
Re intcd from JOURNAL OP COMPUTER AND Smmm SCIENCES
AIKights Reserved by Academic Press, New York and London Vol. 26, No. 3, June 1983

Printed in Belgium

A Data Structure for Dynamic Trees

DANIEL D. SLEATOR AND ROBERT ENDRE TARJAN

Bell Laboratories, Murray Hill, New Jersey 07974

Received May 8, 1982; revised October 18, 1982

A data structure is proposed to maintain a collection of vertex-disjoint trees under a
sequence of two kinds of operations: a link operation that combines two trees into one by
adding an edge, and a cut operation that divides one tree into two by deleting an edge. Each
operation requires O(log n) time. Using this data structure, new fast algorithms are obtained
for the following problems:

(1) Computing nearest common ancestors.
(2) Solving various network flow problems including finding maximum flows, blocking

(3) Computing certain kinds of constrained minimum spanning trees.
(4) Implementing the network simplex algorithm for minimum-cost flows.

flows, and acyclic flows.

The most significant application is (2); an O(mn log n)-time algorithm is obtained to find a
maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest
algorithm previously known for sparse graphs.

1. INTRODUCTION

In this paper we consider the following problem: We are given a collection of
vertex-disjoint rooted trees. We want to represent the trees by a data structure that
allows us to easily extract certain information about the trees and to easily update the
structure to reflect changes in the trees caused by three kinds of operations:

link(v, w) : If v is a tree root and w is a vertex in another tree, link the trees
containing v and w by adding the edge(v, w), making w the parent of v.

cuf(v): If node u is not a tree root, divide the tree containing v into two trees by
deleting the edge from u to its parent.

everf(v): Turn the tree containing vertex u “inside out” by making v the root of
the tree.

We propose a data structure that solves this dynamic trees problem. We give two
versions of the data structure. The first has a time bound of O(1ogn) per operation
when the time is amortized over a worst-case sequence of operations; the second,

362
0022-oooO/83 $3.00
Copyright 0 1983 by Academic Press, Inc.
All rights of reproduction in any form r e ~ ~ e d .

A DATA STRUCTURE FOR DYNAMIC TREES 363

slightly more complicated, has a worst-case per-operation time bound of O(log n). ’
We use our data structure to devise- new fast algorithms for the following graph-
theoretic problems:
’

(1) Computing nearest common ancestors in O(log n) time per operation.
(2) Finding various kinds of network flows, including maximum flows in

O(nm log n) time,* blocking flows in O(m log n) time, and acyclic flows in O(m log n)
time.

(3) Computing certain kinds of constrained minimum spanning trees in
O(m log n) time.

(4) Implementing the network simplex algorithm for the transportation
problem so that updating a feasible tree solution takes O(1og n) time per pivot step.

The paper consists of six sections. In Section 2 we formulate a precise version of
the dynamic trees problem and briefly discuss variations of the problem. In Section 3
we present a high-level description of the first version of our data structure and carry
out some preliminary running time analysis. The key idea presented in this section is
the partitioning of each tree into a collection of vertex-disjoint paths. In Section 4 we
discuss how to represent individual paths as biased trees and complete the description
and analysis of the data structure. In Section 5 we develop the second version of our
data structure. Section 6 contains applications, related work, and additional remarks.
Our results extend and improve the preliminary work of Sleator and Tarjan [181.

2. THE DYNAMIC TREES PROBLEM

We shall consider the following version of the dynamic trees problem. We wish to
maintain a forest of vertex-disjoint rooted trees,3 each of whose edges has a real-
valued cost, under a sequence of eight kinds of operations, which can be intermixed in
any order (see Fig. 1):

purent(vertexu): Return the parent of u. If u has no parent (it is a tree root),
return a special value null.

root(vertex u) :
cost(vertex u) :

mincost(vertex u) :

Return the root of the tree containing u.

Return the cost of the edge (u,parenf(u)). This operation assumes

Return the vertex w closest to root(u) such that the edge
that u is not a tree root.

I IfJand g are functions of x, the notation ‘‘f(x) is O(g(x))” means there are positive constants c, and

When discussing graph problems we denote by n the number of vertices and by rn the number of

Our tree terminology is the same as that of Bent el al. [2], except that we use the term external node

cz such that J (x) < cI g(x) + cz for all x.

edges in the graph.

for a leaf of a binary tree.

364 SLEATOR AND TARJAN

a

t C)

S

u
f 4

W Y 2

FIG. 1. Operations on dynamic trees. (a) Three trees. Operation parenr(n) returns m, root(n) returns
a, cost(n) returns 6, mincost(n) returns g. (b) Tree containing n after update(n, -1) . (c) Tree formed by
link@, t , 7). (d) Trees formed by cut@) on tree in part (b). Value returned is 4. (e) Tree formed by
everr(n) on tree in part (d). ,

(w,parent(w)) has minimum cost among edges on the tree path from u to root(u).
This operation assumes that v is not a tree root.

update(vertex v , real x): Modify the costs of all edges on the tree path from u to
roof(u) by adding x to the cost of each edge.

link(vertex u, w, real x): Combine the trees containing u and w by adding the edge
(u, w) of cost x, making w the parent of v. This operation assumes that u and w are in
different trees and v is a tree root.

cuf(vertex 0): Divide the tree containing vertex v into two trees by deleting the
edge (v,purenf(v)); return the cost of this edge. This operation assumes that u is not
a tree root.

everf(vertex u): Modify the tree containing vertex v by making u the root. (This
operation can be regarded as reversing the direction of every edge on the path from u
to the original root.)

A DATA STRUCTURE FOR DYNAMIC TREES 365

The operations parent, root, cost, and mincost extract information from the forest
without altering it. The operation update changes edge costs but not the structure of
the forest. The operations link, cut, and evert change the forest. These eight
operations allow us to solve a number of graph-theoretic problems, as we shall see in
Section 6.

The data structure we shall develop to support these operations can be modified to
handle slightly different operations as well. Some possible variations are the
following:

We can drop the operation evert, allowing some simplification of the data
structure. We have included the evert operation to allow representation of free
(unrooted) trees: We represent each free tree by a rooted tree and apply euert as
necessary to change tree roots. In applications involving rooted trees directly, this
operation is generally unnecessary.

(2) We can add the operation update edge(v,x), which adds x to the cost of
the edge (u,parent(v)). Note that if we allow evert, the operation update edge(u,x)
can be simulated by the sequence w := root(v), evert(parent(v)), update(v, x) ,
evert(w).

(3) We can add the operation update all(v,x), which adds x to the cost of all
edges in the tree with root u.

(4) We can associate costs with the vertices rather than with the edges.
(5) Instead of real-valued costs combined by minimization and updated by

addition, we can allow the costs to the elements of an arbitrary (but fixed) semigroup,
with the operations redefined appropriately. For a discussion of this generalization in
the case that link is allowed but neither cut nor evert see Tarjan [20].

In our discussion of the dynamic trees problem we shall assume that the initial
forest consists of n single-vertex trees; we shall use m to denote the total number of
operations of the eight types. In stating time bounds we assume n 2 2.

Before considering sophisticated solutions to the dynamic trees problem, it is
worthwhile to examine the obvious solution: with each vertex 0, we store its parent
p (v) and the cost of the edge(v,p(u)). Using this representation we can carry out a
parent, Cost, link, or cut operation in 0(1) time. The time for each of the other four
operations is proportional to the length of the tree path from u to root(v), which is
O(n) in the worst case.

By using an implicit representation of the structure of the forest, we can reduce the
time for root, min, update, and evert to O(1og n) , at the cost of increasing the time for
the other operations to O(1ogn). In the next three sections we develop two such
implicit representations.

(1)

366 SLEATOR AND TARJAN

3. DYNAMIC TREES AS SETS OF PATHS

We shall present our solution to the dynamic trees problem in a top-down fashion.
We begin by assuming that we know how to solve a version of the problem for the
special case in which the trees are paths. More precisely, suppose we know how to
carry out an intermixed sequence of the following 11 kinds of operations on a
collection of vertex-disjoint paths, each of whose edges has a real-valued cost:

puth(vertex u) :

heud(pathp):

tuil(pathp):

before(vertexu):
path, return null.

ufter(vertex u) :
return null.

pcost(vertex u) :

prnincost(pathp):

Return the path containing u. (We assume each path has a unique
identifier.)

Return the head (first vertex) of p .

Return the tail (last vertex) of p .

Return the vertex before u on puth(u). If u is the head of the

Return the vertex after u on puth(u). If u is the tail of the path,

Return the cost of the edge (u, uffer(u)). This operation assumes
that u is not the tail of puth(u).

Return the vertex u closest to tuil(p) such that (u, uffer(u)) has
minimum cost among edges on p . This operation assumes that p contains more than
one vertex.

pupdute(pathp, real x):

reuerse(pathp):

Add x to the cost of every edge on p.

Reverse the direction of p , making the head the tail and vice
versa.

concutenute(pathp, q, real x):

split(vertex u) :

Combine p and q by adding the edge (tuil(p),
heud(q)) of cost x. Return the combined path.

Divide puth(u) into (up to) three parts by deleting the edges
incident to u. Return a list [p , q, x, y] , where p is the subpath consisting of all vertices
from head(puth(u)) to before(u), q is the subpath consisting of all vertices from
ufter(v) to tuil(puth(u)), x is the cost of the deleted edge(before(u), u), and y is the
cost of the deleted edge(u, ufter(u)). If u is originally the head of puth(u), p is null and
x is undefined; if u is originally the tail of puth(u), q is null and y is undefined.

Using these path operations as primitives, we can develop a solution to the
dynamic trees problem. We partition each tree into a collection of vertex-disjoint
paths and carry out each tree operation by means of one or more path operations.
We shall present two variations of this approach: naive partitioning, which gives an
O(log n) amortized time bound per tree operation, and partitioning by size, which
gives an O(1ogn) worst-case time bound per tree operation. In this and the next

A DATA STRUCTURE FOR DYNAMIC TREES 367

section we develop the naive partitioning method; in Section 5 we discuss partitioning
by size.

Nu iue Par fit ioning
In the naive partitioning method, the partition of each tree into paths is determined

not by the structure of the tree but by the sequence of tree operations so far
performed. We partition the edges of each tree into two kinds, solid and dashed, with
the property that at most one solid edge enters any vertex. (See Fig. 2.) Thus the solid
edges define a collection of solid paths that partition the vertices. (A vertex with no
incident solid edge is a one-vertex solid path.) The head of a path is its bottommost
vertex; the tail is its topmost vertex.

We represent the dashed edges using the obvious method discussed at the end of
Section 2: with each vertex u that is the tail of a solid path, we store dpurenf(u), the
parent of u (via the outgoing dashed edge), and dcosf(u), the cost of the edge
(u,purenf(u)). If u is a tree root, dpurenf(u)=null and dcosf(u) is undefined. We
manipulate the solid paths using the eleven path operations defined. In addition we
need two composite operations (see Fig. 3):

splice(pathp): Extend the solid path p by converting the dashed edge leaving
tuil(p) to solid and converting the original solid edge entering purent(fuil(p)) (if any)
to dashed. Return the extended path. This operation assumes that fuil(p) is not a tree
root (that is, there is a dashed edge leaving fuil(p)).

Create a single solid path with head u and tail roof(u) by
converting dashed edges to solid along the tree path from u to root(u) and converting
solid edges incident to this path to dashed. Return the resulting solid path.

expose(vertex u) :

We implement splice and expose as follows, where our algorithmic notation is a
version of Dijkstra’s guarded command language [S] augmented with functions and
procedures and with the vertical bar “1” used in place of the box “0”:

function splice(path p) :
vertex u; path q, r; real x, y ,
u := dpurent(tuil(p));
[q, r, x, y] := splif(u);
ifq # null -+ dpurent(fuil(q)), dcosf(fuil(q) := u, x ti;

return if r = null -, p

1.

2. p := concutenute(p,puth(u), dcost(tuil(p)));

3 .

end splice;

[r # null -, concutenute(p, r, y)
fi

Note. Line 1 of splice converts to dashed the solid edges (if any) incident to
u =purenf(fuil(p)). Line 2 converts to solid the dashed edge leaving fuil(p). Line 3

368 SLEATOR AND TARJAN

FIG. 2. A tree partitioned into solid paths. Path It, 9,p . I , i, dl has head t and tail d.

FIG. 3. Splice and expose. (a) The effect of splice(p). The letters “9,” “r,” and “u” refer to the
corresponding variables in the program for splice. (b) The effect of expose(v).

A DATA STRUCTURE FOR DYNAMIC TREES 369

converts to solid the dashed edge leaving u. To make this program robust, an error
check should be added to ensure that on entry dparent(tail(p)) z null. I
function expose(vertex u) ;

pathp, q, r; real x, Y ;
1. [q, r, x, y] := spZit(u);

if q # null + dprent(tail(q)), dcost(tail(q)) := u, x ti;
ifr=null+p :=purh(u);

2.
fi,

3. do dpurent(taiZ(p)) # null + p := spZice(p) od;
returnp

end expose;

Note. Line 1 of expose converts to dashed the solid edges (if any) incident to u.
Line 2 restores to solid the edge out of u if it has just become dashed. Line 3, the
main part of expose, is a do loop that extends the path containing u by splicing until
its tail is the tree root.

I r # null + p := concatenute(path(v), r, y)

I
We implement the eight tree operations as follows:

function parent(vertex u);
return ifo = tuiZ(path(u)) 4 dparent(u)

I u # tail(path(u)) + Llfter(u)
ti

end parent;

function root(vertex u) ;

end root;

function cost(vertex u) ; .

return tail(expose(u))

return if u = tail(path(u)) --t dcost(u)
1 u # taiZ(path(u)) +pcost(u)
ti

end cost;

function mincost(vertex u) ;
return pmincost(expose(u))

end min;
procedure update(vertex u, real x) ;

end update;

procedure link(vertex u, w, real x);

end link;

pupdate(expose(u), x)

concatenate(path(v), expose(w), x)

3 70 SLEATOR AND TARJAN

function cut(vertex 0);

path p , q; real x, Y ;
expose(v);
[P, 4, x, v] := SpWv);
dpurent(v) := null;
return y

end cut;

procedure euert(v);

end evert;

We allow a function to be used as a procedure. In such a use the value
returned is ignored. Function concatenate is so used in link, and expose is so used in
cut. There are simpler ways to implement link and cut; we have chosen these methods
for technical reasons discussed in Section 4.

Analysis of Expose
Having specified an implementation of the dynamic tree operations in terms of

path operations, we can begin a running time analysis. At this level of detail, the only
nontrivial task is to count the number of splice operations per expose. In the
remainder of this section we shall derive an O(n + m log n) bound on the number of
splices caused by a sequence of m tree operations. This bound implies that there are
O(1og n) splices per expose amortized over the sequence.

The O(n + m log n) bound on splices is implicit in the work of Galil and Naamad
[8] and Shiloach [16], although they did not consider evert operations. Galil and
Naamad obtained the bound by applying an upper bound for path comparison 1191;
Shiloach gave a somewhat obscure direct proof. We shall give a simple direct proof
that accommodates evert.

To carry out the proof we need one new concept. We define the size of a vertex u
in the forest, denoted by size(v), to be the number of descendants of u, including u
itself. We define a tree edge (u,parent(v)) to be heavy if 2 size(u) > size(parent(u))
and light, otherwise. The following result is obvious:

reuerse(expose(v)); dparent(v) := null

Remark.

LEMMA 1. Let u be any vertex. Then 1 < size(v) 4 n, there is at most one heavy
edge entering v , and there are at most [Ig n j 4 light edges on the tree puth from u to
root(v).

By considering the dashed versus solid and heavy versus light edge partitions, we
can divide the edges into four classes: heavy dashed, heavy solid, light dashed, and
light solid. By studying the effect of the various tree operations on these classes, we
can bound the total number of splices. We call an operation splice(p) special if on
entry to splice purent(tuil(p)) is the head of a path and normal, otherwise. A special

We use Ig n to denote log, n.

A DATA STRUCTURE FOR DYNAMIC TREES 37 1

splice increases the number of solid edges by one; a normal splice leaves the number
of solid edges unchanged.

THEOREM 1. There are at most m special splices.

Proof. Let #solids, #exposes, #specials, #links, and #cuts be the number of solid
edges, expose operations, special splices, links, and cuts, respectively, all as a
function of time. There are #links - #cuts tree edges; thus 'solids < #links - #cuts.
Lines 1 and 2 of expose decrease #solids by at most one; line 3 of expose increases
#solids by at most one per special splice. Outside of expose, link increases #solids by
one and cut decreases #solids by at most one. Thus 'solids 2 #specials + 'links -
xexposes - 'cuts, which means 'specials < "exposes + 'solids - Sinks + 'cuts <
#exposes < m. I

THEOREM 2.

Proof.

There are at most m(3Llg n J + 1) splices.

Call an operation splice(p) light if the edge (tail(p),parent(tail(p))) is
light and heavy, otherwise. During a single expose there are at most [Ig n] light
splices by Lemma 1, since all the corresponding light edges are on a single tree path.
Thus there are [lg n] - "exposes light splices altogether. To bound the number of
heavy splices, we keep track of the number #hs of heavy solid edges.

During an expose, each heavy splice increases #hs by one, each light splice
decreases 'hs by at most one, and lines 1 and 2 of expose decrease 'hs by at most
one.

The operation link(v, w, x) increases the size of all nodes on the tree path from w
to root(w), possibly converting edges on this path from light to heavy and edges
incident to the path from heavy to light. After the operation expose(w) in link, all the
edges incident to the path are dashed, and adding the edge (0, w) does not decrease
#hs.

The operation cut(v) decreases the size of all nodes except u on the (original) tree
path from v to root(v). Up to [lg n] of the edges on this path may become light; thus
the cut may decrease #hs by up to [Ig n J + 1 including the edge deleted by the cut.

The operation evert(v) changes the size of all nodes on the (original) tree path
from v to root(v). After the operation expose(v) in evert, all the edges on this path are
solid and all incident edges are dashed. Reversing the path may cause up to [Ig n J of
its edges to become light; thus the evert may decrease #hs by up to [lg n] .

We conclude that #links - 'cuts 2 #hs > #heavy - splices - Sight - splices -
#exposes - ([lg n] + 1) - #cuts + [lg n] *everts, where our notation is similar to that
in the proof of Theorem 1. This means that #heavy - splices < #links - #cuts + *light
- splices + "exposes + ([lg nJ + 1) #cuts + [lg n] #everts < m(2[1g n J + l) , and the
total number of splices is at most m(3[Ig n] + 1). I

In a sequence of m dynamic tree operations there are O(m log n)
path operations (with splice and expose broken down into their component
operations >.

THEOREM 3.

Proof. The proof is immediate from Theorem 2. I

312 SLEATOR AND TARJAN

4. DYNAMIC PATHS AS BIASED BINARY TREES

To complete our solution we need a data structure to represent dynamic paths. For
this purpose we use full binary trees. As usual we develop the data structure in an
incremental fashion, introducing new ideas as we need them.

We represent each path by a binary tree whose external nodes in left-to-right order
correspond to the vertices on the path from head to tail and whose internal nodes in
symmetric order correspond to the edges in the path from head to tail. (See Fig. 4.)
We shall generally not distinguish between a tree node and the corresponding vertex
or edge on the path. Every node in the tree corresponds to the subpath whose vertices
are its external descendants. Thus we can regard the root of the tree as identifying the
path, and we shall generally not distinguish between the path and this root.

To facilitate the various path operations, we store with each node of a binary tree
information about the path it represents. (See Fig. 5 .) Each node u contains a bit
externul(v) indicating whether it is an external node and a pointer bpureelit(u) to its
parent in the binary tree; if v is the root of the binary tree, bparent(v) = null.

Each internal node u contains four additional pointers: bleft(v) and bright(u),
which point to the left and right child of u, and bhead(u) and btuil(v), which point to
the head and tail of the subpath corresponding to u (the leftmost and rightmost
external descendants of u). To handle reversal, each internal node u also contains a
bit reversed(u). We define the reuersul state of v to be the exclusive or of the reuersed
bits on the path from u to the root of the binary tree; if the reversal state of u is true,
the meanings of left and right are reversed at u. (Pointer bleft(u) points to the right
child of u, bhead(u) points to the rightmost external descendant of u, and similarly for
bright and btail.)

The internal nodes also contain information about the edge costs. If u is an internal
node, we define grosscost(u) to be the cost of the corresponding edge on the path and
grossmin(u) to be the minimum of grosscost(w) for w an internal descendant of u
(grosscost(u) is the minimum cost of an edge on the subpath corresponding to u). We

6 3 4 2 (a) .
a b c d e

c d

FIG. 4. A path and a binary tree representing it. (a) Path with head a and tail e. (b) Binary tree.
External nodes (squares) are labeled with corresponding vertices, internal nodes (circles) with
corresponding edges.

A DATA STRUCTURE FOR DYNAMIC TREES 313

(0)

d

FIG. 5. Details of the binary tree representation. (a) Format of internal nodes, omitting external
bits. (b) Data structure representing the path in Fig. 4.

represent grosscost and mincost implicitly by storing with each internal node u two
values, netcost(u) and netmin(u), defined as follows:

netcost(u) = grosscost(u) - grossmin(u).

netmin(u) = grossmin(u) if u is a binary tree root,

grossmin (u) - grossmin (bparent(u)), otherwise.

The value of netcost(v) is nonnegative for any internal node u; the value of
netmin(u) is nonnegative unless u is a binary tree root. We can compute grossmin(u)
for any internal vertex by summing netmin on the path from u to the binary tree root,
and grosscost(v) as netcost(o) plus grossmin(u).

Implementation of the Static Path Operations
This representation allows us to efficiently perform all the static path operations.

(The static path operations are all those except concatenate and split, which change
the structure of the paths.) We implement these operations as follows:

path(u): Follow bparent pointers from u until reaching a node w with
bparent(w) = null, and return w. This operation takes time proportional to the depth
of u in the binary tree containing it.

head(p): If reuersed(p) is true, return btail(p); otherwise return bhead(p). This
takes O(1) time.

taiI(p): Symmetric to head.
before(u): Traverse the binary tree path from u to path(u). Back up along this

3 74 SLEATOR AND TARJAN

path computing the reversal state of each internal node on the path. Find the deepest
node w on the path that is the right child of its parent. Return the rightmost external
descendant of the sibling u of w. (Node u is the child of bparent(w) other than w ; its
rightmost external descendant is u if u is external, bheud(u) if u is internal with a true
reversal state, and btuil(u) if u is internal with a false reversal state.) This takes time
proportional to the depth of u.

after(u): Symmetric to before.
pcost(u): Traverse the binary tree path from u to path(u). Back up along this path

computing the reversal state and grossmin of each internal node on the path. Find the
deepest node w on the path that is the left child of its parent. Return grosscost-
(bparent(w)), computed as netcost(bparent(w)) plus grossmin(bparent(w)). This takes
time proportional to the depth of u.

pmincost(p): Starting from p , which is the root of a binary tree, proceed
downward in the tree, keeping track of reversal states, until finding the node u last in
symmetric order such that grosscost(u) = grosscost(p). This can be done by
initializing u to be p and repeating the following step until u has netcost zero and its
right child is either external or has positive netmin: If the right child of u is internal
and has netcost zero, replace u by its right child, otherwise if u has positive netcost,
replace u by its left child. Once u is computed, return the rightmost external
descendant of its left child. This takes time proportional to the depth of u.

Negate reuersed(p). This takes O(1) time.
pupdate(p,x):
reuerse(p):

Remark.

Add x to netmin(p). This takes 0(1) time.

In some applications not requiring all the path operations, the remaining
operations are easier to implement and we can drop some of the node fields. In
particular, if we do not need evert we can drop the reversed bits and the bhead fields
and carry out the parent function in O(1) time by maintaining a parent field for all
vertices instead of a dparent field just for the vertices with an outgoing dashed edge.
Additional simplification is possible in this case. (See Sleator [171.) I

Implementation of the Dynamic Path Operations
In order to implement concatenate and split, we need four operations that

assemble, take apart, and modify binary trees:

construct(node u, w, real x) : Given the roots u and w of two binary trees and a
real value x, combine the trees into a single tree by constructing a new root node with
left child u, right child w, and grosscost x.

Given the root of a nontrivial binary tree, divide the tree into its
component parts: the subtree whose root, say u, is the left child of u and the subtree
whose root, say w, is the right child of u. Let x be the cost of edge u. Destroy node u
and return the list [u, w, XI.

Perform a single left rotation at node u. (See Fig. 6.) Node u
must have an internal right child.

destroy(u):

rotuteleft(node u) :

A DATA STRUCTURE FOR DYNAMIC TREES 3 75

ROTATE RIGHT

FIG. 6. A single rotation. Triangles denote subtrees.

rotateright(node u): Perform a single right rotation at node u. (See Fig. 6.) Node
u must have an internal left child.

Note. Left rotation and right rotation are symmetric and are inverses of each
other. I

It is easy to verify that with our binary tree representation each of these operations
takes O(1) time, including updating all the node fields. These operations suffice for
concatenating and splitting paths represented by any of the standard classes of
balanced binary trees, such as height-balanced trees [121, weight-balanced trees [151,
or red-black trees [9]. For any of these classes, the depth.of a tree of n external nodes
is O(logn), and concatenation and splitting take O(1ogn) time. Thus any path
operation takes O(log n) time. The splice operation also takes O(1og n) time, but this
is not true of expose. From Theorem 3 we obtain the following bound, which
generalizes the corresponding bound of Galil and Naamad [8] and Shiloach [161 for
a sequence of dynamic tree operations not including evert:

THEOREM 4. With a representation of solid paths as balanced binary trees, a
sequence of m dynamic tree operations takes O(m(1og n) ’) time.

In order to improve this result by a factor of log n, we use biased binary trees (31
(see also the earlier paper [2]) to represent the solid paths. In a biased binary tree, we
are allowed to specify a positive weight wt(v) for each external node u. Each node u
has an integer rank denoted by rank(u), whose relevant properties for our purposes
are the following (see Fig. 7):

(i) If u is external, rank(u)= [lg wt(u)j. If u is any node, rank(u)< 1 +
[lg wt(u)] , where we inductively define the weight of an internal node to be the sum of
the weights of its children.

(ii) If node w has parent u, rank(w) < rank(u), with the inequality strict if w is
external. If w has grandparent u, rank(w) < rank(#).

LEMMA 2. If u is an external node in a biased binary tree with root u, the depth
of u is at most 2(rank(u) - rank(u)) < 2 lg(wt(u)/wt(u)) + 4.

Property (ii) implies that the depth of u is at most 2(rank(u) - rank(u)).
Property (i) implies that rank(#) - rank(u) < lg(wt(u)/wt(u)) + 2. Combining these
gives Lemma 2. I

Proof.

376 SLEATOR AND TARJAN

FIG. 7. A biased binary tree. Weights are inside nodes, ranks next to nodes.

Biased binary trees can be concatenated and split using node construction and
destruction, single rotation, and the operation of increasing the rank of a node by
one. In order to understand the time bounds for concatenation and splitting, we need
the concept of amortization by credits. A credit represents one unit of computing
time. To perform a concatenate or split we are given a certain number of credits.
Spending one credit allows us to perform 0(1) computational steps. If we complete
the operation before running out of credits we can save the unused credits to use on
future operations. If we run out of credits before completing the operation we can
spend credits previously saved. If we can perform a sequence of operations starting
with no saved credits and without running out of credits before the sequence is
complete, then the number of credits allocated for each operation gives an upper
bound on its running time, amortized over the sequence. We call this the amortized
time of the operation. The following bounds hold for the class of “locally” biased
binary trees:

LEMMA 3 [3]. A concatenation of two trees with roots p and q takes Irank(p) -
rank(q)l + 1 credits and thus O(lrank(p) - rank(q)l) amortized time. The root of the
new tree has rank max{rank(p), rank(q)} or max(rank(p), runk(q)} + 1.
LEMMA 4 [3]. An operation split(v) returning the list [q, r ,x ,y] takes

O(rank(p) - rank(v)) amortized time, where p is the root of the original binary tree
containing v. If q # null, ran&) < rank(p) + 1; if r f null, rank(r) < rank(p) + 1.
As a side effect, the split leaves an excess of rank(p) - rank(q) + 1 credits i f q # null
and rank(p) - rank(r) + 1 diflerent tokens if r # null. These excess credits can be
used for any purpose.

To represent solid paths as biased binary trees we must define a weight for each
vertex. Recall that in Section 3 we defined size(v) for a vertex v to be the number of
descendants of v in its dynamic tree. We define the weight of v as

A DATA STRUCTURE FOR DYNAMIC TREES 311

wt(v) = size(v) if no solid edge enters v ;

size(v) - size(w) if the solid edge (w, v) enters v .

Every node v in a biased binary tree representing a solid path has
1 < wt(v) Q n, where n is the total number of vertices. Thus 0 < rank(v) Q 1 + 1g n.

Proof: Let p be the root of the binary tree containing node v. The definition of
weight implies that 1 Q wt(v) Q wt(p) = size(tail(p)) Q n.

With each node in a biased tree we store its rank and weight. In order to use
biased binary trees to represent solid paths, we must modify the implementations of
some of the tree operations to update weights. With the implementation presented in
Section 3, only construct, rotateleft, rotateright, splice, and expose need changing;
link, cut, and evert are defined so that they do not change any node weight except
inside expose. We augment construct, rotateleft, and rotateright to keep track of
weights, and we augment splice and expose as follows, where the arrows denote the
additions:

LEMMA 5.

I

function splice(path p) ;
vertex v ; path q, r; real x, y ;
0 := dparent(tail(p));
[q, r, x, y] := split(v);
wt(v) := wt(v) - wt(p);
if q # null

1.
*

dparent(tail(q)), dcost(tail(q)) := v, x;
* wt(v) := wt(v) + wt(q)

fi;
2. p := concatenate(p, path(v), dcost(tail(p)));

return if r = null + p
3.

end splice;
function expose(vertex 0);

1. [q, r, x, y] := split(v);
if q # null +

1 r # null + concatenate(p, r, y)
fi

pathp, q, r; real x, y;

dparent(tail(q)), dcost(tail(q)) := v, x;
=- wt(v) := wt(u) + wt(q)

fi;
i f r = null + p :=path(v)

2. I r # null + p := concatenate(path(o), r, y)
fi;

3. do dparent(tail(p)) # null + p := splice(p) od;
return p

end expose;

378 SLEATOR AND TARJAN

This completes our description of the data structure.

Running Time Analysis
Our main theorem bounds the running time of the method we have just developed.

THEOREM 5 . With naive partitioning and representation of solid paths as locally
biased binary trees, a sequence of m dynamic tree operations takes O(m log n) time.

Lemmas 2-5 imply that any path operation takes O(1ogn) time, worst
case for the static path operations and amortized for concatenate and split. A splice
also takes O(1ogn) amortized time. This means by Theorems 1 and 2 that the time
for m dynamic tree operations is O(m log n) plus the time for the O(rn log n) normal
splices that take place during exposes. To bound the time for the normal splices, let
us consider the ith normal splice that takes place during the do loop of an expose.
(See Fig. 8.)

Let u be the tail of the path being extended by the splice, p the path containing u
before the first splice, p’ the path containing u before the ith splice, v the parent of u,
s the path containing u before the first splice, and s’ the path containing v (and u)
after the ith splice. We also use p,p’ , s, s’ to denote the roots of the binary trees
representing the corresponding paths. We shall prove that the splice has an amortized
time bound of O(rank(s) - rank(p) + rank(s’) - rank(p’)). In the process we shall
prove that rank(s) > rank(p) and rank(s’) 2 rank(p’).

Let wt(v) be the weight of v before the splice and wt’(u) the weight of v after the
splice; similarly for rank(v) and rank’(v). Then rank(s) > rank(v) + 1 = 1 +
[Ig wt(v)J 2 1 + [Ig wt(p)J > rank(p). (Since the splice is normal, s # v. Since v is an
external node, it has rank strictly less than that of its parent by property (ii). The
remaining inequalities follow from property (i) and the definition of weights.) The
same argument shows that rank(s) > rank(p’).

The amortized time for the split in line 1 of splice is O(rank(s)-rank(v))=
O(rank(s)-rank(p)). Since the split is normal, it leaves an excess of rank(s)-
rank(q) + 1 > 0 credits, where q is as defined in the implementation of splice. We
have rank(s’) 2 rank’(o) + 1 >/ 1 + [lg wt’(u)J 2 1 + [lg wt(q)J > rank(q). Further-
more, rank(s‘)>rank(p‘) by Lemma 3. The number of credits needed for the

Proox

FIG. 8. A normal splice.

A DATA STRUCTURE FOR DYNAMIC TREES 379

concatenation in line 2 of splice is Irank(p’) - rank’(u)l + 1 6 2 rank(s‘) -
rank(p’) - rank‘(u) + 1 6 rank(s’) - rank(p‘) + runk(s‘) - rank(q) + 2, since prop-
erty (i) implies rank’(u) > runk(q) - 1. Since we have rank(s) - rank(q) + 1 credits
on hand, the number of new credits we need is rank@‘) - rank(p’) + runk(s’) -
rank(s) + 1 Q 2(rank(s‘) - rank(p’)) + 1.

The last operation is the concatenation in line 3 of splice. If it takes place, there
are rank(s) - runk(r) + 1 > 0 credits still available from the split in line 1, where r is
as defined in the implementation of splice. The number of credits needed for the
concatenation is at most 2 rank@’) - runk(p’) - rank(r) + 1 since rank(s’) >
max(rank(p‘), rank(r)} by Lemma 3. Thus the number of new credits needed is at
most 2(rank(s’) - rank(p’)) by the same argument.

Combining the estimates for the split and the two concatenates, we obtain the
claimed bound of O(rank(s) - rank(p) + rank(s’) - rank(p’)) on the amortized time
of the splice. Note that rank(s) > rank(p) and rank(s’) > rank(p‘). If we sum this
estimate over all the normal splices that take place during a single expose, the sum
telescopes, and Lemma 5 gives a bound of O(k + log n) for the amortized time taken
for the entire expose, where k is the number of normal splices. From this and
Theorem 2 we obtain an O(m log n) bound on the time for the normal splices during
all m dynamic tree operations, and hence an O(m log n) bound on the total time for
the tree operations. 1

5. PARTITIONING BY SIZE

The data structure described in Sections 3 and 4 is a good one if amortized
running time is the relevant complexity measure, which is the case in most of the
applications known to the authors. If worst-case per-operation running time is
important, we can modify the data structure so that each individual dynamic tree
operation takes O(log n) time. In this section we present the required modifications.
The modified structure is more complicated than the original, meaning that the
original is likely to perform better in practice. Thus the new structure is mainly of
theoretical interest. We shall omit some of the details, concentrating on the main
ideas.

As in Section 3, we decompose each tree into vertex-disjoint solid paths, but we
define the solid edges according to the tree structure rather than according to the
sequence of previously performed tree operations. Specifically, we call an edge (u, w)
solid if and only if it is heavy, namely, if and only if 2 size(u) > size(w). Thus,
whereas in Section 3 we used light and heavy edges only as an analytical tool, here
they become part of the data structure. With this definition a tree path from a vertex
u to root(u) contains at most [lg nj dashed edges by Lemma 1 and thus intersects at
most [Ig n] + 1 solid paths.

We implement the dynamic tree operations using expose as we did in Section 3. A
new problem arises: an expose can convert light edges to solid and heavy edges to
dashed, violating the definition of solid edges. Thus we must conclude each tree

380 SLEATOR AND TARJAN

operation by repairing the damage caused by the expose. For this purpose we use the
following operation:

conceul(pathp): Convert to dashed every light edge on path p , and to solid every
heavy edge incident to p, including the heavy edge, if any, incident to heud(p).

We implement the eight tree operations as follows:

function purent(vertex 0);

(same as in Section 3)
function root(vertex u);

Pa& P;
p := expose(u);
u := tuil(p);
conceal(p) ;
return u

end root;
function cost(vertex 0);

(same as in Section 3)
function mincost(vertex u);

pathp; real x ;
p := expse(u);
x :=pmincost(p);
conceal(p) ;
return x

end min;
function updute(vertex u, real x) ;

Pa& P;
p := expose(0);
Pupdatdp, x) ;
conceul(p)

end update;
procedure link(vertex u, w, real x);

end link;
function cut(vertex u);

Path P, 9, r; real x , y ;
p := expse(u);
[q, r, x, y] := split(u);
dpurent(u) := null;
conceal(r) ;
conceuZ(path(u)) ;

conceul(concutenute(puth(u), expose(w), x))

end cut;

A DATA STRUCTURE FOR DYNAMIC TREES 38 1

Note. In the program for cut, the exposed path p is broken by the cut into two
parts, the path consisting only of vertex v and the path r. Both parts must be
concealed. I
procedure evert(v);

pabp;
p := expose(v);
reverse(p) ;
2iparent(v) := null;
conceal(p)

end evert;

New Features of the Data Structure
In order to implement conceal efficiently, we must make three changes in the data

structure. The first change is to add two fields to each internal node in a binary tree.
(See Fig. 9.) If u is an internal node corresponding to an edge (v, w) on the solid path
p, we define lefttilt(u) to be the sum of weights of vertices on the subpath o f p from
head(p) to v minus the weight of w. The condition that (v, w) is heavy is equivalent
to lefttilt(u) > 0. We define leftmin(u) to be the minimum .of lefttilt(t) for t an internal
descendant of u. We need leftmin to locate light edges during conceal operations. To
handle reverse, we also need the symmetric values righttilt(u), defined to be the sum
of weights of vertices on the subpath of p from w to tail(p) minus the weight of u,
and rightmin(u), defined to be the minimum of righttilt(t) for t an internal descendant
of u.

To represent these values, we use two fields for each internal node u :

netleftmin(u) = leftmin(u) if u is a binary tree root;

leftmin(u) - lefrmin(bparent(u)), otherwise.

netrightmin(u) = rightmin(u) if u is a binary tree root;

rightmin (u) - rightmin (bparent(u)), otherwise.

As with bleft and bright, and bhead and btail, the values of netleftmin(u) and
netrightmin(u) are interchanged if the reversal state of u is true.

Starting from the binary tree root corresponding to a solid path p and proceeding
downward in the tree, we can compute leftmin and rightmin for each internal node
visited in O(1) time per node. We can also compute lefttilt and righttilt for each node
visited in 0(1) time per node, using the following observations: If u is an internal
node representing an edge (v, w), both v and w are accessible from u in 0(1) time via
bleft, bright, bhead, and btail. Thus wt(v) and wt(w) are available in 0(1) time.
Furthermore the sum of weights of vertices before w (after v) on p is the sum of
weights of internal nodes t such that t is the left (right) child of an ancestor of u but t
is not an ancestor of u. We can compute these two sums for each internal node u in
O(1) time per node while descending from the tree root. Henceforth we shall assume

382 SLEATOR AND TARJAN

(0)

FIG. 9. Fields to represent lefttilt and righttilt. (a) Format of internal nodes, omitting external bits
and fields shown in Fig. 5. (b) Values of fields representing a path whose vertices have weights 6, 3, 2, 4,
9, assuming all reversed bits are false.

that leftmin(u), rightmin(u), lefttilt@), and righttilt@) are available whenever we visit
an internal node u.

It is easy to augment construct, destroy, rotateleft, and' rotateright so that they
update the netleftmin and netrightmin fields and still take 0(1) time. We need one
additional path operation:

Return the vertex w closest to tail(p) such that (before(u), u) is
light; return null if there is no such vertex.

light(pathp):

We implement light in the same way as pmincost. Starting from the root of the
binary tree representing p , we proceed downward, using leftmin and lefttilt to guide
the descent, until reaching the internal node u last in symmetric order such that
lefttilt@) < 0; then we return as w the leftmost external descendant of the right child
of u. This takes time proportional to the depth of w in the binary tree; if null is
returned, the time is O(l).,

The second change is to use globally biased instead of locally biased binary trees
to represent the solid paths. Globally biased binary trees [3] have the same static
properties as locally biased trees, namely (i) and (ii) of Section4, but concatenate
and split have better worst-case running times, given in Lemmas 6 and 7.

LEMMA 6 [3]. An operation concatenate(p, q, x) takes O(max{rank(p),
rank(q)} - max{rank(u), rank(w)}) time, where u = tail(p) and w = head(q), and
produces a tree whose root has rank max{rank(p), rank(q)} or max{rank(p),
rank(q)} + 1.

LEMMA 7 [3]. An operation split(u) takes O(rank(p) - rank(u)) time, where p =
path(u).

We use the same definition of weight as in Section4. Lemmas 2 and 5 remain
valid; thus any single path operation takes O(1og n) time.

A DATA STRUCTURE FOR DYNAMIC TREES 383

The third change is to add an extra part to our data structure. For each vertex v,
we maintain a path set containing each path p such that (tail(p), v) is a dashed edge.
We manipulate path sets by means of three operations:

maxwt(vertex v): Return the path of maximum weight in the path set of v ; return
null if the path set is empty. (Recall that the weight of a path is the sum of the
weights of its vertices.)

insert(pathp, vertex 0):
delete(pathp, vertex 0):

We represent the path set of a vertex by a globally biased binary tree, with the
paths appearing as external nodes in left-to-right order by decreasing weight. The
weight of a path is also used to determine its rank in the tree. For each internal node
we maintain a pointer to its leftmost leaf descendant. With this representation the
time to perform a maxwt operation is 0(1), and the time to perform insert(p, v) or
delete(p, u) is O(log(W/wt(p))), where W is the sum of the weights of the paths in
the path set of u before the operation. The bounds for insert and delete follow from
Lemmas 6 and 7 and the ordering of paths in the path set by weight.

Insert path p into the path set of v.
Delete path p from the path set of v.

Implementation and Analysis of Expose and Conceal

Since each path operation takes O(1ogn) time, so does each dynamic tree
operation, not counting the time for expose and conceal operations. We have
implemented the dynamic tree operations so that the only necessary manipulation of
weights and path sets takes place inside expose and conceal. Thus it remains for us to
implement and analyze expose and conceal. We implement expose as in Section 4,
with additional statements to update the path sets. Here are the details, with the
additions indicated:

function splicebath p) ;
vertex u; path q, r; real x , y ;
v := dparent(tail(p));
[q, r, x , y] := split(u);
wt(v) := wt(v) - wt(p);

=> delete(p, v);
if q # null +

dparent(tail(q)), dcost(tail(q)) := u, x ;

insert(q, v)
wt(v) := wt(u) + wt(q);

ti
p := concatenate(p, path(u), dcost(tail(p)));
return if r = null + p

I r # null + concatenate(p , r, y)
ti

end splice;

384 SLEATOR AND TARJAN

function expse(vertex u) ;
path p, q, r; real x, y ;
[q, r, x, y] := split(u);

. i fq#nul l+
dpurent(tuil(q)), dcost(tuil(q)) := u, x;
wt(u) := wt(u) + wt(q);
insert(q, u)

fi;
i f r = null+p :=puth(u)
I r # null -ip := concutenate(puth(u), r, y)

fi;
do dpurent(tuil(p)) # null -+ p := splice(p) od;
return p

end expose;

THEOREM 6. A n expose operation takes O(log n) time.

Proox The argument is much like that in the proof of Theorem 5. An expose
operation takes O(1og n) time plus time for O(1og n) splice operations (one per light
edge on the dynamic tree path from the exposed vertex to the root). Consider the ith
splice. Let u be the tail of the path being spliced, p the path containing u before the
first splice, p’ the path containing u just before the ith splice, u the parent of u, s the
path containing u before the first splice, and s‘ the path containing u (and u) after the
ith splice. (See Fig. 8.)

The split operation in splice takes O(runk(s) - runk(u)) time. The delete operation
takes O(log(wt(u)/wt(p))) time. The insert operation, if performed, takes O(log wt(u)/
wt(q)) = O(1) time, where q is the inserted path, since the edge (tuil(q), u) is heavy. It
follows from Lemmas 1 and 6 that the one or two concatenate operations needed to
complete the splice take O(runk(s’) - runk’(u)) time, where runk’(u) is the rank of u
after the ith splice.

We also have runk(p) < 1 + [lg wt(p)J Q 1 + [Ig wt(u)J < 1 + runk(u). Thus the
split takes O(runk(s)-runk(p)) time, and summed over all splices the total split
time is O(log n). Similarly since wt(u) Q wt(s) the delete takes O(log(wt(s)/wt(p)))
time, and summed over all splices the delete time is O(log n). Finally, runk(p’) Q 1 +
[lg wt(p‘)J < 1 + [Ig wt‘(u)J < runk‘(u), where wt‘(u) is the weight of u after the ith
splice, since wt(p‘) = wt(p) < size(u)/2, which means wt(p’) Q size(u) - wt(p) Q
wt‘(u). Thus the concatenates take O(runk(s’) - runk(p’)) time, and summed over all
splices the concatenate time is O(1ogn). Combining these estimates we obtain the
theorem. I

An operation conceul(p) is just like an expose run backwards. The only
complication is that we must find the light edges on p, which we do using pmintilt,
and the heavy edges incident to p, which we do using the path sets. The main loop of
conceal proceeds backward (downward) along p, performing the inverse of a splice,
called a slice, each time it encounters a light edge. The behavior of slice is as follows:

A DATA STRUCTURE FOR DYNAMIC TREES 385

function slice(pathp): Convert the edge light(p) to dashed, dividing p into two
paths, say q and r. If any edge entering head(r) is heavy, make it solid. Return the
path q. This operation assumes that p contains at least one light edge, i.e., light(p) #
null.

The programs below implement slice and conceal. Their correctness is easy to
verify.

function slice (pathp);
vertex u; path q, r, s; real x, y ;
u := light(p);
[p , r, x, y] := split(u);
s := i f r = null -+path@) 1 r # null + concatenafe(path(u), r, y) fi;
dpurent(tail(p)), dcost(tail(p)) .- .- v , x;
wt(u) := wt(u) + wt(p);
q := maxwt(o);
if 2 . wt(q) > wt(u) +

wt(v) := wt(v) - wt(q);
delete(q, 0);
concatenate(q, s, dcost(tail(q)))

fi;
insert(p , 0);
re-p

end slice;

procedure conceal(path p) ;
vertex u; path q, r, s; real x, y ;
do light(p) # null + p := slice(p) od;
u := head(p)
s := maxwt(u);
if s # null and 2 . wt(s) > wt(u) +

[q, r, x, y] := split(u);

delete@, u) ;
s := concatenate(s, path(u), dcost(tail(s)));
if r f null --t concutenate(s, r, y) fi

wt(u) := wt(u) - wt(s);

fi
end conceal;

THEOREM 7. A conceal operation takes O(1og n) time.

Proof. The proof is like that of Theorem 6. A conceal operation takes O(1og n)
time plus time for O(log n) slice operations, since the light operation preceding each
splice is repeated inside the slice. Consider a typical slice. Let p be the path sliced, let
u=light(p), let p’ be the path containing u after the slice (and thus after the

386 SLEATOR AND TARJAN

FIG. 10. A slice.

conceal), let s be the path returned by the slice, and let s' be the path containing
tail@) after the conceal. (See Fig. 10.)

The light and split operations take O(rank(p) - runk(v)) time. The delete
operation, if performed, takes O(log(wt(v)/wt(q))) = 0(1) time, where q is the deleted
path, since the edge (tail(q), v) is heavy. The one or two concatenate operations take
O(runk(p')-runk'(v)) time, where rank'(v) is the rank sf v after the slice. The
insert operation takes O(log(wt'(v)/wt(s))), where wt'(v) is the weight of v after the
slice.

Since (tail@), v) is light, wt(s) < wt(v). Thus rank(s) < 1 + [lg wt(s)J < 1 +
[lg wt(v)J = 1 + rank(v), and the light and split operations take O(rank(p) - rank(s))
time, which sums to O(log n) over all splices. Also rank@') 4 1 + [Ig wt(s')J Q 1 +
[Ig wt'(v)J = 1 + rank'(v), and the concatenate operations take O(rank(p') -
rank(s')) time, summing to O(1og n) over all splices. Finally, since wt(s) = wt(s') and
wt(u)< wt(p'), the time for inserts sums to O(log n) over all splices. This gives the
theorem. 1

From Theorems 6 and. 7 and the O(logn) time bound for individual path
operations, we obtain the following worst-case version of the main theorem:

THEOREM 8. With partitioning by size and a representation of solid paths as
globally biased binary trees, any dynamic tree operation takes O(1og n) time.

6. APPLICATIONS, RELATED WORK, AND REMARKS

In this section we shall give some applications of our algorithms for the dynamic
trees problem, in the process discussing previous work related to ours. Our list of
applications is meant to be illustrative, not exhaustive. We conclude the section with
a few remarks.

A DATA STRUCTURE FOR DYNAMIC TREES 381

Finding Roots
We obtain a primitive version of the dynamic trees problem if we allow only the

operations of root, link, cut, and evert. For the even more restricted problem with
only root and link, the “compressed tree” data structure for disjoint set union
[19,211 gives an O(n + ma(m + n, n))-time algorithm, where a is a functional inverse
of Ackermann’s function. The version of the disjoint set union algorithm that uses
union by rank or size [21] but not path compression can be adapted to handle root,
link, and cut in O(1ogn) time per operation. Although this method is relatively
simple, it does not seem to extend to allow euert, nor to maintain information about
the paths in the trees.

No Cuts or Everts
Tarjan [201 has studied a version of the dynamic trees problem in which links are

allowed but neither cuts nor everts, obtaining an O(n + ma(m + n, n))-time algorithm
with a number of applications. Tarjan uses the same idea we have used, of
partitioning the tree edges into heavy and light.

Nearest Common Ancestors
Another useful operation on dynamic trees is the following:

nca(vertex v, w): Return the nearest common ancestor of u and w.

The problem of implementing this operation along with some combination of link,
cut, and euert is the nearest common ancestor problem [1, 10, 131. Our data structure
easily adapts to this problem. To find the nearest common ancestor of u and w, we
expose v and then expose w, during the second expose noting the first vertex encoun-
tered on the previously exposed path from v ; this is the nearest common ancestor.
(With the data structure of Section 5 we must finish the operation by concealing w
and then u .) The previous result closest to this is by Aho et al. [11, who proposed a
method that allows links but neither cuts nor everts and runs in O((m + n) log n) time
and O(n log n) space. Maier [131 has given a more complicated method that reduces
the space required and allows cuts, though the time bound for a cut is O(n). Our
method allows both cuts and everts, uses O(n) space, and runs in U(log n) time per
operation.

Network Flow
A classic problem in network optimization is to find a maximum flow in a network

(a directed graph with nonnegative edge capacities) from a given source vertex s to a
given sink vertex t. A sequence of faster and faster algorithms have been devised for
this problem. For dense graphs, the best time bound known is O(n3) , attained by the
algorithms of Karzanov [111 and Malhotra et al. [141. For sparse graphs, the best
previously known time bound is O(nm(1og a)’), attained by the algorithm of Galil
and Naamad [8], rediscovered by Shiloach [16]. Here n is the number of vertices and
m is the number of edges in the problem graph.

Our data structure for dynamic trees gives an algorithm for this problem whose

388 SLEATOR AND TARJAN

running time is O(nm log n). Our algorithm (as are all the fast network flow
algorithms) is based on the fundamental work of Dinits [6] . Dinits reduced the
maximum network flow problem to the solution of n blocking flow problems. The
blocking flow problem is to find a flow in an acyclic network from a source s to a
sink t such that every path from s to t contains a saturated edge (an edge whose flow
equals its capacity). Dinits’ algorithm for finding a blocking flow consists of
beginning with the zero flow, discarding all zero-capacity edges, and repeating the
following step until there is no path from s to t :

Augmenting Step. Find a path from s to t . Let c be the capacity of a minimum-
capacity edge on the path. Send c units of flow through the path, reducing the
(residual) capacity of each edge on the path by c. Delete all edges whose capacity is
now zero.

Since each execution of the augmenting step saturates at least one edge, there are
at most m executions of the step. The hard part of the method is to find augmenting
paths and update edge capacities. The straightforward implementation of Dinits’
algorithm takes O(n) time per augmenting path plus O(m) time amortized over all
paths, for a total time of O(nm). Galil and Naamad [8] and Shiloach [161 discovered
an O(m(1og n)’)-time method that uses almost the same structure as described in
Sections 3 and 4, with balanced trees in place of biased trees representing solid paths.
We have obtained our result by introducing biased trees and doing the required
running time analysis.

Our data structure gives an O(m log n) time bound for the blocking flow problem.
We use dynamic trees to find augmenting paths and keep track of edge capacities.
The algorithm maintains a collection of trees consisting of at most one unsaturated
edge leaving each vertex; these edges are the current candidates to form augmenting
paths. Initially each vertex is in a separate tree. We execute Dinits’ algorithm as
follows:

Step 1.
Step 2 (v # t ; extend path).

Step 3 (all paths from 0 to t are blocked).

Let v = root(s). If v = t , go to Step 4; otherwise, go to Step 2.
If no edges leave vertex v, go to Step 3. Otherwise,

select an edge (v, w) leaving v and perform link(v, w, cupucity((v, w))). Go to Step 1.
If u = s, compute the unused capacity

of every tree edge using cost and stop. Otherwise, delete from the graph every edge
entering v. For each such edge (u, v) that is a tree edge, perform cut(u), recording the
unused capacity. Go to Step 1.

Let u = mincost(s). (Edge
(v,purent(v)) is a minimum-capacity edge on the augmenting path.) Let c = cost(v).
Perform updute(s, -c). Go to Step 5.

Step 5 (delete edges with no remaining capacity). Let v = mincost(s). If
cost(v) = 0, delete (v,purent(u)) from the graph, perform cut(v), recording an unused
capacity of zero, and repeat Step 5 . Otherwise, (cost(v) > 0), go to Step 1.

Step 4 (0 = t ; the tree path from s to t is augmenting).

A DATA STRUCTURE FOR DYNAMIC TREES 389

When the algorithm stops, we can compute the final flow from the original and
unused capacities. The algorithm requires O(m) dynamic tree operations and thus
takes O(m log n) time. Using this method for finding blocking flows we obtain an
O(nm log n) time bound for the maximum flow problem.

Another flow problem amenable to this approach is the acyclicjlow problem: given
a flow from s to t in an arbitrary network, reduce it to an acyclic flow by repeatedly
finding a cycle of flow and reducing the flow around the cycle to zero. An
appropriate version of the blocking flow algorithm will solve this problem in
O(m log n) time. We begin with each vertex in a separate tree, delete all zero-capacity
edges, and carry out the following steps:

Step 1. Let v = root(s). If no edges leave vertex v , go to Step 2. Otherwise, select
an edge (v, w) leaving v. If root(w)=u, go to Step 3. Otherwise, perform
link(v, w,flow((v, w))) and repeat Step 1.

If v = s, compute the current flow of
every tree edge using cost and stop. Otherwise, delete from the graph every edge
entering v. For each such edge (u, v) that is a tree edge, perform recording the
current flow. Go to Step 1.

Let u = mincost(w). Let c =
min{flow((v, w)), cost(u)}. Reduce flow((v, w)) by c and perform update(w, -c). Go
to Step 4.

Step 4 (delete tree edges with no remaining, flow). Let u =mincost(w). If
cost@) = 0, delete (u,parent(u)) from the graph, perform cut@), recording a current
flow of zero, and repeat Step 4. Otherwise (cost(u) > 0), go to Step 1.

Step 2 (all paths from v to t are acyclic).

Step 3 (a cycle of positive flow has been found).

Constrained Minimum Spanning Trees

Gabow and Tarjan [7] consider the following problem: Given a connected
undirected graph whose edges are of two colors, say white and black, and have real
valued costs, find a spanning tree of minimum total edge cost containing exactly k
black edges for some integer k. They describe an algorithm for this problem whose
critical part consists of repeating the following step n - 1 times: given a spanning tree
T and a non-tree edge { v , w } , find the maximum-cost edge, say (x , y } , on the (unique)
tree path joining v and w; form a new tree T’ by deleting (x, y) and adding (v , w). We
can use our data structure to carry out this process in O(1og n) time per swap for a
total of O(n log n) time.

The Network Simplex Algorithm
An edge-swapping process almost identical to the one described above occurs in

the network simplex algorithm for the transportation problem [4]. Operations
researchers have proposed various data structures to represent the so-called “feasible
tree solutions” in this problem, but they all take O(n) time per swap in the worst
case. With our data structure the time per swap is O(1ogn). Although theoretically
the network simplex algorithm needs exponential time in the worst case, it is heavily

3 90 SLEATOR AND TARJAN

used in practice, and our result offers hope of further improving its practical perfor-
mance.

Remarks and Further Research
Much work remains to be done on the dynamic trees problem. One direction for

future work is to implement our data structures and perform empirical experiments to
determine their practical value, if any. Sleator has implemented a dynamic trees
algorithm for maximum network flow. It is slower by a small constant factor (about
two) than the algorithm of Dinits except on specially constructed worst-case example
graphs. This merely reflects the fact that of randomly generated graphs only a small
fraction make Dinits’s algorithm perform poorly. Some experiments with our method
applied to the network simplex algorithm might be rewarding.

The amortized-time version of our data structure uses locally biased binary trees,
whereas the worst-case version uses globally biased trees. Globally biased trees will
work in the amortized-time version but locally biased trees will not work in the
worst-case version. Further work to improve and simplify the data structure may be
valuable. Recently the authors have discovered a new kind of search tree, called a
self-adjusting search tree [22], which can be substituted for biased binary trees in the
data structure of Sections 3 and 4. This produces considerable simplification. (See
Tarjan [23].)

REFERENCES

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, On finding lowest common ancestors in trees,

2. S. W. BENT, D. D. SLEATOR, AND R. E. TARJAN, Biased 2-3 trees, in “Proc. Twenty-First Annual

3. S. W. BENT, D. D. SLEATOR, AND R. E. TARJAN, “Biased Search Trees,” SIAM J. Cornput., to

4. C. V. CHVATAL, “Linear Programming,” Freeman, San Francisco, 1983, to appear.
5 . E. W. DIJKSTRA, “A Discipline of Programming,” Prentice-Hall, Englewood Cliffs, N.J., 1976.
6. E. A. DINITS, An algorithm for the solution of a problem of maximal flow in a network with power

7. H. N. GABOW AND R. E. TARJAN, Efficient algorithms for a family of matroid problems, J.

8. Z. GALIL AND A. NAAMAD, An Q(EVlog* V) algorithm for the maximal flow problem, J. Comput.

9. L. G. GUIBAS AND R. SEDGEWICK, A dichromatic framework for balanced trees, in “Proc.

10. D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM J.

1 1 . A. V. KARZANOV, Determining the maximal flow in a network by the method of preflows, Sovief

12. D. E. KNUTH, “The Art of Computer Programming, Vol. 3: Sorting and Searching,” Addison-

13. D. MAIER, An efficient method for storing ancestor information in trees, SIAM J. Comput. 8 (1979),

S I A M J . Comput. 5 (1975), 115-132.

IEEE Symp. on Foundations of Computer Science,” pp. 248-254, 1980.

appear. .:i J

estimation, Soviet Math. Dokl. I 1 (1970), 1277-1280.

Algorithms, to appear.

System Sci. 21 (1980), 203-217.

Nineteenth Annual IEEE Symp. on Foundations of Computer Science,” pp. 8-21, 1978.

Cornput., to appear.

Math. Dokl. 15 (1974), 434437.

Wesley, Reading, Mass., 1974.

599-618.

A DATA STRUCTURE FOR DYNAMIC TREES 39 1

14. V. M. MALHOTRA, M. P. KUMAR, AND S. N. MAHESHWARI, An O(lV13) algorithm for maximum

15. J. NIEVERGELT AND F. M. REINGOLD, Binary search trees of bounded balance, SIAM J. Cornput. 2

16. Y. SHILOACH, “An O(nZ log2 I) Maximum-Flow Algorithm,” Tech. Rep. STAN-CS-78-702,

17. D. D. SLEATOR, “An O(nm log n) Algorithm for Maximum Network Flow,” Tech. Rep. STAN-CS-

18. D. D. SLEAT~R AND R. E. TARIAN, A data structure for dynamic trees, in “Proc. Thirteenth Annual

19. R. E. TARJAN, Efficiency of a good but not linear set union algorithm, J. Assoc. Cornput. Mach. 22

20. R. E. TARJAN, Applications of path compression on balanced trees, 1. Assoc. Cornput. Mach. 26

21. R. E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis of set union algorithms, J. Assoc. Cornpuf.

22. D. D. SLEATOR AND R. E. TARIAN, Self-adjusting binary trees, in “Proc. Fifteenth Annual ACM

23. R. E. TARIAN, “Data Structures and Network Algorithms,” Society for Industrial and Applied

flows in networks, Idorrn. Proc. Lett. 7 (1978), 277-278.

(1973), 33-43.

Computer Science Department, Stanford University, Stanford, Calif., 1978.

80-83 1, Computer Science Department, Stanford University, Stanford, Calif., 1980.

ACM Symp. on Theory of Computing,” pp. 114-122, 1981.

(1975), 215-225.

(1979), 690-715.

Mach., to appear.

Symp. on Theory of Computing,” pp. 235-245, 1983.

Mathematics, Philadelphia, Penn., to appear.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium

