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A data structure is proposed to maintain a collection of vertex-disjoint trees under a 
sequence of two kinds of operations: a link operation that combines two trees into one by 
adding an edge, and a cut operation that divides one tree into two by deleting an edge. Each 
operation requires O(log n) time. Using this data structure, new fast algorithms are obtained 
for the following problems: 

(1) Computing nearest common ancestors. 
(2) Solving various network flow problems including finding maximum flows, blocking 

(3) Computing certain kinds of constrained minimum spanning trees. 
(4) Implementing the network simplex algorithm for minimum-cost flows. 

flows, and acyclic flows. 

The most significant application is (2); an O(mn log n)-time algorithm is obtained to find a 
maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest 
algorithm previously known for sparse graphs. 

1. INTRODUCTION 

In this paper we consider the following problem: We are given a collection of 
vertex-disjoint rooted trees. We want to represent the trees by a data structure that 
allows us to easily extract certain information about the trees and to easily update the 
structure to reflect changes in the trees caused by three kinds of operations: 

link(v, w ) :  If v is a tree root and w is a vertex in another tree, link the trees 
containing v and w by adding the edge(v, w),  making w the parent of v. 

cuf(v): If node u is not a tree root, divide the tree containing v into two trees by 
deleting the edge from u to its parent. 

everf(v): Turn the tree containing vertex u “inside out” by making v the root of 
the tree. 

We propose a data structure that solves this dynamic trees problem. We give two 
versions of the data structure. The first has a time bound of O(1ogn) per operation 
when the time is amortized over a worst-case sequence of operations; the second, 
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slightly more complicated, has a worst-case per-operation time bound of O(log n). ’ 
We use our data structure to devise- new fast algorithms for the following graph- 
theoretic problems: 
’ 

(1) Computing nearest common ancestors in O(log n) time per operation. 
(2) Finding various kinds of network flows, including maximum flows in 

O(nm log n) time,* blocking flows in O(m log n) time, and acyclic flows in O(m log n) 
time. 

(3) Computing certain kinds of constrained minimum spanning trees in 
O(m log n) time. 

(4) Implementing the network simplex algorithm for the transportation 
problem so that updating a feasible tree solution takes O(1og n) time per pivot step. 

The paper consists of six sections. In Section 2 we formulate a precise version of 
the dynamic trees problem and briefly discuss variations of the problem. In Section 3 
we present a high-level description of the first version of our data structure and carry 
out some preliminary running time analysis. The key idea presented in this section is 
the partitioning of each tree into a collection of vertex-disjoint paths. In Section 4 we 
discuss how to represent individual paths as biased trees and complete the description 
and analysis of the data structure. In Section 5 we develop the second version of our 
data structure. Section 6 contains applications, related work, and additional remarks. 
Our results extend and improve the preliminary work of Sleator and Tarjan [ 181. 

2. THE DYNAMIC TREES PROBLEM 

We shall consider the following version of the dynamic trees problem. We wish to 
maintain a forest of vertex-disjoint rooted trees,3 each of whose edges has a real- 
valued cost, under a sequence of eight kinds of operations, which can be intermixed in 
any order (see Fig. 1): 

purent(vertexu): Return the parent of u. If u has no parent (it is a tree root), 
return a special value null. 

root(vertex u ) :  
cost(vertex u ) :  

mincost(vertex u ) :  

Return the root of the tree containing u. 

Return the cost of the edge (u,parenf(u)). This operation assumes 

Return the vertex w closest to root(u) such that the edge 
that u is not a tree root. 

I IfJand g are functions of x, the notation ‘‘f(x) is O(g(x))” means there are positive constants c, and 

When discussing graph problems we denote by n the number of vertices and by rn the number of 

Our tree terminology is the same as that of Bent el al. [2], except that we use the term external node 

cz such that J ( x )  < cI  g(x) + cz for all x. 

edges in the graph. 

for a leaf of a binary tree. 
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FIG. 1. Operations on dynamic trees. (a) Three trees. Operation parenr(n) returns m, root(n) returns 
a, cost(n) returns 6, mincost(n) returns g. (b) Tree containing n after update(n, -1 ) .  (c) Tree formed by 
link@, t ,  7). (d) Trees formed by cut@) on tree in part (b). Value returned is 4. (e) Tree formed by 
everr(n) on tree in part (d). , 

(w,parent(w)) has minimum cost among edges on the tree path from u to root(u). 
This operation assumes that v is not a tree root. 

update(vertex v ,  real x): Modify the costs of all edges on the tree path from u to 
roof(u) by adding x to the cost of each edge. 

link(vertex u, w, real x): Combine the trees containing u and w by adding the edge 
(u,  w) of cost x, making w the parent of v.  This operation assumes that u and w are in 
different trees and v is a tree root. 

cuf(vertex 0): Divide the tree containing vertex v into two trees by deleting the 
edge (v,purenf(v)); return the cost of this edge. This operation assumes that u is not 
a tree root. 

everf(vertex u):  Modify the tree containing vertex v by making u the root. (This 
operation can be regarded as reversing the direction of every edge on the path from u 
to the original root.) 
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The operations parent, root, cost, and mincost extract information from the forest 
without altering it. The operation update changes edge costs but not the structure of 
the forest. The operations link, cut, and evert change the forest. These eight 
operations allow us to solve a number of graph-theoretic problems, as we shall see in 
Section 6. 

The data structure we shall develop to support these operations can be modified to 
handle slightly different operations as well. Some possible variations are the 
following: 

We can drop the operation evert, allowing some simplification of the data 
structure. We have included the evert operation to allow representation of free 
(unrooted) trees: We represent each free tree by a rooted tree and apply euert as 
necessary to change tree roots. In applications involving rooted trees directly, this 
operation is generally unnecessary. 

(2) We can add the operation update edge(v,x), which adds x to the cost of 
the edge (u,parent(v)). Note that if we allow evert, the operation update edge(u,x) 
can be simulated by the sequence w := root(v), evert(parent(v)), update(v, x ) ,  
evert( w). 

(3) We can add the operation update all(v,x), which adds x to the cost of all 
edges in the tree with root u. 

(4) We can associate costs with the vertices rather than with the edges. 
( 5 )  Instead of real-valued costs combined by minimization and updated by 

addition, we can allow the costs to the elements of an arbitrary (but fixed) semigroup, 
with the operations redefined appropriately. For a discussion of this generalization in 
the case that link is allowed but neither cut nor evert see Tarjan [20]. 

In our discussion of the dynamic trees problem we shall assume that the initial 
forest consists of n single-vertex trees; we shall use m to denote the total number of 
operations of the eight types. In stating time bounds we assume n 2 2. 

Before considering sophisticated solutions to the dynamic trees problem, it is 
worthwhile to examine the obvious solution: with each vertex 0, we store its parent 
p ( v )  and the cost of the edge(v,p(u)). Using this representation we can carry out a 
parent, Cost, link, or cut operation in 0(1) time. The time for each of the other four 
operations is proportional to the length of the tree path from u to root(v), which is 
O(n) in the worst case. 

By using an implicit representation of the structure of the forest, we can reduce the 
time for root, min, update, and evert to O(1og n) ,  at the cost of increasing the time for 
the other operations to O(1ogn). In the next three sections we develop two such 
implicit representations. 

(1) 
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3. DYNAMIC TREES AS SETS OF PATHS 

We shall present our solution to the dynamic trees problem in a top-down fashion. 
We begin by assuming that we know how to solve a version of the problem for the 
special case in which the trees are paths. More precisely, suppose we know how to 
carry out an intermixed sequence of the following 11 kinds of operations on a 
collection of vertex-disjoint paths, each of whose edges has a real-valued cost: 

puth(vertex u ) :  

heud(pathp): 

tuil(pathp): 

before(vertexu): 
path, return null. 

ufter(vertex u ) :  
return null. 

pcost(vertex u ) :  

prnincost(pathp): 

Return the path containing u. (We assume each path has a unique 
identifier.) 

Return the head (first vertex) of p .  

Return the tail (last vertex) of p .  

Return the vertex before u on puth(u). If u is the head of the 

Return the vertex after u on puth(u). If u is the tail of the path, 

Return the cost of the edge (u,  uffer(u)). This operation assumes 
that u is not the tail of puth(u). 

Return the vertex u closest to tuil(p) such that (u, uffer(u)) has 
minimum cost among edges on p .  This operation assumes that p contains more than 
one vertex. 

pupdute(pathp, real x): 

reuerse(pathp): 

Add x to the cost of every edge on p. 

Reverse the direction of p ,  making the head the tail and vice 
versa. 

concutenute(pathp, q, real x): 

split(vertex u ) :  

Combine p and q by adding the edge (tuil(p), 
heud(q)) of cost x. Return the combined path. 

Divide puth(u) into (up to) three parts by deleting the edges 
incident to u. Return a list [ p ,  q, x, y ] ,  where p is the subpath consisting of all vertices 
from head(puth(u)) to before(u), q is the subpath consisting of all vertices from 
ufter(v) to tuil(puth(u)), x is the cost of the deleted edge(before(u), u),  and y is the 
cost of the deleted edge(u, ufter(u)). If u is originally the head of puth(u), p is null and 
x is undefined; if u is originally the tail of puth(u), q is null and y is undefined. 

Using these path operations as primitives, we can develop a solution to the 
dynamic trees problem. We partition each tree into a collection of vertex-disjoint 
paths and carry out each tree operation by means of one or more path operations. 
We shall present two variations of this approach: naive partitioning, which gives an 
O(log n )  amortized time bound per tree operation, and partitioning by size, which 
gives an O(1ogn) worst-case time bound per tree operation. In this and the next 
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section we develop the naive partitioning method; in Section 5 we discuss partitioning 
by size. 

Nu iue Par fit ioning 
In the naive partitioning method, the partition of each tree into paths is determined 

not by the structure of the tree but by the sequence of tree operations so far 
performed. We partition the edges of each tree into two kinds, solid and dashed, with 
the property that at most one solid edge enters any vertex. (See Fig. 2.) Thus the solid 
edges define a collection of solid paths that partition the vertices. (A vertex with no 
incident solid edge is a one-vertex solid path.) The head of a path is its bottommost 
vertex; the tail is its topmost vertex. 

We represent the dashed edges using the obvious method discussed at the end of 
Section 2: with each vertex u that is the tail of a solid path, we store dpurenf(u), the 
parent of u (via the outgoing dashed edge), and dcosf(u), the cost of the edge 
(u,purenf(u)). If u is a tree root, dpurenf(u)=null and dcosf(u) is undefined. We 
manipulate the solid paths using the eleven path operations defined. In addition we 
need two composite operations (see Fig. 3): 

splice(pathp): Extend the solid path p by converting the dashed edge leaving 
tuil(p) to solid and converting the original solid edge entering purent(fuil(p)) (if any) 
to dashed. Return the extended path. This operation assumes that fuil(p) is not a tree 
root (that is, there is a dashed edge leaving fuil(p)).  

Create a single solid path with head u and tail roof(u) by 
converting dashed edges to solid along the tree path from u to root(u) and converting 
solid edges incident to this path to dashed. Return the resulting solid path. 

expose(vertex u ) :  

We implement splice and expose as follows, where our algorithmic notation is a 
version of Dijkstra’s guarded command language [ S ]  augmented with functions and 
procedures and with the vertical bar “1” used in place of the box “0”: 

function splice(path p ) :  
vertex u;  path q, r; real x, y ,  
u := dpurent(tuil(p)); 
[q, r, x,  y ]  := splif(u); 
ifq # null -+ dpurent(fuil(q)), dcosf(fuil(q) := u, x ti; 

return if r = null -, p 

1. 

2. p := concutenute(p,puth(u), dcost(tuil(p))); 

3 .  

end splice; 

[ r # null -, concutenute(p, r, y )  
fi 

Note. Line 1 of splice converts to dashed the solid edges (if any) incident to 
u =purenf(fuil(p)). Line 2 converts to solid the dashed edge leaving fuil(p). Line 3 
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FIG. 2. A tree partitioned into solid paths. Path It, 9,p .  I ,  i, dl has head t and tail d. 

FIG. 3. Splice and expose. (a) The effect of splice(p). The letters “9,” “r,” and “u” refer to the 
corresponding variables in the program for splice. (b) The effect of expose(v). 
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converts to solid the dashed edge leaving u. To make this program robust, an error 
check should be added to ensure that on entry dparent(tail(p)) z null. I 
function expose(vertex u ) ;  

pathp, q, r; real x, Y ;  
1. [q, r, x, y ]  := spZit(u); 

if q # null + dprent(tail(q)), dcost(tail(q)) := u, x ti; 
ifr=null+p :=purh(u); 

2. 
fi, 

3. do dpurent(taiZ(p)) # null + p  := spZice(p) od; 
returnp 

end expose; 

Note. Line 1 of expose converts to dashed the solid edges (if any) incident to u. 
Line 2 restores to solid the edge out of u if it has just become dashed. Line 3, the 
main part of expose, is a do loop that extends the path containing u by splicing until 
its tail is the tree root. 

I r # null + p  := concatenute(path(v), r, y )  

I 
We implement the eight tree operations as follows: 

function parent(vertex u); 
return ifo = tuiZ(path(u)) 4 dparent(u) 

I u # tail(path(u)) + Llfter(u) 
ti 

end parent; 

function root(vertex u) ;  

end root; 

function cost(vertex u) ;  . 

return tail(expose(u)) 

return if u = tail(path(u)) --t dcost(u) 
1 u # taiZ(path(u)) +pcost(u) 
ti 

end cost; 

function mincost(vertex u) ;  
return pmincost(expose(u)) 

end min; 
procedure update(vertex u, real x ) ;  

end update; 

procedure link(vertex u, w, real x);  

end link; 

pupdate(expose(u), x )  

concatenate(path(v), expose(w), x )  
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function cut(vertex 0); 

path p ,  q;  real x,  Y ;  
expose(v); 
[ P,  4, x, v ]  := SpWv); 
dpurent(v) := null; 
return y 

end cut; 

procedure euert(v); 

end evert; 

We allow a function to be used as a procedure. In such a use the value 
returned is ignored. Function concatenate is so used in link, and expose is so used in 
cut. There are simpler ways to implement link and cut; we have chosen these methods 
for technical reasons discussed in Section 4. 

Analysis of Expose 
Having specified an implementation of the dynamic tree operations in terms of 

path operations, we can begin a running time analysis. At this level of detail, the only 
nontrivial task is to count the number of splice operations per expose. In the 
remainder of this section we shall derive an O(n + m log n)  bound on the number of 
splices caused by a sequence of m tree operations. This bound implies that there are 
O(1og n )  splices per expose amortized over the sequence. 

The O(n + m log n )  bound on splices is implicit in the work of Galil and Naamad 
[8] and Shiloach [16], although they did not consider evert operations. Galil and 
Naamad obtained the bound by applying an upper bound for path comparison 1191; 
Shiloach gave a somewhat obscure direct proof. We shall give a simple direct proof 
that accommodates evert. 

To carry out the proof we need one new concept. We define the size of a vertex u 
in the forest, denoted by size(v), to be the number of descendants of u, including u 
itself. We define a tree edge (u,parent(v)) to be heavy if 2 size(u) > size(parent(u)) 
and light, otherwise. The following result is obvious: 

reuerse(expose(v)); dparent(v) := null 

Remark. 

LEMMA 1. Let u be any vertex. Then 1 < size(v) 4 n, there is at most one heavy 
edge entering v ,  and there are at most [Ig n j 4  light edges on the tree puth from u to 
root(v). 

By considering the dashed versus solid and heavy versus light edge partitions, we 
can divide the edges into four classes: heavy dashed, heavy solid, light dashed, and 
light solid. By studying the effect of the various tree operations on these classes, we 
can bound the total number of splices. We call an operation splice(p) special if on 
entry to splice purent(tuil(p)) is the head of a path and normal, otherwise. A special 

We use Ig n to denote log, n. 
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splice increases the number of solid edges by one; a normal splice leaves the number 
of solid edges unchanged. 

THEOREM 1. There are at most m special splices. 

Proof. Let #solids, #exposes, #specials, #links, and #cuts be the number of solid 
edges, expose operations, special splices, links, and cuts, respectively, all as a 
function of time. There are #links - #cuts tree edges; thus 'solids < #links - #cuts. 
Lines 1 and 2 of expose decrease #solids by at most one; line 3 of expose increases 
#solids by at most one per special splice. Outside of expose, link increases #solids by 
one and cut decreases #solids by at most one. Thus 'solids 2 #specials + 'links - 
xexposes - 'cuts, which means 'specials < "exposes + 'solids - Sinks + 'cuts < 
#exposes < m. I 

THEOREM 2. 

Proof. 

There are at most m(3Llg n J + 1) splices. 

Call an operation splice(p) light if the edge (tail(p),parent(tail(p))) is 
light and heavy, otherwise. During a single expose there are at most [Ig n ]  light 
splices by Lemma 1, since all the corresponding light edges are on a single tree path. 
Thus there are [lg n ]  - "exposes light splices altogether. To bound the number of 
heavy splices, we keep track of the number #hs of heavy solid edges. 

During an expose, each heavy splice increases #hs by one, each light splice 
decreases 'hs by at most one, and lines 1 and 2 of expose decrease 'hs by at most 
one. 

The operation link(v, w, x )  increases the size of all nodes on the tree path from w 
to root(w), possibly converting edges on this path from light to heavy and edges 
incident to the path from heavy to light. After the operation expose(w) in link, all the 
edges incident to the path are dashed, and adding the edge (0, w )  does not decrease 
#hs. 

The operation cut(v) decreases the size of all nodes except u on the (original) tree 
path from v to root(v). Up to [lg n ]  of the edges on this path may become light; thus 
the cut may decrease #hs by up to [Ig n J + 1 including the edge deleted by the cut. 

The operation evert(v) changes the size of all nodes on the (original) tree path 
from v to root(v). After the operation expose(v) in evert, all the edges on this path are 
solid and all incident edges are dashed. Reversing the path may cause up to [Ig n J of 
its edges to become light; thus the evert may decrease #hs by up to [lg n ] .  

We conclude that #links - 'cuts 2 #hs > #heavy - splices - Sight - splices - 
#exposes - ([lg n ]  + 1) - #cuts + [lg n ]  *everts, where our notation is similar to that 
in the proof of Theorem 1.  This means that #heavy - splices < #links - #cuts + *light 
- splices + "exposes + ([lg nJ + 1) #cuts + [lg n ]  #everts < m(2[1g n J  + l) ,  and the 
total number of splices is at most m(3[Ig n ]  + 1). I 

In  a sequence of m dynamic tree operations there are O(m log n )  
path operations (with splice and expose broken down into their component 
operations >. 

THEOREM 3. 

Proof. The proof is immediate from Theorem 2. I 
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4. DYNAMIC PATHS AS BIASED BINARY TREES 

To complete our solution we need a data structure to represent dynamic paths. For 
this purpose we use full binary trees. As usual we develop the data structure in an 
incremental fashion, introducing new ideas as we need them. 

We represent each path by a binary tree whose external nodes in left-to-right order 
correspond to the vertices on the path from head to tail and whose internal nodes in 
symmetric order correspond to the edges in the path from head to tail. (See Fig. 4.) 
We shall generally not distinguish between a tree node and the corresponding vertex 
or edge on the path. Every node in the tree corresponds to the subpath whose vertices 
are its external descendants. Thus we can regard the root of the tree as identifying the 
path, and we shall generally not distinguish between the path and this root. 

To facilitate the various path operations, we store with each node of a binary tree 
information about the path it represents. (See Fig. 5 . )  Each node u contains a bit 
externul(v) indicating whether it is an external node and a pointer bpureelit(u) to its 
parent in the binary tree; if v is the root of the binary tree, bparent(v) = null. 

Each internal node u contains four additional pointers: bleft(v) and bright(u), 
which point to the left and right child of u, and bhead(u) and btuil(v), which point to 
the head and tail of the subpath corresponding to u (the leftmost and rightmost 
external descendants of u).  To handle reversal, each internal node u also contains a 
bit reversed(u). We define the reuersul state of v to be the exclusive or of the reuersed 
bits on the path from u to the root of the binary tree; if the reversal state of u is true, 
the meanings of left and right are reversed at u. (Pointer bleft(u) points to the right 
child of u, bhead(u) points to the rightmost external descendant of u, and similarly for 
bright and btail.) 

The internal nodes also contain information about the edge costs. If u is an internal 
node, we define grosscost(u) to be the cost of the corresponding edge on the path and 
grossmin(u) to be the minimum of grosscost(w) for w an internal descendant of u 
(grosscost(u) is the minimum cost of an edge on the subpath corresponding to u). We 

6 3 4  2 ( a )  . 
a b c d  e 

c d  

FIG. 4. A path and a binary tree representing it. (a) Path with head a and tail e. (b) Binary tree. 
External nodes (squares) are labeled with corresponding vertices, internal nodes (circles) with 
corresponding edges. 
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(0) 

d 

FIG. 5. Details of the binary tree representation. (a) Format of internal nodes, omitting external 
bits. (b) Data structure representing the path in Fig. 4. 

represent grosscost and mincost implicitly by storing with each internal node u two 
values, netcost(u) and netmin(u), defined as follows: 

netcost(u) = grosscost(u) - grossmin(u). 

netmin(u) = grossmin(u) if u is a binary tree root, 

grossmin ( u )  - grossmin (bparent(u)), otherwise. 

The value of netcost(v) is nonnegative for any internal node u; the value of 
netmin(u) is nonnegative unless u is a binary tree root. We can compute grossmin(u) 
for any internal vertex by summing netmin on the path from u to the binary tree root, 
and grosscost(v) as netcost(o) plus grossmin(u). 

Implementation of the Static Path Operations 
This representation allows us to efficiently perform all the static path operations. 

(The static path operations are all those except concatenate and split, which change 
the structure of the paths.) We implement these operations as follows: 

path(u): Follow bparent pointers from u until reaching a node w with 
bparent(w) = null, and return w. This operation takes time proportional to the depth 
of u in the binary tree containing it. 

head(p): If reuersed(p) is true, return btail(p); otherwise return bhead(p). This 
takes O( 1) time. 

taiI(p): Symmetric to head. 
before(u): Traverse the binary tree path from u to path(u). Back up along this 
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path computing the reversal state of each internal node on the path. Find the deepest 
node w on the path that is the right child of its parent. Return the rightmost external 
descendant of the sibling u of w. (Node u is the child of bparent(w) other than w ;  its 
rightmost external descendant is u if u is external, bheud(u) if u is internal with a true 
reversal state, and btuil(u) if u is internal with a false reversal state.) This takes time 
proportional to the depth of u. 

after(u): Symmetric to before. 
pcost(u): Traverse the binary tree path from u to path(u). Back up along this path 

computing the reversal state and grossmin of each internal node on the path. Find the 
deepest node w on the path that is the left child of its parent. Return grosscost- 
(bparent(w)), computed as netcost(bparent(w)) plus grossmin(bparent(w)). This takes 
time proportional to the depth of u. 

pmincost(p): Starting from p ,  which is the root of a binary tree, proceed 
downward in the tree, keeping track of reversal states, until finding the node u last in 
symmetric order such that grosscost(u) = grosscost(p). This can be done by 
initializing u to be p and repeating the following step until u has netcost zero and its 
right child is either external or has positive netmin: If the right child of u is internal 
and has netcost zero, replace u by its right child, otherwise if u has positive netcost, 
replace u by its left child. Once u is computed, return the rightmost external 
descendant of its left child. This takes time proportional to the depth of u. 

Negate reuersed(p). This takes O( 1) time. 
pupdate(p,x): 
reuerse(p): 

Remark. 

Add x to netmin(p). This takes 0(1)  time. 

In some applications not requiring all the path operations, the remaining 
operations are easier to implement and we can drop some of the node fields. In 
particular, if we do not need evert we can drop the reversed bits and the bhead fields 
and carry out the parent function in O( 1) time by maintaining a parent field for all 
vertices instead of a dparent field just for the vertices with an outgoing dashed edge. 
Additional simplification is possible in this case. (See Sleator [ 171.) I 

Implementation of the Dynamic Path Operations 
In order to implement concatenate and split, we need four operations that 

assemble, take apart, and modify binary trees: 

construct(node u, w,  real x ) :  Given the roots u and w of two binary trees and a 
real value x,  combine the trees into a single tree by constructing a new root node with 
left child u, right child w, and grosscost x. 

Given the root of a nontrivial binary tree, divide the tree into its 
component parts: the subtree whose root, say u, is the left child of u and the subtree 
whose root, say w, is the right child of u. Let x be the cost of edge u. Destroy node u 
and return the list [u,  w, XI. 

Perform a single left rotation at node u. (See Fig. 6.) Node u 
must have an internal right child. 

destroy(u): 

rotuteleft(node u ) :  
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ROTATE RIGHT 

FIG. 6.  A single rotation. Triangles denote subtrees. 

rotateright(node u):  Perform a single right rotation at node u. (See Fig. 6.) Node 
u must have an internal left child. 

Note. Left rotation and right rotation are symmetric and are inverses of each 
other. I 

It is easy to verify that with our binary tree representation each of these operations 
takes O(1)  time, including updating all the node fields. These operations suffice for 
concatenating and splitting paths represented by any of the standard classes of 
balanced binary trees, such as height-balanced trees [ 121, weight-balanced trees [ 151, 
or red-black trees [9]. For any of these classes, the depth.of a tree of n external nodes 
is O(logn), and concatenation and splitting take O(1ogn) time. Thus any path 
operation takes O(log n )  time. The splice operation also takes O(1og n )  time, but this 
is not true of expose. From Theorem 3 we obtain the following bound, which 
generalizes the corresponding bound of Galil and Naamad [8] and Shiloach [ 161 for 
a sequence of dynamic tree operations not including evert: 

THEOREM 4. With a representation of solid paths as balanced binary trees, a 
sequence of m dynamic tree operations takes O(m(1og n ) ’ )  time. 

In order to improve this result by a factor of log n, we use biased binary trees (31 
(see also the earlier paper [ 2 ] )  to represent the solid paths. In a biased binary tree, we 
are allowed to specify a positive weight wt(v)  for each external node u. Each node u 
has an integer rank denoted by rank(u), whose relevant properties for our purposes 
are the following (see Fig. 7): 

(i) If u is external, rank(u)= [lg wt(u)j.  If u is any node, rank(u)< 1 + 
[lg wt(u ) ] ,  where we inductively define the weight of an internal node to be the sum of 
the weights of its children. 

(ii) If node w has parent u, rank(w) < rank(u), with the inequality strict if w is 
external. If w has grandparent u,  rank(w) < rank(#). 

LEMMA 2. If u is an external node in a biased binary tree with root u, the depth 
of u is at most 2(rank(u) - rank(u)) < 2 lg(wt(u)/wt(u)) + 4. 

Property (ii) implies that the depth of u is at most 2(rank(u) - rank(u)). 
Property (i) implies that rank(#) - rank(u) < lg(wt(u)/wt(u)) + 2. Combining these 
gives Lemma 2. I 

Proof. 
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FIG. 7. A biased binary tree. Weights are inside nodes, ranks next to nodes. 

Biased binary trees can be concatenated and split using node construction and 
destruction, single rotation, and the operation of increasing the rank of a node by 
one. In order to understand the time bounds for concatenation and splitting, we need 
the concept of amortization by credits. A credit represents one unit of computing 
time. To perform a concatenate or split we are given a certain number of credits. 
Spending one credit allows us to perform 0(1) computational steps. If we complete 
the operation before running out of credits we can save the unused credits to use on 
future operations. If we run out of credits before completing the operation we can 
spend credits previously saved. If we can perform a sequence of operations starting 
with no saved credits and without running out of credits before the sequence is 
complete, then the number of credits allocated for each operation gives an upper 
bound on its running time, amortized over the sequence. We call this the amortized 
time of the operation. The following bounds hold for the class of “locally” biased 
binary trees: 

LEMMA 3 [3]. A concatenation of two trees with roots p and q takes Irank(p) - 
rank(q)l + 1 credits and thus O(lrank(p) - rank(q)l) amortized time. The root of the 
new tree has rank max{rank(p), rank(q)} or max(rank(p), runk(q)} + 1. 
LEMMA 4 [3]. An operation split(v) returning the list [q, r ,x ,y]  takes 

O(rank(p) - rank(v)) amortized time, where p is the root of the original binary tree 
containing v. If q # null, ran&) < rank(p) + 1; if r f null, rank(r) < rank(p) + 1. 
As a side effect, the split leaves an excess of rank(p) - rank(q) + 1 credits i f q  # null 
and rank(p) - rank(r) + 1 diflerent tokens if r # null. These excess credits can be 
used for any purpose. 

To represent solid paths as biased binary trees we must define a weight for each 
vertex. Recall that in Section 3 we defined size(v) for a vertex v to be the number of 
descendants of v in its dynamic tree. We define the weight of v as 
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wt(v) = size(v) if no solid edge enters v ;  

size(v) - size(w) if the solid edge (w, v) enters v .  

Every node v in a biased binary tree representing a solid path has 
1 < wt(v) Q n, where n is the total number of vertices. Thus 0 < rank(v) Q 1 + 1g n. 

Proof: Let p be the root of the binary tree containing node v. The definition of 
weight implies that 1 Q wt(v)  Q wt(p)  = size(tail(p)) Q n. 

With each node in a biased tree we store its rank and weight. In order to use 
biased binary trees to represent solid paths, we must modify the implementations of 
some of the tree operations to update weights. With the implementation presented in 
Section 3, only construct, rotateleft, rotateright, splice, and expose need changing; 
link, cut, and evert are defined so that they do not change any node weight except 
inside expose. We augment construct, rotateleft, and rotateright to keep track of 
weights, and we augment splice and expose as follows, where the arrows denote the 
additions: 

LEMMA 5. 

I 

function splice(path p ) ;  
vertex v ;  path q, r; real x, y ;  
0 := dparent(tail(p)); 
[q, r, x, y ] := split(v); 
wt(v)  := wt(v)  - wt(p); 
if q # null 

1. 
* 

dparent(tail(q)), dcost(tail(q)) := v, x;  
* wt(v)  := wt(v)  + wt(q) 

fi; 
2. p := concatenate(p, path(v), dcost(tail(p))); 

return if r = null + p  
3. 

end splice; 
function expose(vertex 0); 

1. [q, r, x, y ]  := split(v); 
if q # null + 

1 r # null + concatenate( p,  r, y )  
fi 

pathp, q, r; real x, y; 

dparent(tail(q)), dcost(tail(q)) := v, x;  
=- wt(v) := wt(u) + wt(q) 

fi; 
i f r  = null + p  :=path(v) 

2. I r # null + p  := concatenate(path(o), r, y) 
fi; 

3. do dparent(tail(p)) # null + p  := splice(p) od; 
return p 

end expose; 
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This completes our description of the data structure. 

Running Time Analysis 
Our main theorem bounds the running time of the method we have just developed. 

THEOREM 5 .  With naive partitioning and representation of solid paths as locally 
biased binary trees, a sequence of m dynamic tree operations takes O(m log n )  time. 

Lemmas 2-5 imply that any path operation takes O(1ogn) time, worst 
case for the static path operations and amortized for concatenate and split. A splice 
also takes O(1ogn) amortized time. This means by Theorems 1 and 2 that the time 
for m dynamic tree operations is O(m log n)  plus the time for the O(rn log n )  normal 
splices that take place during exposes. To bound the time for the normal splices, let 
us consider the ith normal splice that takes place during the do loop of an expose. 
(See Fig. 8. )  

Let u be the tail of the path being extended by the splice, p the path containing u 
before the first splice, p’  the path containing u before the ith splice, v the parent of u, 
s the path containing u before the first splice, and s’ the path containing v (and u )  
after the ith splice. We also use p,p’ ,  s, s’ to denote the roots of the binary trees 
representing the corresponding paths. We shall prove that the splice has an amortized 
time bound of O(rank(s) - rank(p) + rank(s’) - rank(p’)). In the process we shall 
prove that rank(s) > rank(p) and rank(s’) 2 rank(p’). 

Let wt(v) be the weight of v before the splice and wt’(u) the weight of v after the 
splice; similarly for rank(v) and rank’(v). Then rank(s) > rank(v) + 1 = 1 + 
[Ig wt(v)J 2 1 + [Ig wt(p)J  > rank(p). (Since the splice is normal, s # v.  Since v is an 
external node, it has rank strictly less than that of its parent by property (ii). The 
remaining inequalities follow from property (i) and the definition of weights.) The 
same argument shows that rank(s) > rank(p’). 

The amortized time for the split in line 1 of splice is O(rank(s)-rank(v))= 
O(rank(s)-rank(p)). Since the split is normal, it leaves an excess of rank(s)- 
rank(q) + 1 > 0 credits, where q is as defined in the implementation of splice. We 
have rank(s’) 2 rank’(o) + 1 >/ 1 + [lg wt’(u)J 2 1 + [lg wt(q)J > rank(q). Further- 
more, rank(s‘)>rank(p‘) by Lemma 3. The number of credits needed for the 

Proox 

FIG. 8. A normal splice. 
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concatenation in line 2 of splice is Irank(p’) - rank’(u)l + 1 6 2 rank(s‘) - 
rank(p’) - rank‘(u) + 1 6 rank(s’) - rank(p‘) + runk(s‘) - rank(q) + 2, since prop- 
erty (i) implies rank’(u) > runk(q) - 1. Since we have rank(s) - rank(q) + 1 credits 
on hand, the number of new credits we need is rank@‘) - rank(p’) + runk(s’) - 
rank(s) + 1 Q 2(rank(s‘) - rank(p’))  + 1. 

The last operation is the concatenation in line 3 of splice. If it takes place, there 
are rank(s) - runk(r) + 1 > 0 credits still available from the split in line 1, where r is 
as defined in the implementation of splice. The number of credits needed for the 
concatenation is at most 2 rank@’) - runk(p’) - rank(r) + 1 since rank(s’) > 
max(rank(p‘), rank(r)} by Lemma 3. Thus the number of new credits needed is at 
most 2(rank(s’) - rank(p’)) by the same argument. 

Combining the estimates for the split and the two concatenates, we obtain the 
claimed bound of O(rank(s) - rank(p) + rank(s’) - rank(p’))  on the amortized time 
of the splice. Note that rank(s) > rank(p) and rank(s’) > rank(p‘). If we sum this 
estimate over all the normal splices that take place during a single expose, the sum 
telescopes, and Lemma 5 gives a bound of O(k + log n) for the amortized time taken 
for the entire expose, where k is the number of normal splices. From this and 
Theorem 2 we obtain an O(m log n) bound on the time for the normal splices during 
all m dynamic tree operations, and hence an O(m log n) bound on the total time for 
the tree operations. 1 

5. PARTITIONING BY SIZE 

The data structure described in Sections 3 and 4 is a good one if amortized 
running time is the relevant complexity measure, which is the case in most of the 
applications known to the authors. If worst-case per-operation running time is 
important, we can modify the data structure so that each individual dynamic tree 
operation takes O(log n) time. In this section we present the required modifications. 
The modified structure is more complicated than the original, meaning that the 
original is likely to perform better in practice. Thus the new structure is mainly of 
theoretical interest. We shall omit some of the details, concentrating on the main 
ideas. 

As in Section 3, we decompose each tree into vertex-disjoint solid paths, but we 
define the solid edges according to the tree structure rather than according to the 
sequence of previously performed tree operations. Specifically, we call an edge (u,  w) 
solid if and only if it is heavy, namely, if and only if 2 size(u) > size(w). Thus, 
whereas in Section 3 we used light and heavy edges only as an analytical tool, here 
they become part of the data structure. With this definition a tree path from a vertex 
u to root(u) contains at most [lg nj dashed edges by Lemma 1 and thus intersects at 
most [Ig n] + 1 solid paths. 

We implement the dynamic tree operations using expose as we did in Section 3. A 
new problem arises: an expose can convert light edges to solid and heavy edges to 
dashed, violating the definition of solid edges. Thus we must conclude each tree 
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operation by repairing the damage caused by the expose. For this purpose we use the 
following operation: 

conceul(pathp): Convert to dashed every light edge on path p ,  and to solid every 
heavy edge incident to p, including the heavy edge, if any, incident to heud(p). 

We implement the eight tree operations as follows: 

function purent(vertex 0); 

(same as in Section 3) 
function root(vertex u);  

Pa& P;  
p := expose(u); 
u := tuil(p); 
conceal( p )  ; 
return u 

end root; 
function cost(vertex 0); 

(same as in Section 3) 
function mincost(vertex u);  

pathp; real x ;  
p := expse(u); 
x :=pmincost(p); 
conceal( p )  ; 
return x 

end min; 
function updute(vertex u, real x ) ;  

Pa& P; 
p := expose(0); 
Pupdatdp, x ) ;  
conceul( p )  

end update; 
procedure link(vertex u, w, real x);  

end link; 
function cut(vertex u);  

Path P, 9, r; real x ,  y ;  
p := expse(u); 
[q, r, x,  y ]  := split(u); 
dpurent(u) := null; 
conceal( r )  ; 
conceuZ( path( u)) ;  

conceul(concutenute( puth(u), expose(w ), x ) )  

end cut; 
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Note. In the program for cut, the exposed path p is broken by the cut into two 
parts, the path consisting only of vertex v and the path r. Both parts must be 
concealed. I 
procedure evert(v); 

pabp; 
p := expose(v); 
reverse( p )  ; 
2iparent(v) := null; 
conceal( p )  

end evert; 

New Features of the Data Structure 
In order to implement conceal efficiently, we must make three changes in the data 

structure. The first change is to add two fields to each internal node in a binary tree. 
(See Fig. 9.) If u is an internal node corresponding to an edge (v, w ) on the solid path 
p, we define lefttilt(u) to be the sum of weights of vertices on the subpath o f p  from 
head(p) to v minus the weight of w. The condition that (v, w ) is heavy is equivalent 
to lefttilt(u) > 0. We define leftmin(u) to be the minimum .of lefttilt(t) for t an internal 
descendant of u. We need leftmin to locate light edges during conceal operations. To 
handle reverse, we also need the symmetric values righttilt(u), defined to be the sum 
of weights of vertices on the subpath of p from w to tail(p) minus the weight of u, 
and rightmin(u), defined to be the minimum of righttilt(t) for t an internal descendant 
of u. 

To represent these values, we use two fields for each internal node u :  

netleftmin(u) = leftmin(u) if u is a binary tree root; 

leftmin(u) - lefrmin(bparent(u)), otherwise. 

netrightmin(u) = rightmin(u) if u is a binary tree root; 

rightmin ( u )  - rightmin (bparent(u)), otherwise. 

As with bleft and bright, and bhead and btail, the values of netleftmin(u) and 
netrightmin(u) are interchanged if the reversal state of u is true. 

Starting from the binary tree root corresponding to a solid path p and proceeding 
downward in the tree, we can compute leftmin and rightmin for each internal node 
visited in O( 1) time per node. We can also compute lefttilt and righttilt for each node 
visited in 0(1) time per node, using the following observations: If u is an internal 
node representing an edge (v, w), both v and w are accessible from u in 0(1) time via 
bleft, bright, bhead, and btail. Thus wt(v)  and wt(w) are available in 0(1) time. 
Furthermore the sum of weights of vertices before w (after v) on p is the sum of 
weights of internal nodes t such that t is the left (right) child of an ancestor of u but t 
is not an ancestor of u. We can compute these two sums for each internal node u in 
O( 1) time per node while descending from the tree root. Henceforth we shall assume 
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( 0 )  

FIG. 9. Fields to represent lefttilt and righttilt. (a) Format of internal nodes, omitting external bits 
and fields shown in Fig. 5. (b) Values of fields representing a path whose vertices have weights 6, 3, 2, 4, 
9, assuming all reversed bits are false. 

that leftmin(u), rightmin(u), lefttilt@), and righttilt@) are available whenever we visit 
an internal node u. 

It is easy to augment construct, destroy, rotateleft, and' rotateright so that they 
update the netleftmin and netrightmin fields and still take 0(1) time. We need one 
additional path operation: 

Return the vertex w closest to tail(p) such that (before(u), u )  is 
light; return null if there is no such vertex. 

light(pathp): 

We implement light in the same way as pmincost. Starting from the root of the 
binary tree representing p ,  we proceed downward, using leftmin and lefttilt to guide 
the descent, until reaching the internal node u last in symmetric order such that 
lefttilt@) < 0; then we return as w the leftmost external descendant of the right child 
of u. This takes time proportional to the depth of w in the binary tree; if null is 
returned, the time is O( l)., 

The second change is to use globally biased instead of locally biased binary trees 
to represent the solid paths. Globally biased binary trees [3] have the same static 
properties as locally biased trees, namely (i) and (ii) of Section4, but concatenate 
and split have better worst-case running times, given in Lemmas 6 and 7. 

LEMMA 6 [3]. An operation concatenate(p, q, x) takes O(max{rank(p), 
rank(q)} - max{rank(u), rank(w)}) time, where u = tail(p) and w = head(q), and 
produces a tree whose root has rank max{rank(p), rank(q)} or max{rank(p), 
rank(q)} + 1. 

LEMMA 7 [3]. An operation split(u) takes O(rank(p) - rank(u)) time, where p = 
path(u). 

We use the same definition of weight as in Section4. Lemmas 2 and 5 remain 
valid; thus any single path operation takes O(1og n) time. 
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The third change is to add an extra part to our data structure. For each vertex v, 
we maintain a path set containing each path p such that (tail(p), v) is a dashed edge. 
We manipulate path sets by means of three operations: 

maxwt(vertex v): Return the path of maximum weight in the path set of v ;  return 
null if the path set is empty. (Recall that the weight of a path is the sum of the 
weights of its vertices.) 

insert(pathp, vertex 0): 
delete(pathp, vertex 0): 

We represent the path set of a vertex by a globally biased binary tree, with the 
paths appearing as external nodes in left-to-right order by decreasing weight. The 
weight of a path is also used to determine its rank in the tree. For each internal node 
we maintain a pointer to its leftmost leaf descendant. With this representation the 
time to perform a maxwt operation is 0(1), and the time to perform insert(p, v) or 
delete(p, u )  is O(log(W/wt(p))), where W is the sum of the weights of the paths in 
the path set of u before the operation. The bounds for insert and delete follow from 
Lemmas 6 and 7 and the ordering of paths in the path set by weight. 

Insert path p into the path set of v. 
Delete path p from the path set of v. 

Implementation and Analysis of Expose and Conceal 

Since each path operation takes O(1ogn) time, so does each dynamic tree 
operation, not counting the time for expose and conceal operations. We have 
implemented the dynamic tree operations so that the only necessary manipulation of 
weights and path sets takes place inside expose and conceal. Thus it remains for us to 
implement and analyze expose and conceal. We implement expose as in Section 4, 
with additional statements to update the path sets. Here are the details, with the 
additions indicated: 

function splicebath p ) ;  
vertex u;  path q, r;  real x ,  y ;  
v := dparent(tail(p)); 
[q,  r, x ,  y ]  := split(u); 
wt(v )  := wt(v) - wt(p);  

=> delete(p, v); 
if q # null + 

dparent(tail(q)), dcost(tail(q)) := u, x ;  

insert(q, v) 
wt(v) := wt(u) + wt(q); 

ti 
p := concatenate(p, path(u), dcost(tail(p))); 
return if r = null + p 

I r # null + concatenate( p ,  r, y )  
ti 

end splice; 
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function expse(vertex u ) ;  
path p, q, r; real x, y ;  
[q, r, x, y] := split(u); 

. i fq#nul l+ 
dpurent(tuil(q)), dcost(tuil(q)) := u, x; 
wt(u) := wt(u) + wt(q); 
insert(q, u )  

fi; 
i f r =  null+p :=puth(u) 
I r # null -ip := concutenate(puth(u), r, y )  

fi; 
do dpurent(tuil( p)) # null -+ p := splice( p )  od; 
return p 

end expose; 

THEOREM 6. A n  expose operation takes O(log n) time. 

Proox The argument is much like that in the proof of Theorem 5.  An expose 
operation takes O(1og n) time plus time for O(1og n) splice operations (one per light 
edge on the dynamic tree path from the exposed vertex to the root). Consider the ith 
splice. Let u be the tail of the path being spliced, p the path containing u before the 
first splice, p’ the path containing u just before the ith splice, u the parent of u, s the 
path containing u before the first splice, and s‘ the path containing u (and u )  after the 
ith splice. (See Fig. 8.) 

The split operation in splice takes O(runk(s) - runk(u)) time. The delete operation 
takes O(log(wt(u)/wt(p))) time. The insert operation, if performed, takes O(log wt(u)/ 
wt(q)) = O( 1) time, where q is the inserted path, since the edge (tuil(q), u )  is heavy. It 
follows from Lemmas 1 and 6 that the one or two concatenate operations needed to 
complete the splice take O(runk(s’) - runk’(u)) time, where runk’(u) is the rank of u 
after the ith splice. 

We also have runk(p) < 1 + [lg wt(p)J Q 1 + [Ig wt(u)J < 1 + runk(u). Thus the 
split takes O(runk(s)-runk(p)) time, and summed over all splices the total split 
time is O(log n). Similarly since wt(u)  Q wt(s) the delete takes O(log(wt(s)/wt(p))) 
time, and summed over all splices the delete time is O(log n). Finally, runk(p’) Q 1 + 
[lg wt(p‘)J < 1 + [Ig wt‘(u)J < runk‘(u), where wt‘(u) is the weight of u after the ith 
splice, since wt(p‘) = wt(p) < size(u)/2, which means wt(p’) Q size(u) - wt(p) Q 
wt‘(u).  Thus the concatenates take O(runk(s’) - runk(p’)) time, and summed over all 
splices the concatenate time is O(1ogn). Combining these estimates we obtain the 
theorem. I 

An operation conceul(p) is just like an expose run backwards. The only 
complication is that we must find the light edges on p, which we do using pmintilt, 
and the heavy edges incident to p, which we do using the path sets. The main loop of 
conceal proceeds backward (downward) along p, performing the inverse of a splice, 
called a slice, each time it encounters a light edge. The behavior of slice is as follows: 
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function slice(pathp): Convert the edge light(p) to dashed, dividing p into two 
paths, say q and r. If any edge entering head(r) is heavy, make it solid. Return the 
path q. This operation assumes that p contains at least one light edge, i.e., light(p) # 
null. 

The programs below implement slice and conceal. Their correctness is easy to 
verify. 

function slice (pathp); 
vertex u; path q, r, s; real x, y ;  
u := light(p); 
[ p ,  r, x, y ]  := split(u); 
s := i f  r = null -+path@) 1 r # null + concatenafe(path(u), r, y )  fi; 
dpurent(tail(p)), dcost(tail(p)) .- .- v ,  x; 
wt(u) := wt(u) + wt(p);  
q := maxwt(o); 
if 2 . wt(q) > wt(u) + 

wt(v) := wt(v) - wt(q); 
delete(q, 0); 
concatenate(q, s, dcost(tail(q))) 

fi; 
insert( p ,  0); 
re-p 

end slice; 

procedure conceal(path p ) ;  
vertex u;  path q, r, s; real x, y ;  
do light(p) # null + p  := slice(p) od; 
u := head(p) 
s := maxwt(u); 
if s # null and 2 . wt(s) > wt(u)  + 

[ q, r, x,  y ] := split(u); 

delete@, u ) ;  
s := concatenate(s, path(u), dcost(tail(s))); 
if r f null --t concutenate(s, r, y )  fi 

wt(u)  := wt(u)  - wt(s); 

fi 
end conceal; 

THEOREM 7. A conceal operation takes O(1og n )  time. 

Proof. The proof is like that of Theorem 6. A conceal operation takes O(1og n) 
time plus time for O(log n )  slice operations, since the light operation preceding each 
splice is repeated inside the slice. Consider a typical slice. Let p be the path sliced, let 
u=light(p), let p’ be the path containing u after the slice (and thus after the 
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FIG. 10. A slice. 

conceal), let s be the path returned by the slice, and let s' be the path containing 
tail@) after the conceal. (See Fig. 10.) 

The light and split operations take O(rank(p) - runk(v)) time. The delete 
operation, if performed, takes O(log(wt(v)/wt(q))) = 0(1) time, where q is the deleted 
path, since the edge (tail(q), v )  is heavy. The one or two concatenate operations take 
O(runk(p')-runk'(v)) time, where rank'(v) is the rank sf v after the slice. The 
insert operation takes O(log(wt'(v)/wt(s))), where wt'(v) is the weight of v after the 
slice. 

Since (tail@), v )  is light, wt(s) < wt(v). Thus rank(s) < 1 + [lg wt(s)J < 1 + 
[lg wt(v)J = 1 + rank(v), and the light and split operations take O(rank(p) - rank(s)) 
time, which sums to O(log n)  over all splices. Also rank@') 4 1 + [Ig wt(s')J Q 1 + 
[Ig wt'(v)J = 1 + rank'(v), and the concatenate operations take O(rank(p') - 
rank(s')) time, summing to O(1og n)  over all splices. Finally, since wt(s) = wt(s') and 
wt(u)< wt(p'), the time for inserts sums to O(log n) over all splices. This gives the 
theorem. 1 

From Theorems 6 and. 7 and the O(logn) time bound for individual path 
operations, we obtain the following worst-case version of the main theorem: 

THEOREM 8. With partitioning by size and a representation of solid paths as 
globally biased binary trees, any dynamic tree operation takes O(1og n )  time. 

6. APPLICATIONS, RELATED WORK, AND REMARKS 

In this section we shall give some applications of our algorithms for the dynamic 
trees problem, in the process discussing previous work related to ours. Our list of 
applications is meant to be illustrative, not exhaustive. We conclude the section with 
a few remarks. 



A DATA STRUCTURE FOR DYNAMIC TREES 381 

Finding Roots 
We obtain a primitive version of the dynamic trees problem if we allow only the 

operations of root, link, cut, and evert. For the even more restricted problem with 
only root and link, the “compressed tree” data structure for disjoint set union 
[ 19,211 gives an O(n + ma(m + n, n))-time algorithm, where a is a functional inverse 
of Ackermann’s function. The version of the disjoint set union algorithm that uses 
union by rank or size [21] but not path compression can be adapted to handle root, 
link, and cut in O(1ogn) time per operation. Although this method is relatively 
simple, it does not seem to extend to allow euert, nor to maintain information about 
the paths in the trees. 

No Cuts or Everts 
Tarjan [ 201 has studied a version of the dynamic trees problem in which links are 

allowed but neither cuts nor everts, obtaining an O(n + ma(m + n, n))-time algorithm 
with a number of applications. Tarjan uses the same idea we have used, of 
partitioning the tree edges into heavy and light. 

Nearest Common Ancestors 
Another useful operation on dynamic trees is the following: 

nca(vertex v, w):  Return the nearest common ancestor of u and w. 

The problem of implementing this operation along with some combination of link, 
cut, and euert is the nearest common ancestor problem [ 1, 10, 131. Our data structure 
easily adapts to this problem. To find the nearest common ancestor of u and w, we 
expose v and then expose w, during the second expose noting the first vertex encoun- 
tered on the previously exposed path from v ;  this is the nearest common ancestor. 
(With the data structure of Section 5 we must finish the operation by concealing w 
and then u . )  The previous result closest to this is by Aho et al. [ 11, who proposed a 
method that allows links but neither cuts nor everts and runs in O((m + n) log n )  time 
and O(n log n )  space. Maier [ 131 has given a more complicated method that reduces 
the space required and allows cuts, though the time bound for a cut is O(n). Our 
method allows both cuts and everts, uses O(n) space, and runs in U(log n) time per 
operation. 

Network Flow 
A classic problem in network optimization is to find a maximum flow in a network 

(a directed graph with nonnegative edge capacities) from a given source vertex s to a 
given sink vertex t. A sequence of faster and faster algorithms have been devised for 
this problem. For dense graphs, the best time bound known is O(n3) ,  attained by the 
algorithms of Karzanov [ 111 and Malhotra et al. [ 141. For sparse graphs, the best 
previously known time bound is O(nm(1og a)’), attained by the algorithm of Galil 
and Naamad [8], rediscovered by Shiloach [16]. Here n is the number of vertices and 
m is the number of edges in the problem graph. 

Our data structure for dynamic trees gives an algorithm for this problem whose 
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running time is O(nm log n). Our algorithm (as are all the fast network flow 
algorithms) is based on the fundamental work of Dinits [ 6 ] .  Dinits reduced the 
maximum network flow problem to the solution of n blocking flow problems. The 
blocking flow problem is to find a flow in an acyclic network from a source s to a 
sink t such that every path from s to t contains a saturated edge (an edge whose flow 
equals its capacity). Dinits’ algorithm for finding a blocking flow consists of 
beginning with the zero flow, discarding all zero-capacity edges, and repeating the 
following step until there is no path from s to t :  

Augmenting Step. Find a path from s to t .  Let c be the capacity of a minimum- 
capacity edge on the path. Send c units of flow through the path, reducing the 
(residual) capacity of each edge on the path by c. Delete all edges whose capacity is 
now zero. 

Since each execution of the augmenting step saturates at least one edge, there are 
at most m executions of the step. The hard part of the method is to find augmenting 
paths and update edge capacities. The straightforward implementation of Dinits’ 
algorithm takes O(n)  time per augmenting path plus O(m) time amortized over all 
paths, for a total time of O(nm). Galil and Naamad [8] and Shiloach [ 161 discovered 
an O(m(1og n)’)-time method that uses almost the same structure as described in 
Sections 3 and 4, with balanced trees in place of biased trees representing solid paths. 
We have obtained our result by introducing biased trees and doing the required 
running time analysis. 

Our data structure gives an O(m log n) time bound for the blocking flow problem. 
We use dynamic trees to find augmenting paths and keep track of edge capacities. 
The algorithm maintains a collection of trees consisting of at most one unsaturated 
edge leaving each vertex; these edges are the current candidates to form augmenting 
paths. Initially each vertex is in a separate tree. We execute Dinits’ algorithm as 
follows: 

Step 1. 
Step 2 (v # t ;  extend path). 

Step 3 (all paths from 0 to t are blocked). 

Let v = root(s). If v = t ,  go to Step 4; otherwise, go to Step 2. 
If no edges leave vertex v, go to Step 3. Otherwise, 

select an edge (v, w) leaving v and perform link(v, w, cupucity((v, w))). Go to Step 1. 
If u = s, compute the unused capacity 

of every tree edge using cost and stop. Otherwise, delete from the graph every edge 
entering v. For each such edge (u, v) that is a tree edge, perform cut(u), recording the 
unused capacity. Go to Step 1. 

Let u = mincost(s). (Edge 
(v,purent(v)) is a minimum-capacity edge on the augmenting path.) Let c = cost(v). 
Perform updute(s, -c). Go to Step 5.  

Step 5 (delete edges with no remaining capacity). Let v = mincost(s). If 
cost(v) = 0, delete (v,purent(u)) from the graph, perform cut(v), recording an unused 
capacity of zero, and repeat Step 5 .  Otherwise, (cost(v) > 0), go to Step 1. 

Step 4 (0 = t ;  the tree path from s to t is augmenting). 
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When the algorithm stops, we can compute the final flow from the original and 
unused capacities. The algorithm requires O(m) dynamic tree operations and thus 
takes O(m log n )  time. Using this method for finding blocking flows we obtain an 
O(nm log n )  time bound for the maximum flow problem. 

Another flow problem amenable to this approach is the acyclicjlow problem: given 
a flow from s to t in an arbitrary network, reduce it to an acyclic flow by repeatedly 
finding a cycle of flow and reducing the flow around the cycle to zero. An 
appropriate version of the blocking flow algorithm will solve this problem in 
O(m log n )  time. We begin with each vertex in a separate tree, delete all zero-capacity 
edges, and carry out the following steps: 

Step 1. Let v = root(s). If no edges leave vertex v ,  go to Step 2. Otherwise, select 
an edge (v, w )  leaving v. If root(w)=u, go to Step 3. Otherwise, perform 
link(v, w,flow((v, w ) ) )  and repeat Step 1. 

If v = s, compute the current flow of 
every tree edge using cost and stop. Otherwise, delete from the graph every edge 
entering v. For each such edge (u, v )  that is a tree edge, perform recording the 
current flow. Go to Step 1. 

Let u = mincost(w). Let c = 
min{flow((v, w)),  cost(u)}. Reduce flow((v, w ) )  by c and perform update(w, -c). Go 
to Step 4. 

Step 4 (delete tree edges with no remaining, flow). Let u =mincost(w). If 
cost@) = 0, delete (u,parent(u)) from the graph, perform cut@), recording a current 
flow of zero, and repeat Step 4. Otherwise (cost(u) > 0), go to Step 1. 

Step 2 (all paths from v to t are acyclic). 

Step 3 (a cycle of positive flow has been found). 

Constrained Minimum Spanning Trees 

Gabow and Tarjan [7]  consider the following problem: Given a connected 
undirected graph whose edges are of two colors, say white and black, and have real 
valued costs, find a spanning tree of minimum total edge cost containing exactly k 
black edges for some integer k. They describe an algorithm for this problem whose 
critical part consists of repeating the following step n - 1 times: given a spanning tree 
T and a non-tree edge { v ,  w } ,  find the maximum-cost edge, say ( x , y } ,  on the (unique) 
tree path joining v and w; form a new tree T’ by deleting (x, y )  and adding (v ,  w). We 
can use our data structure to carry out this process in O(1og n )  time per swap for a 
total of O(n log n )  time. 

The Network Simplex Algorithm 
An edge-swapping process almost identical to the one described above occurs in 

the network simplex algorithm for the transportation problem [4]. Operations 
researchers have proposed various data structures to represent the so-called “feasible 
tree solutions” in this problem, but they all take O(n) time per swap in the worst 
case. With our data structure the time per swap is O(1ogn). Although theoretically 
the network simplex algorithm needs exponential time in the worst case, it is heavily 

# 
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used in practice, and our result offers hope of further improving its practical perfor- 
mance. 

Remarks and Further Research 
Much work remains to be done on the dynamic trees problem. One direction for 

future work is to implement our data structures and perform empirical experiments to 
determine their practical value, if any. Sleator has implemented a dynamic trees 
algorithm for maximum network flow. It is slower by a small constant factor (about 
two) than the algorithm of Dinits except on specially constructed worst-case example 
graphs. This merely reflects the fact that of randomly generated graphs only a small 
fraction make Dinits’s algorithm perform poorly. Some experiments with our method 
applied to the network simplex algorithm might be rewarding. 

The amortized-time version of our data structure uses locally biased binary trees, 
whereas the worst-case version uses globally biased trees. Globally biased trees will 
work in the amortized-time version but locally biased trees will not work in the 
worst-case version. Further work to improve and simplify the data structure may be 
valuable. Recently the authors have discovered a new kind of search tree, called a 
self-adjusting search tree [22], which can be substituted for biased binary trees in the 
data structure of Sections 3 and 4. This produces considerable simplification. (See 
Tarjan [23].) 
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