − γ).

Proof: We have Xq ≡ γX (mod Xq−1 − γ), and therefore

f(Xq) ≡ f(γX) (mod Xq−1 − γ) .

For f ∈ F[X], we have f(Xq) = f(X)q. Therefore f(Xq) ≡ f(γX) (mod Xq−1 − γ). Since the
degree of f is less than q − 1, the remainder of f(X)q mod Xq−1 − γ must equal f(γX). �

The next lemma (in fact a more general statement) was on problem set 2.

Lemma 4 The polynomial Xq−1 − γ is irreducible over Fq when γ is a primitive element of Fq.

Denote E(X) = Xq−1 − γ. Denote by L the extension field L = F[X]/(E(X)) (it is a field since
E(X) is irreducible), and for a polynomial f ∈ F[X], let f̄ denote its residue (modulo E(X)) in L.

Theorem 5 Given a nonzero Q ∈ F[X,Y1, Y2] which is linear in Y1, Y2, the number of polynomials
f ∈ F[X] of degree less than q− 1 such that Q(X, f(X), f(γX)) = 0 is at most q. Moreover the list
of all such polynomials can be found in time polynomial in q and the degree of Q.

Proof: Factor out the largest power of E(X) that dividesQ, so thatQ(X,Y1, Y2) = E(X)aQ1(X,Y1, Y2)
for some a ≥ 0 and polynomial Q1 that is not divisible by E(X). Define the polynomial S ∈ L[Y]
as

S(Y) = Q1(X,Y, Y q) mod E(X) .

3

Since Q1 has degree in Y1, Y2 less than q (in fact it is linear in Y1, Y2), and it is not divisible
by E(X), we have S 6= 0. Clearly if Q(X, f(X), f(γX)) = 0, then Q1(X, f(X), f(γX)) = 0, so
certainly Q1(X, f(X), f(γX)) mod E(X) = 0. By Lemma ??, this implies Q1(X, f(X), f(X)q)
mod E(X) = 0, i.e., S(f̄) = 0. Thus f̄ must be a root of S, which has degree at most q in Y . This
implies that there are most q solutions for f̄ . Since f has degree less than q− 1, f can be uniquely
recovered from f̄ , and hence there are at most q solutions f to Q(X, f(X), f(γX)) = 0, as desired.

The claim about the running time follows since the polynomial S can be computed efficiently from
Q, and there are efficient root finding algorithms known over large extension fields. (One can either
have a randomized algorithm running in time polynomial in the degree and log of the field size, or
a deterministic algorithm running in time polynomial in the degree, log of the field size, and the
characteristic of the field. In our case, even the deterministic runtime will be polynomial in q.) �

The above approach generalizes readily to the larger variate case. Any solution f ∈ F[X] to
Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 will have its residue f̄ as a root of (the nonzero polynomial)
S(Y) = Q(X,Y, Y q, · · · , Y qs−1

) mod E(X). Therefore there will be at most qs−1 such polynomials
f and they can all be found in polynomial (in q) time.

1.3 Decoding guarantee

Combining Lemma 2 and Theorem 5, and recalling the requirement (4) on the degree parameter
D we conclude that we have a polynomial time list decoding algorithm for FRS(s)

F [k] to find all
message polynomials whose encoding has agreement t with an input y ∈ (Fs)N provided

t >
N − k
s+ 1

+ k =
N

s+ 1
+

s

s+ 1
k . (7)

The fractional agreement τ required (in terms of the rate) is

τ =
t

N
>

1
s+ 1

+
k

N

s

(s+ 1)
=

1
s+ 1

+ (sR)
s

s+ 1
(8)

since N = n/s and R = k/n.

Our goal was to decode from an agreement fraction τ ≈ R, but the factor s multiplying R implies
that we require τ ≈ sR which is much worse for large s. In particular we do not get anything
meaningful for R > 1/s !

Remark 6 By allowing higher degree terms in the Yi’s in the interpolated polynomial and using
multiplicities in the interpolation (as in the improved Reed-Solomon list-decoding algorithm, ex-
tended to the multivariate case in the obvious manner), one can improve the above guarantee and
decode from agreement fraction

τ ≈ (sR)s/(s+1) . (9)

Note that this quantity is the geometric mean of 1, R,R, · · · , R︸ ︷︷ ︸
s times

, whereas the agreement required

in (8) was the arithmetic mean of these values (which is in general larger). Recall that for Reed-
Solomon codes (s = 1) this was also exactly the case: we reduced the agreement required from 1+R

2

to
√
R to get an algorithm to list decode up to the Johnson radius.

4

Remark 7 (Parvaresh-Vardy) The decoding guarantee (9) was obtained by Parvaresh and Vardy [2].
Their construction was somewhat different. Instead of the folding operation, they encoded a degree
k message polynomial f ∈ F[X] by the evaluation of f and (s−1) other polynomials f1, f2, . . . , fs−1

which are chosen to be algebraically related to f(X) in the following way:

fi(X) = f(X)h
i

mod E(X)

for i = 1, 2, . . . , s − 1, where E(X) is an arbitrary irreducible polynomial of degree k + 1. Note
that the rate of such a code is R0/s where R0 is the rate of the original RS code (in particular this
construction can never have rate exceed 1/s). We used f(γi−1X) in place of fi(X) in the above
description in preparation for the optimal result which we discuss next.

2 Improving the decoding radius and correcting 1−R− ε errors

The idea to improve the agreement fraction required is to use folded codes with folding parameter
m for m� s, but still only do s+1-variate interpolation. The key gain will be that each agreement
location will now lead to many zeroes for the polynomial Q(X, f(X), f(γX), . . . , f(γs−1X)) which
ultimately ensures that this polynomial must equal zero even for a much smaller value of the
agreement parameter t.

Specifically, let us consider the code FRS(m)
F [k], where as before |F| = q, n = q−1, m|n, and the block

length of the code equalsN = nm. We will still interpolate a polynomialQ ∈ F[X,Y1, . . . , Ys] in s+1
variables, but now instead of n/s tuples, we will interpolate through (n/m)(m−s+1) = N(m−s+1)
tuples given by

(γim+j , yim+j+1, . . . , yim+j+s) 0 ≤ i < n/m, 0 ≤ j < m− s .

That is, for each column of m symbols, we interpolate through the (m − s + 1) windows of s
consecutive symbols. The rationale behind this is that if we have an agreement in location i, i.e.,

(yim+1, yim+2, . . . , y(i+1)m) = (f(γis), f(γis+1), . . . , f(γim+m−1))

then we get m− s+ 1 zeroes

Q(γim+j , f(γim+j), . . . , f(γim+j+s−1)) = 0 j ∈ {0, 1, 2, . . . ,m− s} .

Thus t agreements leads to t(m− s+ 1) zeroes for R(X) = Q(X, f(X), . . . , f(γs−1X)). In place of
(7), we get the new condition for successful decoding

t(m− s+ 1) >
N(m− s+ 1)

s+ 1
+

s

s+ 1
k

or equivalently

τ =
t

N
>

1
s+ 1

+
s

s+ 1
m

m− s+ 1
R (10)

(recalling that k = Rn = RNm).

5

We now have our desired optimal trade-off between τ and R: picking s > 1/ε and m ≥ s2, the
above condition (10) for successful decoding is met if

τ ≥ R+ ε .

Let us look at the parameters of the code. The alphabet size in qm ≈ nm = (Nm)m which
is (N/ε2)O(1/ε2) for the choice m ≈ 1/ε2. The bound on list size we obtain is at most qs−1 ≈
(Nm)O(s) = (N/ε2)O(1/ε) for the choice s ≈ 1/ε. The running time of the decoding algorithm
is also dominated by the root-finding step, which takes qO(s) time as it has to find roots of a
polynomial of degree at most qs over an extension field of size at most qq.

We can thus state our main theorem as follows.

Theorem 8 (Explicit codes achieving list decoding capacity) For every ε > 0 and 0 < R <
1, there is a family of folded Reed-Solomon codes which have rate at least R and which can be list
decoded up to a fraction 1−R− ε of errors in time (N/ε2)O(ε−1) where N is the block length of the
code. The alphabet size of the code as a function of the block length N is (N/ε2)O(1/ε2).

Remark 9 (Improvement using higher degree and multiplicities in interpolation) Similar
to Remark 6, by allowing higher degree terms in the Yi’s in the interpolated polynomial and using
multiplicities in the interpolation, one can improve the above guarantee and decode from agreement
fraction

τ ≈
(

mR

m− s+ 1

)s/(s+1)

. (11)

instead of the arithmetic mean 1
s+1 + s

s+1
mR

m−s+1 . For details see the original paper [1].

References

[1] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135–
150, 2008. 2, 6

[2] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the Guruswami-Sudan radius
in polynomial time. In Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, pages 285–294, 2005. 5

6

	List decoding FRS codes
	Interpolation step
	Root-finding step
	Decoding guarantee

	Improving the decoding radius and correcting 1-R- errors

