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In the next segment of the course, we will study algebraic constructions of codes based on poly-
nomials over finite fields. It is possible to get quite far treating finite fields as “black-boxes” that
allow the field operations to be performed efficiently as atomic steps, along with just one important
mantra:

A non-zero polynomial of degree d with coefficients from a field F has at most d roots
in F.

But it is nevertheless desirable to have a good working knowledge of the basics of the theory of
finite fields, and we will appeal to some of these results later on for list decoding some powerful
algebraic codes. You are likely already familiar with this material from your undergraduate algebra.
You can refer to your favorite algebra text for the basic theorems and their proofs, but I wanted to
point to this this chapter on finite fields, written by G. David Forney and also linked on the course
page, that rigorously prove everything that we would need (and more!) from first principles, in a
nice sequence.

Collected below are some basic results about finite fields, for quick reference. (I do not recall the
definition of fields and the field axioms here.) All these facts are proved in the above linked notes.

1. For every prime p, there is a unique finite field of size p that is isomorphic to Fp which is the
set {0, 1, . . . , p− 1} under mod-p addition and multiplication.

2. For each prime p, positive integer m ≥ 1, and polynomial g(X) with coefficients in Fp of
degree m that is irreducible (in Fp[X]), the set of polynomials in Fp[X] of degree at most
m − 1 with addition and multiplication of the polynomials defined modulo g(X) is a finite
field (denoted Fg(X)) with pm elements.

3. Every finite field is isomorphic to such a field, and therefore must have pm elements for some
prime p and positive integer m.

4. For every prime p and integer m ≥ 1, there exists an irreducible polynomial g(X) ∈ Fp[X] of
degree m. Therefore, there is a finite field with pm elements for every prime p and positive
integer m.
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5. Additively, a finite field with pm elements has the structure of a vector space of dimension m
over Fp.

6. The multiplicative group of a finite field (consisting of its non-zero elements) is cyclic. In
other words, the non-zero elements of a field F can be written as {1, γ, γ2, . . . , γ|F|−2} for
some γ ∈ F.

• A γ with such a property is called a primitive element of the field F.

• A field F has φ(|F| − 1) primitive elements, where φ(·) is the Euler’s totient function.

7. All fields of size pm are isomorphic to Fg(X) for an arbitrary choice of degree m irreducible
polynomial g(X) ∈ Fp[X].

The finite field with pm elements is therefore unique up to isomorphism field and will be
denoted by Fpm .

Remark: While one can pick any irreducible g(X) to represent the field Fpm as Fg(X),
sometimes a special choice can be judicious. For example, the complexity of multiplication is
better if g(X) is sparse (i.e., has very few non-zero coefficients).

8. The elements of Fpm are the pm distinct roots of the polynomial Xpm −X ∈ Fp[X].

9. For each k dividing m, the field Fpm has a unique subfield of size pk, which consists of the

roots of the polynomial Xpk −X.

10. The polynomial Xpm −X is the product of all monic irreducible polynomials in Fp[X] whose
degree divides m, with no repetitions.
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