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ABSTRACT

Psychological models traditionally separate brain function into three stages of
processing: perception, cognition, and action. While this compartmentalization
strategy has been used effectively to simplify and thus better understand mental
processing, a growing body of evidence for the phenomena of perceptual learning
makes it clear than perception and cognition are imnextricably linked (Hall, 1991).
Thus, it seems that cognitive processes do not operate on static perceptual building
blocks, but instead stimulus representations are flexible and adaptable to the task at
hand.

In this dissertation, I explore the psychological and behavioral phenomena of
perceptual leaming through the construction of a model based on competitive
learning, a standard algorithm used in the field of machine learning. The model
provides a mechanism for nonassociative differentiation (Gibson & Gibson, 1955)
and, in contrast to other models (e.g.,McLaren, Kaye, & Mackintosh, 1989), is
compatible with a configural model of associative learning. The present model can
account for critical perceptual learning phenomena such as exposure learning and
effects of similarity on discrimination. It is also shown that the model can explain the
paradoxical result that preexposure to stimuli can either facilitate or impair
subsequent discrimination learning. In the dissertation, I have also provided an
analysis of learning phenomena that are normally explained as being a result of
“dimensional attention”, and have shown that many of these phenomena may be
more parsimoniously explained by the aforementioned core model of differentiation.
Furthermore, I have extended the core model to show how the integration of
reinforcement and categorization information with the stimulus representation may
contribute to the phenomena of acquired distinctiveness and equivalence. Finally, I
have also extended the core model to address issues regarding object representation
in the brain; specifically, I have developed a model of the effects of lesions of

monkey perirhinal cortex.
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CHAPTER 1 INTRODUCTION

Motivation

Theoretical models of cognition usually address processes that are said to occur
after the perceptual system has completed its work. According to such views,
output from the perceptual system merely provides the initial information that is
fodder for subsequent cognitive operations. This approach is common in the
human cognitive psychology literature, in which a set of primitive elements usually
forms the building blocks of cognition (e.g., Biederman, 1987; Julesz, 1981;
Treisman & Gelade, 1980). Many researchers in associative animal learning theory
have adopted a similar paradigm by assuming that any event that can be learned
about will correspond to a static perceptual representation that is always fully
activated in the presence of the stimulus. This division of behavior into serial stages
reflects the sense-think-act paradigm that is also common in the fields of artificial
mntelligence and robotics. The strength of this approach is that it separates the
processes contributing to behavior, thereby parsing a complex system into a form

that may be more easily understood.

The assumptions upon which the above approach is based hold if perceptual
representations are static. If perceptual organization changes as a result of
experience, however, this should have a direct impact on cognitive processes. For
example, the efficacy of a stimulus could be increased or decreased over time. The
growing evidence for perceptual learning (PL) suggests that such changes can,

indeed, occur and that perception may not be as stable as it is often assumed to be.

An alternative to the sense-think-act approach is to assume that perceptual
building blocks are not fixed or finite but adapt to the requirements of the task for

which they are employed. E. Gibson (Gibson, 1969), an eatly proponent of this
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view, suggested that the perceptual interpretation of an entity depends on the
observer’s history, training, and acculturation. No set of primitives exists because
the perceptual building blocks themselves are adaptive. Rather than providing a
permanent concrete foundation, perception may instead support cognition by
flexibly adapting to the requirements of cognitive tasks. So although cognitive
processes involved in discrimination, attention, or object recognition may alter
perception, the alteration is beneficial because as a result perception becomes better

tuned to the task at hand.

The evidence for perceptual learning spans across several literatures including
animal learning theory, cognitive and developmental psychology, and
neuropsychology. These separate literatures often discuss, at different levels, what
appears to be a similar process. The predominant goal of the cutrent research,
therefore, has been to construct a theoretical framework for the description and
mnvestigation of perceptual learning. This framework has been specified such that it
can map to the different levels at which phenomena are discussed across the fields

mentioned above.

Approach

Neural network, connectionist, or parallel distributed processing (PDP) models
provide a bridge for relating cognitive processes ditectly to the underlying neural
mechanisms. The PDP approach—based on the idea that cognitive processing
arises from the interactions of large numbers of simple processing elements—was
derived from the observation that the brain consists of just such a parallel
processing system. This similarity in basic structure between the model and the
brain facilitates the mapping of cognitive to biological processes. In addition,
simulation modeling and mathematical analysis forces the clarification of postulated
mechanisms and the assumptions upon which they depend. Furthermore, PDP
models provide a method for making predictions that explicitly and demonstrably

follow from a given psychological theory.
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In this dissertation I have constructed a PDP model of phenomena associated
with perceptual learning in order to provide a concrete framework that may help to
synthesize data from across fields. In addition to providing necessary structure, this
type of model fits well with extant theories of learning and cognition that focus on

associative learning processes (e.g.,Pearce, 1994; Rescorla & Wagner, 1972).

Outline

The following chapter, Chapter 2, presents an overview of two approaches that
have been taken toward understanding the phenomena of learning and memory: the
associationist approach that dominates the study of animal learning and the

connectionist approach often taken in the field of machine learning.

In Chapter 3 I present a connectionist model that performs bottom-up
perceptual learning. With this model, I provide a concrete mechanism for a non-
associative theory of bottom-up perceptual learning called “differentiation” (Gibson
& Gibson, 1955) and integrate it with an associative learning framework. A set of
simulations demonstrate that the present model can account for crtical PL
phenomena such as exposure learning and effects of similarity on discrimination. It
is also shown that the model can explain the paradoxical result that preexposure to
stimuli can either facilitate or impair subsequent discrimination learning. Predictions
made by the model are discussed in relation to extant theories of PL. Chapters 4, 5,

and 6 are dependent on the description of the model in this chapter.

In Chapter 4 the core model presented in Chapter 3 is developed further, and it
is shown that several phenomena which have usually been attributed to relatively
high-level processes involving “dimensional attention” (Sutherland & Mackintosh,

1971) may be more parsimoniously explained as a result of simple differentiation.

Chapter 5 provides a discussion of top-down influences on perceptual learning,
and how they may be incorporated into the core differentiation model. The model is

extended such that representations of external influences such as reinforcement or
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categotization information may be combined with stimulus representations. It is
shown that this extension allows the model to account for effects such as acquired

equivalence and distinctiveness.

In Chapter 6 the architecture of the model, but none of the underlying
principles, is changed in order more closely to relate the psychological model of
perceptual learning to the organization of representations in the brain. In particular,
it is shown that a puzzling pattern of effects seen after lesions of perirhinal cortex
(PRh) in monkeys can be accounted for in the current simple model if it is assumed
that bottom-up perceptual learning and discrimination processes are the mechanisms

undetlying “object identification”.

Chapter 7 summarizes the dissertation and discusses its implications as well as

future directions.

Three appendices provide additional information which may be of interest only
to specific audiences. Appendix A presents an overview of two major theories of
perceptual learning: nonassociative differentiation as described by Gibson and
Gibson (1955) and the elemental, associative theory of McLaren, Kaye, and
Mackintosh (1989). While not critical to an understanding of the current model, this
information may be useful for understanding historical and theoretical arguments
made in Chapter 3. Appendix B provides a brief overview of the anatomy of the
ventral visual stream and the medial temporal lobe of the macaque monkey brain,
and outlines the arguments for the involvement of PRh in memory and in

petception.
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CHAPTER 2 MODELS OF LEARNING

For many years, psychologists have been developing models of the ways in
which animals learn in an effort better to understand how the human brain works.
Machine learning theorists, on the other hand, have been developing learning models
with the goal of building intelligent agents to help us with our daily tasks. Although
the end goals pursued by these two groups of researchers are different, the more
intermediate goal of understanding the learning process is the same. Nonetheless, the
specific paths that have been taken toward this goal are understandably quite
different as a result of the specific biases intrinsic to the different fields. A cross-
fertilization of the ideas coming out of these different approaches should be
beneficial for both fields in that insights gained in one field should be applicable to
the other. This is the major goal of this dissertation: to apply an artificial neural
netwotk technique called competitive learning to several phenomena in the animal
learning literature in an attempt to develop a model of the effects of experience on
stimulus representations. In this chapter, I provide a brief introduction to the

approaches used to develop learning models in these two fields.

The Associationist Approach

Most theoties of the mechanisms undetlying animal learning have been situated
within the associative framework. The concept at the center of this associative
framework is that central, or cognitive, representations of specified elements
become linked so that activation of one can lead to the activation of its associate.
The assumptions underlying the “standard associative model” (Roitblat, 1987) might

be summarized as follows:

* clements are central representations of environmental events (stimuli),

features of the stimuli, or responses.
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* clements are directly activated by the presentation of the approprate

stimulus or feature.
* associations are directional connections between paits of elements.

* an assoclative connection allows activity in one element to modify the state

of activation of another.

* all learning consists of the strengthening of such associative connections.

The Rescorla-Wagner Model

A recent, very influential associative model of learning is that of Rescotla and
Wagner (1972). The model provides a formal specification of the conditions under
which associations are formed and strengthened. The central concept of the model is
that of associative strength (V), which is the strength of a directional connection
between elements representing the two stimuli used in studies of Pavlovian or
classical conditioning. During a Pavlovian conditioning trial, the first stimulus that is
presented 1s called the conditioned stimulus (CS) and usually consists of a neutral
event such as a light or a tone. The second event, which is typically presented at the
offset of the CS, is referred to as the reinforcer, outcome, or unconditioned stimulus
(US). The US is usually a stimulus of motivational significance (e.g., shock or food).
The associative strength of the CS-US connection increases when the two events
occur contiguously, that is, when the central representations of the two events are
concurrently active. A conditioned response (CR) consists of a learned response to
the initially neutral CS. The likelihood of a CR is assumed to increase with V, and

such a response is used as an index of V in the animal.

According to the Rescorla-Wagner rule, the change in associative strength

produced by a conditioning trial is:
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AVX=C¥X,3E/1 —ZVXE @2-1)

where |7 is the associative strength on the link between element x and the US, a, is
the associability (learning rate) of element x and depends on the intensity,
discriminability, or salience of x', is the associability of the reinforcer and depends
on reinforcer intensity, and 4 is the maximum associative strength that the US can

suppott.

Conditioning with a single CS proceeds as follows. Over successive trials there
are increments in |7, until the point is reached at which ()l - ZV)Z Oand no

further increases are possible. Thus, this account of conditioning suggests that the
US grows less and less effective as conditioning proceeds. When two or more CSs
occur together, Rescorla and Wagner assume that each stimulus acts independently,
thus the associative strength of a light and tone presented together would consist of
the sum of the separate strengths of the stimuli. In addition to excitatory
associations, inhibitory associations can also develop. For example, take the
situation in which a subject is trained to asymptote with one CS, A, and is then
presented with trials of the compound AB without reinforcement. A is 0 when no
US is presented, so the change in associative strength is negative on these trials and
B develops an inhibitoty link to the outcome representation. Thus, presentation of B

in future can inhibit the activation of the US representation.

The Rescorla-Wagner model is a prime example of Roitblat’s standard
associative theoty. The elements of association are stimuli, associations are created as
a result of contiguous stimulus presentation, and there are two kinds of learning
(excitatory and inhibitory association). The popularity of this model stems largely
from the fact that despite its remarkable simplicity, it can explain a large range of
animal learning phenomena. One example is the way in which the model can
account for blocking (Kamin, 1968). In the blocking paradigm, subjects are

conditioned to asymptote with CS A. Then, in a second phase of training, they are
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conditioned to the compound stimulus AB. In a subsequent test phase, subjects are
presented with B alone. Performance on the test phase usually indicates that B has
gained little associative strength as it only produces a weak CR. In controls which
have only been trained on the second phase, however, B gains considerable
associative strength. Thus pretraining with A is said to “block” subsequent
conditioning to B when B is presented in compound with A. This effect could be
attention-based: pretraining with A causes the animal to attend more to it therefore it
ignores B during the second training phase. But the Rescorla-Wagner allows for an

alternate explanation that is simpler: the presence of A ensures that the value of
()l - ZV) equals zero on compound trials therefore the reinforcer is ineffective and

the associative strength of B remains at zero.

Application to Discrimination and Perceptual I earning

In this dissertation, I am mostly concerned with discrimination learning rather
than simple conditioning. During discrimination training, the experimenter presents
two CSs, either serially or simultaneously, that differ in reinforcement contingency
and subjects learning to respond only to the positive CS. There are two polarized
ways of thinking about how this type of learning works: (1) discrimination learning is
solely about how animals learn to respond differentially to the two stimuli and (2) the
stimuli were perceived as identical at first and one consequence of disctimination
training is to make them perceptually distinguishable (e.g., Konorski, 1967). The
former idea, that discrimination learning is only an associative process, is the
explanation provided by the standard associative model. The latter idea, that
perceptual representations are altered during discrimination training, has not received
as much attention because of the focus in the literature on the associative model.
This idea of perceptual learning—whether it exists and how we may account for it—

is the topic explored in detail in the remainder of this thesis.
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The Connectionist Approach

The connectionist approach to learning is highly compatible with the
associationist approach described above. An artificial neural network consists of a set
of model neurons with connections between them. McCulloch and Pitts (1943)
proposed a simple model of a neuron as a binary threshold unit. The model neuron
computes the weighted sum of its inputs from other units and outputs a one or a
zero depending on whether the sum is less than or greater than the threshold. Figure
2-1 is a schematic diagram of the neuron and Equation 2-2 shows how the activation

of a neuron is determined for the next time step.

W1
W2 Z
W3

Figure 2-1: The McCulloch-Pitts neuron. After Hertz, Krogh and Palmer (1991, p. 3).

Y

I

H,

X (t+1)= @(z W X;; (t)— 1) 2-2)

where x; equals 1 or 0 and represents the activation of neuron 7, time (?) is discrete
and one time unit elapses for each processing step, O(x) is the step or Heaviside

function
O(x) =1if x=0; Ootherwise (2-3)

wy is the synapse connecting neuron 7 to neuron j, and p is the threshold value for

neuron 7.

In most artificial neural networks units something like the McCulloch-Pitts
neuron are arranged in layers with full forward connectivity from the previous layer

(i.e., each unit in the first layer is connected to every unit in the second layer). Units
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in the first layer have no incoming weights; instead they are clamped at a certain level
of activation by an input pattern. The final layer contains output units and the
network may also contain “hidden” units so named because they connect to the

output units but are not directly observable (see Figure 2-2).

Learning in an Artificial Neural Network

Artificial neural netwotks compute a function in which each input pattern is
mapped to an pattern of activation at the output units. The weights on the
connections between units can be altered and so change the function that is

computed.

The rule used to change connection weights is usually a modification of Hebb’s
(1949) rule formulated to explain learning in real neurons: the connection between
the pre- and postsynaptic cell is strengthened when both cells are active
simultaneously. As such, the learning rule used in many artificial neural networks
such as the associative memory model (see Hinton & Anderson, 1989) is a function

of the degree of activity of units on both sides of the connection:
AW, =% X, (2-4)

where w;is the weight on the connection between unit 7 and unit /, 7 is a parameter
that controls the degree of weight change on a trial, x; is the activation of unit 7 and x;

1s the activation of unit /.

Supervised and Unsupervised Learning

One dimension along which artificial neural networks may be categorized is that
of degree of supervision. In supervised learning extra information about the desired
output is given to the network in the form of either the actual desired output or

some type of reinforcement signal. In unsupervised learning, on the other hand, only
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input patterns are received and the algorithm tries to find patterns intrinsic to the

structure of the input distribution.

Supervised Learning and Backpropagation of Errors
In most supervised learning algorithms, the goal is to minimize the difference
between the actual and the desired outputs (the error). The usual mathematical form

for this error is:

EW) =53 3 (- @9

where 5, and y; are the desired and actual outputs of the /" neuron when the

network is presented with pattern &,

A common technique for minimizing the error is called gradient descent. This
mnvolves calculating the gradient of the error function with respect to the weights of
the connections and taking a small step in the opposite direction; the basic idea is
that in order to find the minimum point in the error function one should move
downhill If the etror function is given by E(w,), the gradient descent update (or

delta) rule is

oE .
AWi,j :_ﬂmzn(yi _yig)fk (2-6)

1]

where w;is the weight on the connection between unit 7 and unit /, 7 is a parameter
that controls the degree of weight change on a trial, and y, and j; are the desired and

actual outputs of the /" neuron when the network is presented with pattern &

The backpropagation algorithm (Rumelhart, Hinton, & Wlliams, 1986; Werbos,
1974) is central to the operation of multi-layer neural networks as it provides a
method for applying gradient descent to connections throughout the network, not
just the output unit connections, in order to learn a training set of input-output pairs.

Consider the two-layer network shown in Figure 2-2.
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O; Output

Wij

V; Hidden
ij

&k Input

Figure 2-2: A two-layer feedforward artificial neural network. After Hertz, Krogh and Palmer
(1991, p. 116).

For this two-layer netwotk, output units are denoted by O, hidden units by 17,
and input units by &. There are connections w, from the inputs to the hidden units

and W, from the hidden units to the output units.

Given an input pattern, hidden unit / receives a net input of
h, = ijkfk 2-7)
and produces an output of
Vv, =g(h;) =g( ijkfk)- (2-8)
Output unit 7 thus receives
h = ZVVijVj = Z\NIJ g( ijkfk) 2-9)
and produces final output

O =g(h)=9( Zvvijvj):g(zvvijg(zwjkgk))' (2-10)
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(Note that thresholds are omitted as they can be taken care of by an extra input unit

clamped to —1 and connected to all units in the network.)

The usual error or cost function, specified in Equation (2-5), now becomes a
continuous differentiable function of every weight so gradient descent can be used to

minimize error

0. f
EW) =3y 5/ 9T WAy W) @)

The resulting update rule for the hidden-to-output connections given by the

gradient descent rule (Equation 2-6) is

JE * ,
Aw ; = v =/7[yi - yif]g (h)V, =ndV, (2-12)

1]

whete we have defined

3 =y -vilg'th). (2-13)

For the input-to-hidden connections one must differentiate with respect to the

hidden-to-output connections. Using the chain rule

_ _0E _ _0E 0V,

Aij =-n =-n
ow, oV, ow,,
=03 v - ¥l hw,gh)é, o1
:nzdivvijg,(hj I
:’751'5(
with

0; = 9’(h;)ZWu5i- (-15)
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Equation (2-15) allows one to determine the ¢ for a given hidden unit I} in
terms of the J's of the units y, that feeds. The coefficients are the usual I’s, but

here they propagate errors (0) backwards instead of activation signals forward.

Unsupervised Learning

A basic form of unsupervised learning is called competitive learning (Grossberg,
1976a; Grossberg, 1976b; Kohonen, 1982; Rumelhart & Zipser, 1986). In
competitive learning, only one output unit is allowed to fire at a time. The output

units compete to be the unit that fires, and are thus called winner-take-all units.

The object of competitive learning networks is to categorize the input data. The
idea 1s that similar inputs should be classified as being in the same category and so
should fire the same output unit. The classes must be found by the network itself—

no desired output information is provided—from the correlations of the input data.

In the simplest competitive learning networks there is a single layer of output
units O, fully connected to a layer of inputs £ via weighted connections w; (see Figure

2-3).

Output

Input

Figure 2-3: A simple competitive learning network. Open arrows denote inhibitory
connections and closed arrows denote excitatory connections.

The winner is the usually the unit with the largest net mnput. The input for the

current input vector & is
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h=y we =w, & 2-16)
J
thus
w. 2w, & (forallj 2-17)
defines the winning unit /* with y,=1.

In a computer simulation, the winner is normally determined by searching for
the maximum 4, In a real neural network, it is possible to implement this with lateral
inhibition as shown in Figure 2-3. Each competitive unit inhibits the others, but also
has a self-excitatory connection. The approprate lateral weights and nonlinear

activation function must be chosen well in order to avoid oscillation (see Grossberg,

1976a; Grossberg, 1976b).

In order for the network to learn to cluster the input patterns, it operates as
follows. The weight vectors w; are set to small random values. Then a set of input
patterns & is presented to the network. For each input the winner ;* among the
outputs is determined and then the weights u,, for the winning unit only are updated
in order to make the w, vector a bit closer to the input vector. This makes the
winner more likely to win when that input is presented in future. This is done using

the following update rule
Aw,; =n(8 — W) . (2-18)

Kohonen Feature Mapping (Kohonen, 1982; Kohonen, 1984) is similar to
competitive learning except that output neurons have a specified positional
relationship to each other in output space. The network topology is usually a two-
dimensional grid, motivated by the structure of the cortex. As in competitive
learning, the weights of the output units define positions in the input space. Unlike
competitive learning, however, not just the winning unit’s weights, but also

surrounding unit’s weights, are updated on a cycle. The neighboring unit’s weights
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are updated with a distance dependent attenuated version of the weight change. The
end result is that nearby units respond to similar patterns. The Kohonen weight

update formula is

Aw, = 4G (& -w,) forall | (2-19)

where .1(7,7%) is a monotonic decreasing function of Hr i s the index of the

winning unit and 7, gives the position of the unit with index /in the topology within

its layer.

Summary

In this chapter I've provided the briefest of overviews of associative animal
learning theory and connectionist neural network learning. My intent was simply to
present a very basic foundation for the theoretical issues that will be discussed
throughout this dissertation. I think it is clear that whereas animal learning theorists
and artificial neural network theorists use different languages and have different
goals, some of the approaches are very similar (e.g., the Rescorla-Wagner rule in
animal learning theory is equivalent to the delta rule used for gradient descent in
neural netwotk theory). For more information on animal learning theory, any of the
following would be a good place to start Pearce (1987a), Dickinson (1980), or
Mackintosh (1974). For more information on artificial neural networks see Hertz

(1991), McClelland (1986), or Rumelhart (1986).
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CHAPTER 3 EXPOSURE LEARNING

Introduction

A large body of data provides evidence for the idea that animals’ internal
representations of stimuli can change simply as a result of experience (see Hall, 1991
for a review). Much of this evidence derives from two contrasting behavioral effects.
The first effect, “latent inhibition”, refers to the phenomenon whereby prior non-
reinforced exposure to a stimulus retards subsequent conditioning to that stimulus
Lubow & Moore, 1959). The second effect is “perceptual learning”, in which
preexposure to stimuli may facilitate subsequent learning of a discrimination between
them (Gibson, Walk, Pick, & Tighe, 1958). As a result, while the ease of a
discrimination between completely novel stimuli may initially depend only on their
similarity, as an animal gains experience with the stimuli the ease of discrimination, as
manifested in the rate of learning of the discrimination, may either increase or

decrease.

Many researchers have successfully integrated latent inhibition into an
associative learning framework. For example, Pearce and Hall (1980) attribute latent
mnhibition to a reduction in associability, or learning rate, of the conditioned stimulus
(CS). They suggest that as the outcome of stimulus presentation becomes well
predicted, attention to the stimulus (as manifested in associability) decreases. Thus
when an animal is exposed to a stimulus which is followed by a consistent outcome
(e.g., nothing in the case of latent inhibition) attention to the stimulus decreases. This
reduction in attention leads to a reduction in the associability of the stimulus, and the
animal learns a conditioned response (CR) to that stimulus relatively slowly. Wagner
(1978; 1981), on the other hand, suggests that a stimulus will be fully processed only
when its occurrence is not predictable on the basis of other, usually contextual, cues.

Others (e.g., Lubow, Schnur, & Rifkin, 1976) have suggested that latent inhibition is
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due to the disruption of the formation of new associations through interference or
competition with associations learned during preexposure. A fourth group of
theories suggest that CS associability i1s a function of the extent to which the stimulus
predicts a particular outcome (e.g., Frey & Sears, 1978; Mackintosh, 1975; Moore &
Stickney, 1980; Schmajuk, Lam, & Gray, 1996; Schmajuk & Moore, 1989), whereas a
fifth group assumes that CS preexposure causes a failure of performance at the time
of retrieval (e.g., Bouton, 1993; Kasprow, Catterson, Schachtman, & Miller, 1982;
Miller & Schachtman, 1985; Spear, 1981).

Perceptual learning, however, has proven to be somewhat more problematic
than latent inhibition for associative learning theory. One contributing reason is that
the results from perceptual learning experiments are paradoxical: in some cases,
preexposure facilitates subsequent discrimination whereas in other cases preexposure
impairs discrimination. Gibson and Walk (1956), in the original demonstration of
perceptual learning, exposed rats to black metal triangles and circles attached to the
walls of their home cages. After some time, control subjects with no exposure and
preexposed subjects were trained on a food rewarded discrimination with triangles
and circles as the relevant stimuli. The experimental group performed much better
than the controls. Subsequent work has confirmed that preexposure can facilitate
discrimination learning (see Bennett & Ellis, 1968; Forgus, 1956; Kawachi, 1965).
However, other experiments using similar procedures have obtained different results
(e.g., Chantrey, 1972; Gibson, 1969). Chantrey (1972), for example, using an
imprinting procedure showed that domestic chicks given prior experience with a pair
of colors were in some circumstances /ss able to learn the discrimination than were

control subjects.

Results such as the above prompted investigators to explore the parameters
required to obtain the facilitation seen by Gibson and Walk (1956). While the type of
stimulus, duration of exposure, and age of the subjects do not seem to be highly
relevant to the preexposure effect, the difficulty of the discrimination does seem to

be an important factor. Oswalt (1972) used a range of stimuli and tested
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discriminations of different difficulties: triangles vs. circles, objects with differently
oriented stripes, and panels with upright or inverted U-shaped figures. Only the first
discrimination—the most difficult—was facilitated by preexposure. Chamizo and
Mackintosh (1989) provided a second piece of evidence suggesting that difficulty of
discrimination is important in perceptual learning. When rats were tested in a Y-
maze in which the different arms were distinguished only by the texture of their
flooring, preexposure facilitated discrimination. However, in a maze in which both
the floor texture and the wall color differentiated the arms, the preexposed animals
were slower to acquire the subsequent discrimination. Since the second discrimination
provided a greater number of highly salient cues than the original discrimination,
thus making the discrimination easier, it can be seen as providing evidence for the
idea that preexposure helps difficult discriminations but hinders relatively easy ones.
More recently, Honey, Bateson, and Horn (1994), in a chick imprinting paradigm,

have demonstrated a similar result.

Several theorists have attempted to explain perceptual learning using associative
principles (e.g., Hall, 1991; McLaren et al., 1989). Associative theories propose that,
in addition to associations between elements of different events, associations also
form between elements of a single event such as the CS itself. Perceptual learning
then consists of refinement of the stimulus representation through the operation of
associative processes upon stimulus elements. Others have offered nonassociative
accounts, suggesting that perceptual learning involves the gradual abstraction from a
complete stimulus of features relevant to the discrimination (Gibson & Gibson,

1955).

Neither of the above approaches, however, has provided a fully satisfactory
theory of exposure effects in discrimination learning. Whereas the associative
approaches have provided concrete mechanisms for both latent inhibition and
perceptual learning, the models either do not address stimulus similarity or are

generally subject to Pearce’s (1994) criticisms of the way in which elemental models

Chapter 3: Exposure Learning 79



handle similarity of stimuli'. The nonassociative approach, while being intuitively
plausible, has not been developed sufficiently to provide a concrete mechanism by
which perceptual learning may operate, and furthermore does not begin to address

the issue of latent inhibition.

As an alternative to the above approaches, I have developed a nonassociative
model of perceptual learning that provides a simple account of the finding that
discriminations are sometimes facilitated and sometimes retarded by exposure. After
Channell and Hall (1981) the model starts from the assumption that two processes—
one which decreases associability and one which increases discriminability—operate

during preexposure to stimuli.

A Nonassociative Model of Perceptual Learning

As discussed above, there exist many well-formulated theories of latent
inhibition. As a result, the current model focuses on the perceptual learning
mechanism, and I have simply chosen one theoty of latent inhibition, that of Pearce
and Hall (1980), to adjust attention to stimuli. The contribution of the current model,
therefore, is that it provides a concrete mechanism for Gibsonian differentiation, an
idea that is intuitively appealing but to this point has been pootly specified. In
addition, in contrast to associative approaches which have been based on elemental
learning theory, the current nonassociative perceptual learning mechanism is

compatible with a configural model of discrimination learning (Pearce, 1994).

Figure 3-1 illustrates the structure of the discrimination and perceptual learning

network. Inputs to the network consist of points in a two-dimensional stimulus

1 Pearce’s (1994) main argument against elemental models is that they sometimes make the
incorrect and paradoxical prediction that stimuli with common elements will be more
easily discriminated than those without common elements. In other words, a manipulation
which increases the similarity of two stimuli is predicted to also increase their ease of
discriminability. See Experiment 3 for more detail, or Pearce (1994) for a full discussion
of the issue.
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space. Input of a stimulus to the network leads to a “percept” consisting of the
activation of a two-dimensional layer of input units. These mput units feed into a
two-dimensional layer of competitive units, the activation of which comprises a

“cognitive” representation of the stimulus.

Outcome

Associative
Processor

Competitive
Layer
Nonassociative
Preprocessor
Input
Layer

Stimulus (5,5)

Figute 3-1: Overview of the perceptual learning network. The model consists of two layers of
simple units: the input layer and the competitive layer. The input layer is fully connected to
the competitive layer via a set of weights that are adjusted by a nonassociative (i.e.,
unsupetvised) learning mechanism. The competitive layer is fully connected to a node
representing the outcome of the presentation of a stimulus to the network (e.g., response or
reinforcer). These weights are adjusted via an associative mechanism.

Perceptual learning occurs on the weights on the links between the input layer
and each competitive unit. These weights are updated—proportionally to the
competitive unit’s activation—via a competitive learning mechanism that adjusts the

weights of the competitive unit to be closer to the pattern of activation in the input
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layer. Over time the weights of active competitive units become a more accurate

representation of a repeatedly presented stimulus.

Each competitive unit maintains a parameter, O, which reflects its associative
learning rate. The O values are adjusted on each trial in relation to both the unit’s
degree of activation and the discrepancy between the CR and reinforcement. This
provides a straightforward mechanism for latent inhibition (Pearce & Hall, 1980).
Competitive units also maintain a second parameter, O, which reflects the extent to

which a given competitive unit may affects its neighbors.

The competitive units are each linked to an outcome representation, and the
weight on the link reflects the strength of association between a stimulus
representation and a given outcome. When an input is presented, the competitive
units are differentially activated according to their distance from the most activated
competitive unit, and the sum of these activations multiplied by their associative
strengths determines the strength of the CR. All associative weights are updated in
proportion both to the degree of activation of the competitive unit and the

discrepancy between the CR and the outcome.

The network can be thought of as consisting of two sections: (1) a
nonassociative preprocessor comprising the mechanisms which operate on the
weights between the input layer and the competitive layer and (2) an associative
processot, comprising the mechanisms which operate on the weights between the
competitive layer and the outcome representation. These are described in detail in
the following sections. Note that vectors and matrices are formatted in bold type
whereas elements of vectors and matrices are formatted in italics (e.g., 4; is the jth

element of a matrix a).

Nonassoctative Preprocessor

The nonassociative preprocessor consists of two layers of simple units: the input

layer and the competitive layer. The input layer is fully connected to the competitive
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layer via a set of weights that are adjusted by a nonassociative learning mechanism.
Activation of units in the input layer represents initial processing of an external
stimulus and is thus representative of a percept. Activation of units in the
competitive layer, on the other hand, is reflective of the changeable representation of

the stimulus.

A stimulus is represented as a pair of numbers, each of which represents the
value of the stimulus on a dimension. In this chapter, stimuli are assumed to be bi-
dimensional. Thus, for a red circular stimulus S=<x,)>, x might represent the color

of the circle in nanometers and y might represent its diameter in centimeters.

On a training trial, the x and y values of a stimulus are fed into the network.
This leads to a pattern of activation on the input layer I as follows. The input layer
consists of a square set of simple units, with the range of the units being greater than
the maximum x or y value of any stimulus that might be presented. Each unit 7 has a
corresponding activation that ranges between 0 and 1. The activation of all units in
the input layer is initially zero. When a stimulus S=<x;)> is presented, however, the
unit in the input layer whose coordinates correspond to the x and y values of S
becomes maximally activated (i.e., its activation level is shifted from O to 1). This unit
affects nearby units such that those that are within a certain radius (O) of the unit will
also be activated proportionally to their distance from it. This means that the degree
of generalization between two stimuli can be deduced from either the amount of
overlap in their respective input layer activations or by calculating the Euclidean
distance between them. For example, two similar stimuli might be represented as
$,=<2,2> and $,=<3,5> whereas two different stimuli would be represented as
$,=<2,2> and §,=<8,8>. Note that stimulus representations do not “wrap” around
the edges of the grid, meaning that on a 10 by 10 unit grid, <10,10> is the furthest

unit from <1,1>.

Equation 3-1 is the input layer activation function for a stimulus whose input

layer location is z*:<x9/>. The degree of activation of a input layer element with
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. R . & . . . &
location zis 1 for ;=1 and dectreases as a function of the distance between 4 and 7.

The width of the Gaussian is 0"

i

o i -7

20°

a, =exp 3-1)

Every unit in the input layer is connected to each unit in the subsequent
competitive layer C. The link between one input unit / and one competitive unit £ is
called w, Thus for competitive unit & there exists a corresponding set of weighted
links, w,, which consists of the set of links between each unit in the input layer and

unit A

In order that the competitive layer is roughly topographic from the start, , are
mitialized as Gaussian distributions, centered over the corresponding input unit
coordinates, that are corrupted by a significant degree of uniformly distributed

random noise 7.

0 ki -ed'D

w;, (0) =exp o ﬁ r(-0.3,0.3) (3-2)
g
In the above equation, 7 is an <x,)> location in the input layer and ¢, is an <x,y>
location in the competitive layer.

When a stimulus is presented to the network, the Euclidean distance between w,
and the pattern of activation on the input layer (a) are calculated (see Equation 3-4)

and compared (see Equation 3-3) for each competitive unit.

k™ =argmin(d) (3-3)

dk = {Z(aj _ij)2 3-4)
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As in the input layer, the winning unit influences neighboring units, and they are

activated proportionally to their distance from the winner. Competitive unit
activation 4, is 1 for ¢, = ¢ and falls off with distance HCk -c Hwhere ¢, and ¢ are the

grid coordinates of units £ and E respectively. As a result, units close to the winner
are significantly more active than units further away. The degree of activation of a

unit £ is determined by a Gaussian defined as follows:

c, —C
a, = expE—HkZ—ZE (3-5)
0o < 0

As mentioned above, the extent of influence, or neighborhood size, of the

winning unit is reflected in the Gaussian width parameter O.

The weights on the links between the input layer and the competitive layer are at
the heart of the nonassociative learning mechanism that contributes to perceptual
learning. Fach time a stimulus is presented, the weights w' of the winner are adjusted
such that they are a bit closer to the pattern of activation on the input layer. Over
time, the w’ become closer and closer to the input layer activation pattern a, thus the
competitive unit weights of the winner become a better representation of the

stimulus.

In addition to the winner, the w, corresponding to a set of nearby units are also
updated in proportion to their proximity to the winner. The result is that after
training is complete, nearby competitive units respond to nearby input patterns. The
effect of this is to set up regions of the competitive layer which code for similar
representations, that is, those with common features. Equation 3-6 is responsible for

the competitive weight update process.
Mw, =0, @&, fa, -w, ) (3-6)

The competitive learning rate, J,, decreases as the outcome of trials become well

predicted (see Equation 3-10).
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The nonassociative perceptual learning mechanism outlined above is based on
competitive learning, a standard technique that is used for pattern classification in
machine learning (Kohonen, 1984; Rumelhart & Zipser, 1986). It is “unsupervised”
in that no external feedback to the system indicates whether or not a particular
classification is appropriate. Instead, the algorithm exploits the statistical properties
of stimuli and classifies them based on those properties. Over time, as the system
gains more samples, the statistical classifications become more reflective of the
parameters of the actual population being sampled. Thus, over time the mechanism

causes the representation of the stimulus to become more accurate and robust.

As a result of this competitive mechanism, the discriminability of a stimulus
tends to increase with exposure (perceptual learning). To illustrate, consider two
similar input stimuli (e.g., S; and S,). Such stimuli are usually captured by
topographically close competitive units (e.g., ¢, captures S, and ¢, captures S,), which
means that the two winning units will tend to be in each other’s neighborhoods (see
Figure 3-2A). The closer that S, and S, are, the more activated ¢, will be when S, is
shown. As a result, when S, and S, are repeatedly presented, a competition ensues in
which each of the competitive units, when its corresponding input stimulus is
delivered, moves its weight vector as well as the other winner’s weight vector toward
the value of the stimulus. That is, when S, is presented, ¢, moves both itself and c,
toward S; On the next time step, when S, is presented, ¢, moves itself and ¢, toward
S,. While this is happening, the other competitive units which are in the winner’s
neighborhood are moved as well, proportionally to their distance from the winners.
If they fall into both winner’s neighborhoods, then they are moved back and forth
between S, and S, as well. However, a unit ¢, which is in the neighborhood of ¢, but
not in the neighborhood of ¢, will be affected only when c, wins. Over time, because
¢, 1s pulled toward S, but ¢, is not, ¢, develops a better representation of S, and wins
over ¢, when S, is presented (see Figure 3-2B). This means that the new winning
units, ¢, and ¢, are more separated on the competitive grid thus there is less overlap
in their distributions of activation. Over time, as the above process continues, the

two winning units become more and more separated on the competitive grid, thus
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lessening their effect on each other and facilitating discrimination by lessenin.

8 g y g
generalization. As this happens, the area around the winning units becomes tuned
toward the two mput stimuli, that is, many units’ weight vectors are moved in the

direction of the stimuli.

In essence, the mechanism outlined above results in an expansion of the area of
the competitive layer that is devoted to the stimuli being discriminated. Interestingly,
recent electrophysiological work from Merzenich and colleagues shows that
perceptual learning is well-correlated with cortical representational changes in
somatosensory and auditory cortex in that an increase in the amount of cortical
space devoted to the discriminanda occurs with discrimination training (Jenkins,
Merzenich, Ochs, Allard, & Guic-Robles, 1990; Merzenich, Recanzone, Jenkins, &
Grajski, 1990). The above mechanism provides a way in which similar stimuli can
eventually be discriminated. If the input stimuli are very different, however, separate

competitive units will win from the start, so little perceptual learning will be seen.
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Figure 3-2: (A) Initial activation of the competitive layer after presentation of two similar
stimuli, 81 and S;. The winning unit for S; is ¢; and the winning unit for Sz is c2. There is
considerable overlap in the areas of activation triggered by each winner. Note that unit c3 is in
the neighborhood of ¢z but not ¢; and so is affected only by cz2. (B) After continued exposure
to the stimuli ¢3 becomes the new winnet. This is because c: is in the neighborhood of ¢{ and
therefore it’s weights are shifted toward ¢ when Sy is presented. Since c; is not affected by the
position of S; and its weights eventually become a more accurate representation of Sz.

Associative Processor

Each competitive unit has an association with the representation of an outcome
(O) such as reinforcer or response. The strength of this association 7, is updated,
using the delta rule (Rescorla & Wagner, 1972), for each competitive unit £

proportionally to its activation.
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AV, =a, [BHA-0) (3-7)

In the above equation 0 is a variable learning rate associated with the competitive

unit £, 3 is a static learning rate associated with the reinforcer, A refets to the value
of the reinforcer, and O is the outcome (in this case, the conditioned response of the
animal to the stimulus). O consists of the sum of the associative strengths 17, of all

of the competitive units scaled by their activation a,.
O= ka &, (3-8)

The size of the increase or decrease in the association is dependent on the
amount of attention O devoted to the stimulus configuration £ As mentioned, the

rule for changing O is not directly addressed by the current model. Instead, the

model incorporates a time-smoothed version of the well known associative

mechanism, the Pearce-Hall rule (Pearce & Hall, 1980; Pearce & Kaye, 1985), to
update 0. As the outcome of the presentation of a stimulus becomes well predicted

by the network (i.e., (A - O) is minimized), 0, decreases in propottion to a,.

Aa, =(1-y) @, (A -0) -a, (t-D)] (3-9)

Interaction between the Nonassociative and the Assoctative Processor

Like associative learning, the degree to which tuning and separation occur on
the competitive layer is affected by how well the outcome of the presentation of a
stimulus 1s predicted. Thus, when the outcome is poorly predicted (e.g., at the
beginning of discrimination learning or when the stimuli are difficult to discriminate)
the degree of perceptual learning is high. As the outcome becomes better predicted,
the learning rate on the competitive layer () decreases according to the following

rule:

AS, = (1-y) @&, (A -0) -3, (t-1)] (3-10)
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Note that the associative learning rate O and the competitive/petceptual

learning rate O are controlled by the same mechanism.

Bebhavior

Most of the experiments that will be presented in this document are simulations
of simultaneous discrimination tasks. In this type of task, two stimuli are presented
simultaneously and the animal must indicate its choice by pecking a key or pressing a
touchscreen. On a given trial of a simultaneous discrimination simulation, stimulus A
is input to the network and the activation of the input and competitive layers are
computed. Then stimulus B is input to the network, and the activations again are
computed. The initial output (O) produced by the model consists of the conditioned
response (CR) to each of the presented stimuli. However, in order to reproduce as
closely as possible the animal experiments, on each simulation trial two stimuli, A
and B, are presented and the CRs to the stimuli are mapped to the probability of

response to each stimulus (P(A) and P(B)) using the Boltzmann function:

P(A) = exp(CR(A))
exp(CR(A)) +exp(CR(B))

(3-11)

For example, when the CR to each of the stimuli is near 0 at the beginning of
training, P(A) = 0.50 and P(B) = 0.50. In the middle of training, on the other hand, if
CR(A) = 0.60 and CR(B) = 0.30, P(A) = 0.77 and P(B) = 0.23. The actual response,
either A or B, on a given trial is then chosen stochastically as a function of P(A) and
P(B). To choose a response, a random number between 0 and 1 is generated. If P(A)
is greater than the random number, then action A is chosen. If P(A) is less than the
random number, then action B is chosen. Thus, if A is the correct stimulus, as P(A)
increases, so will the likelihood that P(A) is greater than the random number and the

increased CR(A) will be manifested in the netwotk’s choice behavior.
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Summary

The present model concretizes the idea, originally presented by Channell and
Hall (1981), that two separable processes—a reduction in associability and an
increase in discriminability—occur during stimulus exposure. The associability of a
stimulus, as manifested in its learning rate () is dependent on the amount of
attention being paid to it. In the model, this form of attention is controlled according
to the Pearce-Hall (1980) rule: attention to a stimulus decreases if its consequences
are well-predicted and attention to the stimulus increases if they are not. In contrast
with associability, the discriminability of a stimulus tends to increase with exposure.
In the current model, this is due to a nonassociative, competitive learning
mechanism that classifies stimuli according to their statistical properties. Over time,
as the system acquires more input samples, representations of stimuli become more
reflective of the actual stimulus parameters and thus become more precise. The
particular conditions of a given experiment will influence the degree to which latent

inhibition versus perceptual learning affect

General Methods

Identical network parameters were used for all simulations presented in this

chapter. The network consisted of ten by ten grids of perceptual and competitive
units. The specific parameters were as follows: a(0) = 0.05, B = 0.005, &(0) = 0.05,y

=0.95, A = 1.0 (reinforced trials) or 0.0 (non-reinforced trials), 0% =3.0.

The initial output produced by the network consists of the CR to the presented
stimulus. For the concurrent discrimination simulations, the CR was translated to an
actual stimulus choice as described in the Behavior section of this chapter. In this
case, data are plotted as the percentage of trials in each block of 10 in which the
netwotk responded to the correct stimulus. Experiment 1 and Experiment 7, on the

other hand, consist of conditioning to a single stimulus. In these simulations, the
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behavioral response was considered to be a monotonic function of the CR, the value

of which is plotted directly.

Error bars represent the standard error of the mean over 15 simulations, each of
which can be said to represent a “subject” since the initial weights on the

competitive unit links included a significant degree of randomness.

Experiment 1: Generalization

Guttman and Kalish’s (1956) result that pigeons demonstrate a gradient of
responding as a function of how similar a test stimulus is to the original training
stimulus provides a clear demonstration of generalization. In this experiment, the
authors reinforced pigeons for pecking at a key illuminated by an orange light. After
training, the animals were tested with a variety of colors projected on the key, and
the rate of responding to each color was recorded. They found that subjects
responded most to the original stimulus, and the degree of response to other test
stimuli declined in proportion to the difference, as measured in nanometers, between

the test stimulus and the trained stimulus.

The current model accounts for generalization as a result of the topographical
perceptual learning mechanism. When a stimulus is repeatedly presented, the weights
of the winning unit are moved closer to the input pattern. The weights of neighbors
are updated proportionally to their distance from the winner. As a result, a gradient
of responding as a function of similarity to the trained stimulus should be seen when

the network is trained on the Guttman and Kalish (1956) paradigm.

Methods

In this simulation, 15 networks were reinforced after presentation of a stimulus
S = <5,5> for 100 trials. Their response to 10 stimuli of varying distance from the

trained stimulus was then measured as an indication of generalization. On testing
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trials, weights were not changed, which means that each network could be given all

10 tests without intetference between them.

Results and Discussion
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Figute 3-3: The generalization gradient produced by the network when it is trained on the
Guttman and Kalish (1956) paradigm. In this simulation, 15 networks were reinforced for 50
trials after presentation of a stimulus S=<5,5>. Their response to 10 stimuli of varying
distance from the trained stimulus was then measured as an indication of generalization.
Comparable to Guttman and Kalish (1956), the distribution of the relative levels of responding
is approximately Gaussian, with response level declining with distance from the trained
stimulus.

Figure 3-3 shows the generalization gradient produced by the current model
when it is trained on the Guttman and Kalish (1956) paradigm. Comparable to
Guttman and Kalish (1956), the distribution of the relative levels of responding is
approximately Gaussian, with the response level declining with distance from the
trained stimulus. The steepness of the Gaussian is dependent on O as well as the

number of units on the grid.
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This type of generalization is a direct result of the structure of the network.
Since the neighborhood of the winning unit is Gaussian, one would expect to see a
Gaussian generalization function. Therefore, whereas this result may not be
surprising when one considers the structure of the network, it is important to verify

that this effect is indeed produced by the model.

Experiment 2: Peak Shift

Kohler (1918), an eatly Gestalt psychologist, trained chickens to discriminate
between cards of differing shades of gray. If the cards had been labeled in order
from lightest to darkest, discrimination training would have been between shades
2(S+) and 3(S-). This phase was then followed by transfer tests to pairs of cards,
some of which were of other reflectances (i.e., 1 vs. 2 and 3 vs. 4). What Kohler
found was that during the transfer tests, the chickens tended to prefer 1 over 2. If
they were trained with 3 as S+ and 2 as S-, however, they tended to prefer 4 to 3.
Kohler suggested that this provided evidence that the animals were not learning
associations between absolute reflectance and reinforcement. Instead, they were
learning about a relationship between the S+ and the S- (i.e., one was brighter than
the other).

In 1937, Spence presented an alternative to the relational point of view. He
suggested that Kohler’s result was due to an interaction between the different
response tendencies acquired by the training stimuli. Thus, in discrimination training
the S+ acquires excitatory tendencies whereas the S- acquires inhibitory tendencies.
Response to subsequent test stimuli should consist of the algebraic sum of the
tendencies. Spence showed that, assuming Gaussian generalization functions for the
response tendencies, the maximum of their resultant occurs not at the S+, but at a
point beyond it in the opposite direction of the S-. This prediction was confirmed
experimentally by Hanson (1959) and subsequently termed a “peak shift”. It has

since been replicated numerous times (see Purtle, 1973 for a review).
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The manner in which the current bottom-up model operates should produce an
interaction similar to that proposed by Spence (1937). If two similar stimuli are
presented to the network, the competitive layer neighborhoods of the winners for
each stimulus will overlap. If the stimuli are differentially reinforced, it is probable
that the winning competitive unit associated with the S+ will actually develop a
smaller associative weight—due to S- generalized inhibition—than units in its
neighborhood that are further from the S-. If this occurs, then on a subsequent test
of conditioned response to the winner as well as the further units a peak shift should

be evident.

Methods

In this simulation, 15 networks were trained on a discrimination between two
mnputs with overlapping neighborhoods of activation (S+ =<5,5> and S- = <5,6>).
Then the response of each network to a range of stimuli was tested as a measure of
generalization (<5,1>, <52>, <53>, <54>, <55> <56>, <57>, <58>, <59>,
<5,10>). On testing trials, weights were not changed, which means that each

netwotk could be given all 10 tests without interference between them.

Results and Discussion

Figure 3-4 shows the generalization gradient produced by the current model
after discrimination training on two similar stimuli with overlapping areas of
activation in the competitive layer. As the conditioned response was highest not for
the S+, but for two stimuli in the neighborhood of the S+ in the opposite direction
of the S- (<5,4> and <5,3>) the simulations reveal that the model produces a peak

shift similar to that seen in the animal learning literature.
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Peak Shift Effect
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Figure 3-4: The peak shift effect.

As predicted above, the model produces peak shift as a result of overlap
between the Gaussian areas of activation associated with the discriminanda. Because
the winning units are situated within each other’s area of activation, each of their
associative strengths are both increased and decreased. A unit located within only the
S+’s neighborhood, therefore, can develop greater associative strength than the
winning unit due to the fact that it is only affected by the positive reinforcement of

the S+ and not the negative reinforcement of the S-.

Differentiation moves the winning units further apart on the competitive layer,
thereby reducing ovetlap of their activation neighborhoods. If the units are moved
so far apart that there is little neighborhood overlap, there will be no interaction
between response tendencies thus no peak shift will occur. However, since the
competitive unit learning rate O is decreased as trial outcome becomes well-predicted

(see Equation 3-10), the winning units did not completely separate by the time this
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discrimination .was learned to a reasonable criterion, and thus the peak shift was

obsetved.

Experiment 3: Similarity

The argument that Pearce (1994) makes against elemental theories of
discrimination learning is that they can incorrectly predict that making two patterns
more similar will cause animals to learn the discrimination motre quickly. Consider an
experiment in which a common element, C, is added to two stimuli, A and AB, to
produce AC and ABC. This manipulation presumably makes the two stimuli more
similar due to their sharing of a common element. According to an elemental theory
of learning based on the delta learning rule (e.g., Rescorla & Wagner, 1972), in a
discrimination between AC+ and ABC-, on the first trial in which AC is presented,
both A and C will gain associative strength. As a result, the overall associative
strength of AC will be greater at the end of the first trial than if conditioning had
been conducted with A alone. When ABC is presented, the delta rule predicts that
the degree of negative associative strength acquired by B will be proportional to the
overall associative strength of the compound. The presence of A and C will ensure
that the magnitude of this associative strength is relatively high, and the increment in
the negative associative strength of B will be greater than if it had been presented in
an A+AB- discrimination. Thus, after the initial trials of the discrimination, the
difference between the level of responding during AC and ABC will be greater than
between A and AB. As a result, a discrimination between AC and BC should be
learned more quickly than a discrimination between A and B. This prediction is not

compatible with empirical results (e.g., Pearce & Redhead, 1993).

In this experiment I investigated whether making two stimuli more similar
would cause the current model to learn the discrimination more slowly, as the data

show, or more quickly, as an elemental theoty would predict.
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Methods

In this simulation, 15 networks were reinforced after presentation of a stimulus
A=<2,2> and were not reinforced after presentation of a relatively different stimulus
B=<8,8> (the Euclidean distance between A and B was 8.5). Next, 15 re-initialized
networks were trained on a discrimination in which the stimuli were relatively similar

(C=<5,5> and D=<5,6>; Euclidean distance =1.0).

Results and Discussion
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Figure 3-5: Disctimination ratios for two discriminations, one between relatively similar
stimuli and one between relatively dissimilar stimuli. In this simulation, 15 networks were
reinforced after presentation of a stimulus A=<2,2> and were not reinforced after
presentation of a relatively different stimulus B=<8,8> (the Euclidean distance between A
and B was 8.5). Next, 15 re-initialized networks were trained on a disctimination in which the
stimuli were relatively similar (C=<5,5> and D=<5,6>; Euclidean distance =1.0).

The current model captures the fact that making stimuli more similar will

decrease the rate at which they are discriminated. Figure 3-5 shows learning curves
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for both the easy and the more difficult discrimination, averaged over 15 simulation
runs. It is clear that the discrimination in which the stimuli were different was
learned much more quickly than the discrimination in which the stimuli were more
similar. In the current model, this occurs because different stimuli activate winning
units that are further apart on the competitive layer than would be winners that
similar stimuli activate. As a result, for different stimuli there is less overlap between
active competitive units than there would be for similar stimuli. This leads to more

consistent reinforcement and more rapid learning of the discrimination.

Experiment 4: Preexposure facilitates a difficult

discrimination

The original Gibson-Walk experiment, along with others such as Oswalt (1972)
and Chamizo and Mackintosh (1989) showed that relatively difficult discriminations
are facilitated by preexposure. The cutrent model’s performance on a difficult

discrimination, with and without preexposure, is tested in this experiment.

Methods

In this simulation, the stimuli presented were similar, with <x,)> coordinates of
<5,5> for stimulus A and <5,6> for stimulus B. Two groups of 15 networks each
(Group Exposed and Group Control) were trained with different procedures.
During the first phase (preexposure), Group Exposed was given 100 interleaved
presentations of each of A and B and Group Control was not run. During the
second phase both groups were trained for 20 blocks of 10 trials on a disctimination

in which A was reinforced and B was not.

Results and Discussion

The results of this simulation (see Figure 3-6) confirm that the model predicts

facilitation of the subsequent discrimination for the similar stimuli that were used.
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Initially, the winning competitive units coding A and B were located close to each
other. This resulted in a good deal of overlap in the competitive layer activation
functions for each stimulus. Thus when the two stimuli were repeatedly presented, a
competition ensued in which each of the competitive units, when its corresponding
mnput stimulus was delivered, moved it’s weight vector as well as the other winner’s
weight vector toward the value of the stimulus. Because of this process, competitive
units toward the far end of the neighborhood relative to the competing stimulus,
which were less affected by the competing stimulus, gradually started to become
winners. Over time, the two winning units became more and more separated on the
configural grid, thus lessening their effect on each other and facilitating
discrimination. In addition, each winning configural unit moved its neighbors closer,
resulting in a reduced generalization gradient. Thus, for this discrimination the
preexposure phase conferred an advantage because it reduced competitive layer
overlap (corresponding to generalization) between patterns before the actual

discrimination training phase began.

Chapter 3: Exposure Learning 40



100

90+ I AN ¢
- /
801 A [ \\ %’
/ \ Y
© T / T
8 / I
5 70+ _ J,{
(@] N | v/
IS /T
(O] / -
© 60r %
g i ——  Exposed
, === Control
50+
40+
30 L 1 1 L 1 L | 1 L | L | | 1 | 1 L 1 1 ]
01 2 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20

Block

Figure 3-6: Results of a discrimination in which the stimuli presented were similar (A=<2,2>
and B=<5,6>).During an initial phase (not shown here), Group Exposed was given 100
interleaved presentations of each of A and B and Group Control was not run. During a
subsequent phase depicted in this figure, both groups were trained for 100 trials on a
discrimination in which A was reinforced and B was not. Acquisition of the discrimination
was faster for Group Exposed than for controls.

Experiment 5: Preexposure impairs an easy discrimination

Chamizo and Mackintosh  (1989) also showed that in certain situations,
specifically when a discrimination is not difficult, preexposure will retard a
subsequent discrimination. The current model’s performance on an easy

discrimination, with and without preexposure, is tested in this experiment.

Methods

The procedure for this experiment was identical to that used in the previous
simulation, with the exception that the stimuli used in this case were very different:

the <x,y>coordinates of A were <2,2> and of B were <8,8>. Again, two groups of

Chapter 3: Exposure Learning 47



15 networks each were run. Group Exposed were preexposed to the stimuli and

Group Control were not.

The results of this simulation (see Figure 3-7) show that the model produces
impairment of the subsequent discrimination for the relatively different stimuli that
were used in this experiment. Initially, exposed animals were not impaired, but the
learning curve for the control animals is steeper. This is because control subjects
were subject to a lesser degree of latent inhibition and thus had a higher learning rate

than the exposed group during discrimination training.

Results and Discussion
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Figure 3-7:Results of a discrimination in which the stimuli presented were different (A=<2,2>

and B=<8,8>). During an initial phase (not shown here), Group Exposed was given 100

interleaved presentations of each of A and B and Group Control was not run. During a

subsequent phase depicted in this figure, both groups were trained for 100 trials on a

discrimination in which A was reinforced and B was not. Acquisition of the discrimination
was faster for controls than for Group Exposed.
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Thus the current model predicts that impairment of subsequent discrimination
will occur in the case of a relatively easy discrimination. Since the input patterns were
far from each other in perceptual space, spatially distant competitive units were the
winners from the start, thus there was little overlap in the competitive layer
activation function for the two stimuli. In contrast to the situation in the previous
simulation, in this case there was no advantage to preexposure. As a result, the only

effect seen in the results here is that of latent inhibition.

Experiment 6: Separable latent inhibition and

differentiation

In contrast to other models of perceptual learning (e.g., McLaren et al., 1989), in
the current model the mechanisms of latent inhibition and differentiation are
independent and separable. Thus it is possible to show each of their effects
separately in order to demonstrate their operation and to show that the seemingly
inconsistent effects of preexposure to stimuli are simply due to an interaction

between the two processes.

Methods

In this simulation, 30 netwotrks were altered such that the latent inhibition
mechanism, but not the perceptual learning mechanism, was operational. Then 15 of
the networks were preexposed to two similar stimuli (A=<5,5> and B=<5,6>) while
the remaining 15 networks were not. Next, all 30 networks were trained on a
discrimination between A=<55> and B=<5,6>. The networks were then
reinitialized and 15 were exposed to two different stimuli (A=<2,2> and B=<8,8>)
while the remaining 15 were not. Finally, all 30 networks were trained on a

discrimination between A=<2,2> and B=<8,8>.

In the second phase of this experiment, 30 newly initialized networks were

altered such that the perceptual learning mechanism, but not the latent inhibition
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mechanism, was operational. Then 15 of the networks were preexposed to two
stimuli (A=<5,5> and B=<5,6>) while the remaining 15 networks were not. Next,
all 30 networks were trained on a discrimination between A=<5,5> and B=<5,6>.
The networks were then reinitialized and 15 were exposed to two different stimuli
(A=<22> and B=<8,8>) while the remaining 15 were not. Finally, all 30 networks

were trained on a discrimination between A=<22> and B=<8,8>.

Results and Discussion
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Figure 3-8: The effect of preexposure on an easy and a difficult discrimination when only the
latent inhibition mechanism is in effect.

Figure 3-8 illustrates the effect of preexposure on the disctiminations used in
this experiment when only the latent inhibition mechanism is in effect. Neither
group was able to learn the difficult discrimination. Since the network had been able
to learn this discrimination in an earlier experiment (see Experiment 3), this was

presumably due to the absence of the discrimination mechanism. On the easy
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discrimination, the exposed group learned more slowly than the controls, thereby

indicating a latent inhibition effect.
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Figure 3-9: The effect of preexposure on an easy and a difficult discrimination when only the
differentiation mechanism is in effect.

Figure 3-9 shows the effect of preexposure on the same discriminations when
only the perceptual learning mechanism is active. Quite a different pattern of results
is seen here. Both discriminations are learned by all of the groups, however the
control group’s acquisition of the difficult discrimination is much slower than the
other three groups. There is no difference in acquisition between the other three
groups. This suggests that preexposure to stimuli would help with any
discrimination, easy ot difficult, if latent inhibition weren’t counteracting the positive

effects.
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Thus the current model consists of two completely separable and independent
mechanisms for learning during exposure to a stimulus: Latent inhibition reduces the
learning rate of preexposed stimuli while differentiation enhances their
discriminability. The fact that these two processes operate simultaneously suggests
that one should be able to pull the two mechanisms apart in a conditioning

experiment. Honey and Hall (1989) demonstrated just such an effect.

Experiment 7: Simultaneous latent inhibition and

perceptual learning

Honey and Hall (1989) demonstrated simultaneous effects of latent inhibition
and perceptual learning in the same animals. Rats were preexposed to separate
presentations of each of two distinctly flavored solutions (A and B). Control rats
were given water. Next, all subjects received a series of trials in which A was
followed by LiCl, thereby conditioning an aversion to A. Acquisition of the aversion
developed more slowly for preexposed animals, presumably due to latent inhibition.
Discrimination between A and B was then assessed with a test in which B was
presented and its generalized tendency to evoke a CR was measured. Animals in the
control group tended to generalize to and thus reject B, whereas those in the A/B
preexposure group showed little generalization from A to B. These results suggest
that preexposure slowed conditioning to A while facilitating discrimination between
A and B. Thus, this experiment provides support for the idea that there are two

opposing forces operating during preexposure.

In this experiment, a simulation of Honey and Hall (1989) was used to
mnvestigate whether the simultaneous effects of perceptual learning and latent

inhibition could be seen within the current model.
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Methods

Two groups of 15 networks each were run in this simulation of Honey and Hall
(1989). Group Exposed were preexposed to 100 presentations of A <5,5> and B
<5,6>. Then both groups were conditioned to A to a criterion of CR=0.95. Finally,

both groups were presented with B for one trial in extinction.

Results and Discussion

Figure 3-10 shows trials to criterion for acquisition of a CR to A for the
preexposed and control groups. As in Honey and Hall (1989), Group Exposed were
impaired on acquisition of the response with respect to controls. This reflects the

influence of the latent inhibition mechanism on the exposed group.
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Figute 3-10: Trials to criterion for a simulation in which Group Exposed were preexposed to
100 presentations of A<5,5> and B<5,6> whereas controls were not preexposed. Then both
groups were conditioned to A to a criterion of CR=0.95. Group Exposed were impaired on
acquisition of the response with respect to controls.
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Performance for the two groups on the extinction test is shown in Figure 3-11.
The extent of the CR on this test indicates the degree of generalization from B to the
reinforced stimulus A. The group means were 0.73 for group Control and 0.42 for
group Exposed, indicating that the preexposed group showed less generalization
than the control group. Thus even though the associative learning rate of Group
Exposed was lowered as a result of preexposure, stimulus discriminability was

increased.
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Figure 3-11: Results from the generalization test in the simulation of Honey & Hall (1989).
Group Exposed was exposed to 100 presentations of A<5,5> and B<5,6> whereas controls
were not preexposed. Then both groups received 100 training trials in which A was
reinforced. Finally, both groups were presented with B for one trial in extinction. The
preexposed group showed less generalization than the control group.

The above simulation shows that the model produces simultaneous latent
inhibition and perceptual learning, just as in Honey and Hall (1989). Preexposed

subjects acquired the CR more slowly than controls, but they also generalized less to
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the reinforced stimulus. This is due to the fact that the model comprises separate

mechanisms for associability and discriminability which operate independently.

General Discussion

The current chapter describes a connectionist model of perceptual learning that
accounts for data showing that preexposure can lead either to facilitation or
retardation of subsequent learning. This is achieved through the incorporation of a
concrete, nonassociative differentiation mechanism within an associative learning
framework. In the present model the behavioral effects of preexposure are directly
dependent on the difficulty of the discrimination. If two input stimuli are very similar
then they will tend to be captured by nearby units on the competitive layer. With
more input samples, however, the perceptual learning mechanism causes better
separated units eventually to win out over the original winners. This results in the
stimulus representations on the competitive layer being pushed apart; as a result
preexposure will provide an advantage on a subsequent discrimination learning task.
If the input stimuli are very different, however, well-spaced competitive units win
from the start, so advance differentiation confers no advantage. In both cases, latent
inhibition of the preexposed stimuli also occurs during preexposure. Because
differentiation is unnecessary in the latter case, however, latent inhibition effects tend

to be much more apparent.

One factor that sets the current model apart from other models of perceptual
learning is that it is compatible with a configural approach to associative learning
without using biologically implausible backpropagation of error (cf.McClelland &
Rumelhart, 1986; Rumelhart & McClelland, 1986). The present chapter has focused
on the basic perceptual and discrimination learning mechanism by restricting inputs
to unidimensional stimuli that can be represented in a single input layer. However, it
is fairly straightforward to see how the model could be extended in order to
accommodate multi-dimensional or compound stimuli in a configural manner. For

example, imagine that a compound stimulus AB is presented to the network. As in
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the basic network discussed in this paper, stimuli would consist of vectors of values;
however in this case they would be quadruples (e.g., <x7,7,x2,y2>) rather than pairs
(<xT1,y7>), with an <x,)> value within the quadruple for each of A and B. In order
to accommodate this increased number of stimuli, two separate input layers (I, and
I;) would be utilized. Each input layer would represent one stimulus, either A or B.
Thus if a compound stimulus were input to the netwotk, each of the input layers
would be activated depending on the value of the stimulus to which it corresponded.
The pattern of activation on the input layers would be generated in the same manner
as described for the basic perceptual and discrimination learning mechanism. In
order for the network to be configural, the competitive portion of the network
would be fully connected with both I, and Iy and therefore would be able to
represent the conjunction of the stimuli or features represented in these layers. The
competitive layer, with its configural representation of the input stimuli, would be
fully connected with the outcome representation. In sum, the full configural version
of this model would be similar to that proposed by Pearce (1994) with the exception
that instead of being made up of linked single units it would be made up of linked
grids of competitive units. Thus, the configural version of the current network would
have the same functionality as Pearce’s (1994) network, with the added benefit that it
would be able to deal with changing stimulus representations as in perceptual

learning.

A second unique aspect of the current model is that it suggests that perceptual
learning is based on a singular, nonassociative mechanism that focuses on the
separation of the representations of stimuli. Thus, the current model suggests that
associative factors may not be strictly necessary for perceptual learning (although
they may in certain circumstances influence the processing of stimulus
representations during preexposure, see Bennett, Wills, Wells, & Mackintosh, 1994;
Espinet, Iraola, Bennett, & Mackintosh, 1995; Mackintosh, Kaye, & Bennett, 1991;
Trobalon, Chamizo, & Mackintosh, 1992; Trobalon, Sansa, Chamizo, & Mackintosh,
1991). This contrasts strongly with elemental models in which associative

mechanisms are the foundation of perceptual learning. The model of McLaren et al.
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(1989), for example, suggests that three associative processes contribute to
perceptual learning. First, stimulus sampling theory (Neimark & Estes, 1967) is
extended by adding the assumption that in addition to associations between elements
of different events, associations also form between elements comprising a single
event, such as the CS itself. Variance in the input is derived from the fact that only a
subset of the elements is activated on each trial. Over time, associations will form
between the most frequently sampled elements in a process called “unitization”, thus
creating an elaborated stimulus representation that reflects the central tendency of
the sampled elements. Second, the theotry suggests that common elements are
subject to twice as much exposure as unique elements during preexposure thus they
are subject to twice as much latent inhibition. As a consequence, preexposure
reduces the subsequent rate of associative learning for common elements relative to
unique elements, thereby facilitating discrimination. Third, since the stimuli will be

perceived separately, inhibitory associations will form between unique elements.

Summary

The present model reconciles associative and nonassociative accounts of
preexposure effects in discrimination learning by incorporating aspects of both
approaches in a single model. It focuses on a nonassociative perceptual learning
mechanism that is based on the idea that stimulus representations can be tuned and
separated during simple exposure. Unlike other perceptual learning approaches, the
model is compatible with a configural approach to associative learning. In addition,
since it is instantiated in a computational model, it provides concrete mechanisms
behind what have to this point been presented only as abstract theoretical concepts

(e.g., Gibson & Gibson, 1955).
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CHAPTER 4 DIMENSIONAL ATTENTION

Introduction

Many researchers have argued that discrimination learning involves, in addition
to the low-level effects discussed in Chapter 3, changes in higher-level attentional
processes. For example, in an early experiment Lawrence (1949) investigated whether
transfer between tasks might occur on the basis of increased stimulus
discriminability. In this experiment, rats in the critical experimental condition were
trained on a simultaneous black-white discrimination. Control subjects were trained
on a discrimination in which the maze arms were an identical shade of gray, but the
textures of the floors differed. The basis of the transfer test that followed was to
make the associations learned in the first stage itrelevant: in some trials both ends of
the maze were black, signaling that a response to the right (say) was rewarded; in
other trials both ends were white, signaling that a response to the left was rewarded.
Thus, having a tendency to approach black rather than white would not aid
acquisition of this new task, but an increase in the distinctiveness of black and white
might. Indeed, animals in the experimental condition did learn the successive
discrimination more readily than controls, and this result has been confirmed by
subsequent experiments (Jaynes, 1950). Although several interpretations of these
data are possible *, Lawrence’s interpretation was based on the relatively high-level
concept of attention: Lawrence suggested that increases in discriminability are due
not to an increase in the ease of discrimination between two stimuli (as one would
expect with a low-level perceptual learning mechanism), but instead to an increase in
the ease with which the cues enter into further associations due to changes in

attention. After training on a black/white disctrimination, he suggests, the animal is

2 For example, see the acquired distinctiveness argument presented at the beginning of
Chapter 5.
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not any better at discriminating black from white. Instead, the dimension of

brightness comes to command the animal’s attention better than previously.

An equally plausible interpretation of these data, however, is that the effect is
due to altered low-level stmulus representations rather than to high-level changes in
attention. In other words, the facilitation that Lawrence found might be due not to
greater attention to the brightness dimension, but to greater separation between the
discriminanda through perceptual learning. This explanation, if it turned out to be
feasible, would be interesting for at least two reasons: (1) Differentiation, as modeled
by the current network, can account for a wide variety of perceptual learing data
that are not accounted for by an attentional explanation and (2) Differentiation is a
low-level mechanism and thus may be more parsimonious than high-level attentional
mechanisms. As such, in this chapter I investigate the extent to which data usually
attributed to dimensional attention can be explained simply as a result of

differentiation.

In the following section, some classic studies of attentional transfer after
discrimination learning are described. Next, theoretical accounts of these phenomena
are discussed. Finally, I present a series of simulations suggesting that many effects
heretofore attributed to dimensional attention may in fact be more parsimoniously

explained by the current model of differentiation.

Evidence for Attentional Processing in Discrimination Learning

In most investigations of dimensional attention experimenters attempt to
separate attentional transfer effects from associative, or direct, transfer effects. One
paradigm often used for separating these processes is reversal learning. In a reversal
learning experiment, animals are first trained on a discrimination task and then in a
second “reversal” stage the reinforcement contingencies are reversed. Usually, as one
might expect, learning in the second stage is impaired as a result of associative
transfer. However, Reid (1953) found that rats given an extra 150 trials on a

simultaneous black- white discrimination learned the reversal more quickly than
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subjects trained only to a moderate criterion. This suggests that some process other
than associative transfer is in effect. One possible account similar to that provided
by Lawrence to explain his (1949) experiment: during a black-white discrimination
there is a strengthening of the tendency to attend to brightness plus a reduction in
tendency to attend to other dimensions along which the cues differ. This shift in
dimensional attention outweighs the direct transfer effects in the overtrained animals

thereby leading to a facilitation in the reversal test.

A second way in which researchers have addressed the issue of direct versus
attentional transfer is by leaving the response requirement the same in the training
and transfer test but changing the stimuli such that the effect of direct transfer is
reduced, whereas the effect of attentional transfer is preserved. One example of this
is the intra-dimensional (ID) shift. In an ID shift, the specific stimuli are changed
when the subject is shifted from one stage to the next but the dimension along
which the stimuli differ is kept the same. With appropriate stimuli there should be no
reason for associative transfer to give a subject a preference for one stimulus over
the other. But if the first stage of training increases attention to the relevant
dimension, then there should be positive transfer from the first task to the second.
The control condition consists of an extra-dimensional (ED) shift in which subjects
are moved to a test discrimination in which the stimuli differ along a completely
different dimension than in the training stage. An example of this type of experiment
was done by Mackintosh and Little (1969). Subjects were trained on a discrimination
in which stimuli consisted of lines that could differ in color or orientation. Group 1
was trained on a discrimination in which red horizontal or vertical lines were
reinforced while green horizontal or vertical lines were not. Group 2 was trained on
a discrimination in which red and green vertical lines were reinforced while red and
green horizontal lines were not. Then both groups were subjected to a transfer test in
which blue left-diagonal lines and blue right-diagonal lines were reinforced and
yellow left-diagonal and right-diagonal lines were not. Thus, Group 1 experienced an
ID shift on the transfer test whereas Group 2 experienced an ED shift. Group 1

learned the test problem more quickly than Group 2, suggesting that more transfer
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occurs across an ID shift. This effect can also be explained by an increase in
attention to the relevant dimension, and Mackintosh (1974) suggests that this is
“perhaps the best evidence that transfer between discrimination problems may be

partly based on increases in attention.”

A different approach to intradimensional transfer results from work on transfer
along a continuum. Lawrence (1952) trained rats using stimuli consisting of shades of
gray ranging from light (A) to dark (G) with five intermediate shades. Rats trained
from the outset on a difficult discrimination (D-E) learned slowly. Others that were
given initial training trials on the easiest task (A-G) performed very well when given
the ID shift to the D-E task and their terminal level was supetior to that of the first
group. An analysis based on Lawrence (1949), would suggest that iitial training
strengthened the relevant dimension and this led to positive transfer. Mackintosh
and Little (1970) looked at the possibility that the effect might instead be due to
generalization of associative strength. Subjects were pigeons that were going to have
to learn a very difficult wavelength discrimination. They were given easy pretraining
with the values of the stimuli reversed. Generalization of associative strength would
put this group at a disadvantage. They found this to be the case at the beginning of
the test phase: subjects given reversed pretraining were inferior to those trained on
the difficult discrimination from the beginning. As training continued, however, the
pretrained group overcame its disadvantage and overtook the group trained only on

the hard task.

Theoretical Interpretations

In this section of the chapter I describe two major theories of dimensional
attention. I have chosen these models in particular because they are well-formulated
relative to other theories in the literature (e.g., Lawrence, 1963). The first, analyzer
theory (Mackintosh, 1975; Sutherland & Mackintosh, 1971), is the predominant
model of dimensional attention effects in the animal learning literature (Hall, 1991).
The second, ALCOVE (Kruschke, 1992), is a connectionist model of categorization
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and discrimination learning based largely on Nosofsky’s generalized context model

(1986) from the human cognitive psychology literature.

Analyzer Theory

Sutherland and Mackintosh (1971) presented “analyzer” theory, a formalization
of Lawrence’s idea that discrimination training might produce a change in attention
as reflected in stimulus associability. Like the current model, analyzer theory
suggests that discrimination learning is a two-stage process in which stimulus
representations pass through a stage of perceptual learing before associations are
constructed between it and other events. However, unlike the current model,
analyzer theory suggests that the perceptual learning consists of changes in attention
to the dimension to which the stmulus belongs. Thus, as Lawrence (1963) originally
suggested, in a black-white discrimination, there is a strengthening of the tendency to
attend to brightness (called the brightness analyzer) plus a reduction in the tendency
to attend to other dimensions along which the cues differ. In order for an analyzer to
gain strength, the outputs of the analyzer must be consistently related to certain
consequences: ie., in the above example black reliably predicts food and white
predicts its absence. When the outputs of the analyzer fail to make correct
predictions about the outcome, its strength decreases. In addition, Sutherland and
Mackintosh suggest that the capacity of the dimensional attention system is limited
such that an increase in strength of attention to one analyzer causes a decrease in
others. This change in analyzer strength is assumed to be fundamentally different
from the associative changes that occur between representations of stimuli and

reinforcement’.

3 Mackintosh (1975) later proposed a revised version of analyzer theory. In this revision, it
was proposed that changes in analyzer strength are specific to stimuli instead of
dimensions. Second, it was suggested that analyzer strength is increased when a stimulus
successfully predicts its consequences and is decreased when it is unsuccessful. The third
change was that adjustments in analyzer strength happen independently; the assumption of
a limited capacity system was dropped. However, in this chapter discussion centers around
the original version of analyzer theory.
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ALCOVE

Kruschke (1992) presents a connectionist model of category learning
(ALCOVE) that accounts for several experimental results in the human
categorization literature. The model incorporates an explicit representation of
continuous stimulus dimensions with an attentional parameter associated with each
dimension, and determines which dimensions are most important to a given task and
how strongly to associate exemplars with a given category. The mechanism
underlying the model consists of an exemplar-based representation modeled on the
Generalized Context Model (Nosofsky, 1986) that is paired with backpropagation
learning (Rumelhart et al., 1986).

A brief summary of the model is as follows. Input nodes represent psychological
dimensions, and the activation of a node indicates the value of the particular stimulus
on that dimension. The input nodes are gated by a dimensional attention strength
that reflects the relevance of the dimension for the categorization task at hand. Each
hidden node consists of a point in a multidimensional psychological space and
represents a particular exemplar. The activation of a given hidden node is
proportional to the similarity between the stimulus and the exemplar, and this
activation falls off exponentially with the distance between the hidden node and the
mput stimulus. The dimensional attention strengths function as multipliers on the
dimension when computing the distance between a stimulus and the hidden node
exemplar, so the attention strengths functionally stretch and shrink dimensions of
mnput space such that stimuli in different categories are better separated and stimuli
within categories are closer together. A linear rule adjusts associative strengths
between exemplars and categories and category activations are mapped onto
response probabilities using a Boltzmann function choice rule. Thus for each
presentation of a training exemplar, activation propagates to the category nodes. The
teacher values are then presented, compared with actual category node activation,
and assoclation strengths are adjusted in proportion to the degree of error. The error

is then backpropagated to adjust the dimensional attention weights.
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The model can account for some classic data in the human categorization
literature. Kruschke (1992) demonstrates the application of ALCOVE to several
studies. The study most relevant to this dissertation is that of Shepard, Hovland, and
Jenkins(1961), in which learning to attend to relevant dimensions was investigated.
In the experiment, stimuli varied on three binary dimensions: shape (square vs.
triangle), size (large vs. small), and color (filled vs. open). The resulting eight
exemplars were evenly divided into two categories. It turned out that there were six
structurally distinct types of category assignments, with Type I requiring information
only about dimension 1, Type II requiring attention to dimensions 1 and 2, and
Types 111, IV, V, and VI requiring information about all three dimensions in order
correctly to categorize the stimuli (although the dimensions are not all equally
informative in each type). As a resul, if it takes more cognitive effort to learn about
more dimensions, then Type I category assignments should be the easiest to learn,
followed by the remainder of the types. The empirical result supported this notion,
and Shepard and colleagues (1961) concluded that extant learning theories could not
account for the data. In particular, the authors measured interstimulus similarities
and then computed the difficulty of category types by considering the similarities of
all pairs of exemplars from different categories. In so doing, they found that a
generalization hypothesis—the idea that categorization structures that assign similar
stimuli to the same category and dissimilar stimuli to different categories should be
relatively easy to learn—did not predict the correct order of category type difficulty.
As a result, they proposed the idea of selective attention: devotion of attention to
only the relevant dimensions leads to an increase in discriminability between stimuli
that differ on those dimensions. Because ALCOVE is based on the learning of
dimensional attention weights, it is well-formulated to desctibe data of this type, and

as such has no difficulty accounting for these results.

ALCOVE provides a clear demonstration of the manner in which dimensional
attention may shift according to task demands. It can also account for other
categotization phenomena such as the fact that similar examples from the same

categoty should influence each other’s learning. However, like analyzer theory, the
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model is based on the assumption of the existence of explicit representations of
stimulus dimensions that can be attentionally weighted. In addition, the model
assumes that attention to the entire dimension is shifted depending on the relevance
of stimuli. As a result, it cannot address issues regarding local changes in attention

for a given dimension.

Accounting for Dimensional Attention Effects without

Attention

As outlined above, current models of “dimensional attention” effects such as
Sutherland and Mackintosh (1971) and Kruschke (1992) assume the existence of
explicit dimensional representations that are weighted by attentional values. While
these models have provided a good characterization of dimensional attention
phenomena, it seems unlikely that the singular dimensional representations upon
which they rely exist in the brain (e.g., a representation of “color”). In addition, while
it is certainly possible that this type of dimensional attention mechanism operates
simultaneously with a competitive perceptual learning mechanism, the principle of
parsimony suggests that it would be useful to see to what extent the differentiation

model alone is sufficient to account for the dimensional attention data.

Toward this end, I would like to propose that “dimensional attention” effects
are at least partially a consequence of differentiation mechanisms operating on
netwotks of neurons that are organized in a specific manner. This proposal is based

on two fundamental assumptions derived from the properties of real neurons:

1. Different neurons respond differentially to different stimulus dimensions. A
vast amount of evidence from neuronal recording studies exists to suggest that
this is the case (e.g., Desimone, 1996; Sakai, Naya, & Miyashita, 1994; Tanaka,
1997). Certain neurons respond best to edges, others to specific colors, others

to certain shapes, etc.
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2. Neurons are topographically organized according to the dimension to which
they respond best. Again, evidence from neuronal recording experiments
supports this assumption. Tanaka (1997), for example, has found that neurons
responding primarily to color are located in area TE in the macaque temporal
lobe and that neurons responding to more complex conjunctions of features
may be located in perirhinal cortex (PRh). This type of topographic
organization of neuronal response properties seems to be a general property

of visual cortex organization (Kandel, Schwartz, & Jessell, 1991).

Based on the above assumptions I would like to suggest that dimensional
attention cannot be captured by a single parameter attached to a representation of
dimension. Instead, the effect of dimensional attention might ezerge from perceptual
learning mechanisms operating on representations of individual stimuli. I do not
mntend to suggest that no representation of dimension exists. Instead, I would like to
claim that these representations exist in a distributed manner across the response
propetties of neuronal populations. As such, dimensional attention effects are due
not to a single parameter, but instead are the result of a combination of perceptual

learning effects and the generalization of neuronal response between stimuli.

In order to test this idea, I ran a series of simulations of experiments that have
been used as evidence for the existence of dimensional attention mechanisms. The
model used for these simulations consists of mechanisms for the type of perceptual
learning known as differentiation and is described fully in Chapter 3. The model

contains no explicit representation of dimensional attention.

General Methods

Identical network parameters were used for all simulations presented in this

chapter, except where noted. The network consisted of ten by ten grids of perceptual
and competitive units. The specific parameters were as follows: 0(0)=1 , 3=0.005,

O(0)=, y=0.95, A=1 (reinforced trials) or 0 (nonreinforced trials), 0*(0)=2.0.
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The initial output produced by the network consists of the CR to the presented
stimulus. Each of the following experiments involves simultaneous discriminations,
so the CR was translated to a stimulus choice as described in the Behavior section in
Chapter 3. All data are plotted as the percentage of trials in each block in which the
network responded to the correct stimulus. Block sizes differ depending on the
difficulty of the discrimination, and are indicated in the individual experimental

methods sections.

Experiment 1: Overtraining Reversal Effect (ORE)

To recap, the ORE reflects the finding that animals that are overtrained on a
discrimination can learn a subsequent reversal more quickly than less well-trained
controls. This effect has been explained by theories of dimensional attention as
follows: animals that are overtrained pay more attention to the stimulus dimension
relevant to solving the discrimination. This attentional effect outweighs any negative
transfer caused by the reversal of reinforcement contingencies. In this experiment I
tested whether the ORE could be explained by considering the idea that the
phenomenon could be a result of simple differentiation rather than being caused by

an attentional shift.

Methods

In this simulation, two groups of 25 networks each, group Control and group
Overtrained, were initialized. Both groups were trained to a criterion of 100%
correct for three trials in a row on a difficult one-pair simultaneous discrimination.
Group Overtrained was then trained on the same discrimination problem for an
additional 50 trials. Next, both groups were trained on a reversal of the original
problem in which the original S+ was no longer reinforced and the original S- was

now treinforced.

Chapter 4: Dimensional Attention 61



Results and Discussion

Overtraining Reversal Effect
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Figure 4-1: Petformance of Group Control and Group Overtrained on a reversal of the original
discrimination. Group Control were trained to a criterion of 100% correct on three trials in a
row on the original discrimination, and were then tested on the same problem with the
reinforcement contingencies reversed. Group Overtrained were trained to the same criterion
as Group Control, and then were given an extra 50 disctimination trials before being
transferred to the reversal problem. Group Overtrained learned the reversal more quickly than
Group Control.

Figure 4-1 shows performance of the two groups on the reversal test. Group
Overtrained learned the reversal more quickly than Group Control, suggesting that a
notion of dimensional attention is not necessary to account for the ORE. The

current model’s mechanism of differentiation is sufficient.

The model produces the ORE as a side effect of the differentiation mechanism.
During initial discrimination training, in addition to acquiting associative strength,
stimulus representations are also separated on the competitive layer. When the
discrimination is learned to a moderate criterion, such as that used for the control
group in this experiment, the stimulus representations become fairly well-separated
and the network is able to learn the discrimination reversal faitly quickly. However,

when the initial discrimination is overtrained, the stimulus representations become
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very well-separated, and this actually facilitates learning of the reversal because the
advantage gained as a result of the increased pattern separation outweighs the

disadvantage caused by the increased associative transfer.

Experiment 2: Transfer of Learning Across a Continuum

The topographical organization of the competitive layer along with the fact that
neighbors of winning units are updated proportionally to their distance from the
winner leads the model to the following prediction: exposure to a pair of similar
stimuli will facilitate not only discrimination between the exposed pair, but also
discrimination between stimuli that are even more similar. This is because two
stimuli that are not easily discriminable will initially be represented as nearby winning
units in the competitive layer. As the stimuli are presented to the network, the
winning units will be pulled apart and each of the units between them will become
tuned toward the stimulus to which it is closest. This tuning of intermediate units
suggests that preexposure to two stimuli will facilitate disctimination of other stimuli

whose representations fall between them on the competitive layer.

Some support for the above prediction derives from studies of discrimination
transfer along a continuum, a method used to investigate intradimensional transfer.
Lawrence (1952) found that rats trained from the outset on a discrimination between
two stimuli lying close together on a brightness continuum learned this difficult
discrimination rather slowly. A second group of rats that were initially trained on an
easy task in which the stimuli differed greatly, and then were transferred to the
difficult discrimination, learned the difficult discrimination much more quickly than
the first group of rats. Lawrence’s finding has proven to be robust, with a similar
effect having been seen in species ranging from humans (Gonzalez & Ross, 1958;
Hogg & Evans, 1975; May & MacPherson, 1971) to honeybees (Walker, Lee, &
Bitterman, 1990).

As discussed earlier in this chapter, the mechanism surmised to underlie the

above experimental results is usually one of dimensional attention. For example,

Chapter 4: Dimensional Attention 63



(Lawrence, 1952) suggested that animals pretrained on an easier version of the
discrimination were more quickly able to determine the relevant stimulus dimensions
for solving the discrimination: it is likely easier to determine that brightness is
important in a black vs. white discrimination as compared to a discrimination
between two shades of gray. However, if the current model can reproduce this
effect, this would suggest that reference to the concept of dimensional attention is
not necessary to explain transfer along a continuum. Thus in this experiment I
tested, using Lawrence’s (1952) methodology, whether the model could produce

transfer along a continuum.

Methods

In this simulation, two groups of 25 networks each, group Transfer and group
Control, were initialized. Group Control was trained for 10 blocks of 50 trals each
on a very difficult discrimination between two stimulus pairs, A=<5,5> vs.
B=<5,5.25>. Group Transfer was trained on a simpler version of the same problem
(X=<5,4.5> vs. Y=<5,5.75>) for two blocks of 50 trials and was then shifted to the
same problem as group Control (A=<5,5> vs. B=<5,5.25>) for 8 blocks of 50 trials

each. Thus each group experienced the same total number of training trials.

Results and Discussion

Figure 4-2 shows learning cutrves for both group Control and group Transfer,
averaged over 25 training runs. Clearly, group Transfer was able to learn the
discrimination more quickly than group Control. This confirms that the model
predicts an advantage in learning if the networks are initially trained on a simpler

version of a discrimination between two very similar patterns.

The reason that the model produces this behavior is as follows. Group Control
was trained on the difficult discrimination from the start. As a result, the patterns
were initially categorized as being the same since they activated the same winning
competitive unit. Due to the competitive updating, the winning units eventually

separated around Block 5, at which point the discrimination started being performed
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above chance. Around Block 8, the winners separated further, leading to an increase
in the rate of learning of the discrimination as a result of reduced overlap between
associative links. Group Transfer, on the other hand, was initially trained on a
discrimination in which the patterns were further separated than those in the target
discrimination. The networks were able immediately to separate on the competitive
layer the patterns of the initial discrimination, and thus began learning the
discrimination quickly. When they were shifted to the more difficult discrimination,
separate units on the competitive layer won for the two stimuli because of changes in
the competitive layer that had occurred as a result of the initial discrimination. Thus
the Transfer group learned the difficult discrimination much more quickly than the

Control group.

Effect of Transfer on a Difficult Discrimination
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Figure 4-2: Learning cutves for a discrimination between very similar patterns (A=<5,5> vs.
B=<5,5.25>). Group Transfer were trained on a simpler version of the disctimination for one
block, wheteas group Control were trained on the difficult discrimination from the start.
Although the groups were trained for the same total number of trials, group Transfer acquired
the discrimination more quickly.
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The simple fact that this model can produce the effect of transfer along a
continuum suggests that the notion of dimensional attention is not necessary to
explain this phenomenon. Earlier researchers (Lawrence, 1952) argued that the
transfer along a continuum phenomenon indicates that theories based on stimulus
generalization gradients are insufficient as they assume that transfer is greatest
between identical discriminations. That is, for a fixed amount of practice on a
training discrimination, the transfer effect to a test discrimination will be greatest
when the training and test discriminations are identical. Lawrence further suggested
that generalization gradient-based theories must postulate unique types of
generalization gradients and make unlikely assumptions about the additive properties
of habit strength. Earlier discrimination theories based on generalization gradients,
however, did not take into account perceptual learning and as such had no
mechanism for separation of patterns. The current model is based on stimulus
generalization gradients but, since it was designed to simulate perceptual learning,
can also account for the effect of transfer along a continuum via a single mechanism

without having to assume additional concepts of dimensional attention.

Experiment 3: Further Analysis of Transfer Along a

Continuum

One possibility is that transfer along a continuum is due merely to associative
transfer (see Logan, 1966). In other wotds, it could be the case that the improvement
in the transfer group in Lawrence (1952) was not due to an improvement in
perceptual distinction between the stimuli, but to the fact that during the initial,
simpler discrimination the animal built up an association between the S+ and
reinforcement, and this transferred to the S+ in the more difficult disctimination.
Fairly strong evidence against such a view, however, was subsequently reported by
Mackintosh and Little (Mackintosh & Little, 1970). In this study, pigeons were
trained on an easy wavelength discrimination prior to a more difficult one, but the

values of the stimuli were reversed between training phases. That is, if the longer of
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the two wavelengths was rewarded during the initial training phase, then in the
subsequent phase the shorter wavelength was rewarded. The authors demonstrated
that subjects given reversed pretraining were initially worse on the difficult
discrimination task, but they eventually overtook the group that was only trained on
the hard task. Mackintosh and Little suggested an attentional explanation: during
pretraining, the appropriate analyzer (Sutherland & Mackintosh, 1971) becomes
established, and this effect is significant enough to outweigh any negative transfer

from the generalization of associative strength.

The current model suggests an alternative interpretation of the above result that
does not require postulation of an additional attentional mechanism. Specifically, the
pretrained group will benefit from the tuning and separation of the competitive
units, but at the same time will suffer from generalization of associative strength
between the new and the pretrained winners. These two effects will counteract each
other, and the behavior observed will depend on the relative strength of each of
them. Thus as the winning units become more separated, generalization of
associative strength between them will decrease, and performance will improve. This
propetty, combined with the advantage of extra separation between the new winners
gained during pretraining, should be sufficient for the current model to reproduce
the pattern of data observed by Mackintosh and Little (1970) without having to make

additional assumptions about dimensional attention.

Methods

In this simulation, two groups of 25 networks each, group Reversed Transfer
and group Control, were initialized. Group Control was trained for 10 blocks of 50
trials each on a difficult discrimination with <5,5> as the S+ and <5,5.25> as the S-.
Group Reversed Transfer was trained on an easier version of the same problem with
S+ and S- reversed (<5.75,5> as the S+ and <5,4.5> as the S-) for two blocks of 50
trials. In other words, the stimulus in the easy discrimination that was most similar to
the S+ in the difficult discrimination was not reinforced whereas the stimulus in the

easy discrimination that was most similar to the S- in the difficult discrimination was
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reinforced. The Reversed Transfer group was then shifted to the same problem as
group Control (S+=<5,5> vs. §-=<5,5.25>) for 8 blocks of 50 trials each. Thus

each group experienced the same total number of discrimination learning trials.

Results and Discussion

Effect of Reversed Transfer on a Difficult Discrimination
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Figure 4-3: Learning cutves for a discrimination between very similar patterns (A=<5,5> vs.
B=<5,5.25>). Group Reversed Transfer was trained on a simpler version of the
discrimination, with the S+ and S$- reversed as compared to the final discrimination, for one
block. Group Control was trained on the difficult discrimination for the entite session.
Although the groups were trained for the same total number of trials, and associative transfer
for group Reversed Transfer impeded learning of the final discrimination for several blocks,
overall group Reversed Transfer acquired the disctimination more quickly.

Figure 4-3 shows learning curves for both group Control and group Reversed
Transfer, averaged over 25 training runs. Group Reversed Transfer demonstrated a
severe drop in performance when the final difficult discrimination was introduced at
the beginning of Block 3. Because the S+ and S- were reversed in the initial

discrimination relative to the S+ and S- in the final discrimination, associative
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transfer worked against group Reversed Transfer, resulting in worse performance of
the transfer group relative to controls during blocks 3 through 5. However, due to
the changes made in the competitive layer as a result of training on the initial
discrimination, netwotks in group Reversed Transfer were able to learn the new
associations more quickly and so overtook controls and overall were able to learn the
discrimination motre quickly. This pattern of data, with the reversed transfer group
showing an initial decrease in discrimination followed by superior learning
performance as compared to controls, mirrors the results found by Mackintosh and

Little (1970).

Like in the previous simulation of “straight” transfer along a continuum,
Reversed Transfer networks were able immediately to separate on the competitive
layer the patterns of the initial discrimination, and thus began learning the
discrimination quickly. When they were shifted to the more difficult discrimination,
separate units on the competitive layer won for the two stimuli as a result of changes
in the competitive layer that had occurred as a result of the initial discrimination.
Thus changes in the competitive layer facilitated discrimination of the stimuli. At the
same time, however, the S+ had developed negative links with reinforcement
whereas the S- had developed positive associative links. This negative associative
transfer caused the Reversed Transfer networks initially to perform worse on the
difficult discrimination than controls. However, the advantage gained through
further separation on the competitive layer of the stimulus representations
outweighed the negative influence of associative transfer, and the Reversed Transfer

networks outperformed controls in the long run.

Mackintosh and Little (1970) suggested that their finding that reversed training
on the easy discrimination was effective in producing transfer along a continuum
implies that the beneficial effects of an easy problem are caused more by the
establishment of strengthening of attention to the relevant dimension than by the
establishment of differences in response strength to the test stimuli. While it is true
that associative transfer is not a good explanation of the effect, the fact that the

current model can reproduce the effect demonstrates that the notion of dimensional
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attention is not necessary to explain these data. Instead, transfer along a continuum
may be due to changes in the stimulus representations that occur as a result of initial

exposure to the easy discrimination.

Experiment 4: Comparison of Similar Stimuli

Several recent studies have shown that the opportunity to compare stimuli
during preexposure seems to affect the subsequent ease of discrimination. For
example, when similar stimuli are preexposed in a mixed fashion (i.e., A then B then
A then B) subsequent discrimination between A and B is facilitated more than when
stimuli are exposed in a blocked fashion (i.e., AAAA then BBBB, Honey et al., 1994).
Symonds and Hall (1997) report a similar advantage of mixed preexposure to two
stimuli A and B over preexposure to B alone. For example, consider the experiment
of Honey and colleagues (1994) in which chicks were preexposed to two relatively
similar stimuli in either a mixed or a blocked fashion. In the case of mixed
preexposure, chicks were given 50 presentations of stimulus A intermixed with 50
presentations of stimulus B. In the case of blocked preexposure, chicks were first
presented with 50 trials of stimulus A which were followed by 50 trials of stimulus B.
When both groups were subsequently trained on a discrimination between A and B,

the mixed group outperformed the blocked group*.

The above data are in line with Gibson’s claim that the opportunity to compare
two stimuli should facilitate discrimination as “Simultaneous comparison is no doubt
the simplest for differentiation of two stimulus objects and the discovery of contrasts
and feature differences must begin in this way.”(Gibson, 1969, p. 145).
Unfortunately, whereas Gibson’s hypothesis appears to be supported by the data,
Gibson has provided no concrete mechanism that might produce the effect. The
current model accounts for stimulus preexposure effects by assuming that they are

due to alterations of the stimulus representations on the competitive layer. This

4 Interestingly, the opposite is true for relatively easy discriminations: Blocked preexposure
facilitates subsequent discrimination more than does mixed preexposure. See Experiment
5 for discussion.

Chapter 4: Dimensional Attention 70



mechanism presents the possibility that different methods of preexposure, such as
mixed and blocked, may cause different types of changes in the stimulus
representations on the competitive layer, which may in turn affect the rate of
subsequent discrimination learning. An attentional explanation for these data is more
difficult to imagine. Thus, in this experiment I tested whether mixed and blocked
preexposure would in fact differentially alter the competitive layer and lead to
differences in subsequent discrimination learning, thereby suggesting a possible

mechanism for the stimulus comparison effect.

Methods

In this simulation, two groups of 25 netwotks each, group Mixed and group
Blocked, were initialized. Group Mixed was preexposed for four blocks of 10 trials
with interleaved presentations of two stimuli, <5, 5> and <5, 5.25>. Group Blocked
was preexposed to two blocks of 10 trials of stimulus <5, 5> followed by two blocks
of 10 trials of stimulus <5, 5.25>. Thus, both groups received the same number of
stimulus presentations during preexposure, but for the first group the two stimuli
were interleaved whereas for the second group the stimuli were not. Both groups
were then trained on a discrimination in which the S+ was <5, 5> and the S- was

<5,5.25>.

Results and Discussion

Figure 4-4 shows learning curves for Group Mixed and Group Blocked on a
discrimination between two similar stimuli. Although the effect was small, overall
group Mixed acquired the discrimination more quickly than group Blocked. This
result is consistent with that shown by Honey et al. (1994; note that, like the
simulation, the size of the effect in that experiment was small), and can be explained

by the following behavior of the model.

In the current model, during the blocked trials in which A is presented, the
initial winning competitive unit (cA;) remains as the winner throughout. During this

time weights in the competitive layer become tuned toward A and the competitive
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learning rate of A decreases. As a result of this tuning, when B is presented, the new
winning unit (cB,) is further from cA, than it would have been without preexposure.
During the B preexposure phase, because c¢B,’s competitive learning rate is relatively
high, ¢B, and its neighbors become tuned toward B. However, since cA;’s
competitive learning rate is low, it is not influenced by the presentation of B, and it
remains tuned toward A. As a result, when mixed stimulus presentations then occur
during discrimination training, presentation of stimulus A continues to produce the
same winner, cA,. Thus, blocked preexposure facilitates subsequent disctimination as
a consequence of the initial tuning of weights toward A, which causes ¢B,; to be
further from cA, than it would have been without preexposure. In the case of mixed
preexposure, however, the winners constantly compete and the representations of A
and B are pushed apart on the competitive layer. Unlike the blocked preexposure
case, there is no period during which one unit consistently wins until its learning rate
decreases significantly, causing the stimulus representation to become static. Under
the current parameters, this means that the mixed exposure condition will lead to
further separation of the winning competitive units, and thus better discriminability,

than blocked preexposure.
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Effect of Mixed vs. Blocked Preexposure on a Difficult
Discrimination
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Figure 4-4: Learning curves for a discrimination between very similar patterns (A=<5, 5> vs.
B=<5, 5.25>). Group Blocked were preexposed to the disctiminanda in a blocked fashion
(i.e., 20 presentations of stimulus A followed by 20 presentations of stimulus B). Group Mixed
were preexposed to the discriminanda in a mixed fashion(i.e., 40 interleaved presentations of
A and B). Although the effect was small, overall group Mixed acquired the discrimination
more quickly than group Blocked.

The success of the current simulation suggests that interaction between
changing stimulus representations on the competitive layer is a potential mechanism
for production of the stimulus comparison effect. The relatively slow development
of the stimulus representations, combined with the integration of the representations
through interleaved presentation may provide a more balanced representation of the
stimuli that allows them to be more easily discriminated. This method may also

reduce the likelihood of intetference between stimuli.

Further investigation of mixed and blocked preexposure is warranted, however,
as the effect in animals seems to depend on the difficulty of the stimuli: when Honey
et al. (1994) ran the same experiment using a more discriminable stimulus pair they

found that subjects that had been preexposed in a blocked fashion were facilitated on
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a subsequent discrimination relative to those that had had mixed exposure. Thus, the
effect of mixed versus blocked preexposure on a simpler discrimination is explored

and discussed in the following experiment.

Experiment 5: Comparison of Easily Discriminable

Stimuli

A second paradox appears in the discrimination learning literature in the context
of mixed versus blocked stimulus preexposure. Honey and colleagues, in the same
1994 paper discussed earlier, found that in certain cases blocked stimulus
preexposure facilitates subsequent discrimination more than does mixed
preexposure. Analysis of the discrimination problems suggests that the effect seems
to depend on the difficulty of the discrimination: Difficult discriminations are
facilitated most by mixed exposure whereas easier disctiminations are facilitated most

by blocked exposure.

Honey et al. explain their data by suggesting that two processes are at work
during preexposure. First, it is well-known that temporal contiguity promotes
association. Thus, associations between the preexposed stimuli are most likely to
have developed during the mixed sessions, when A and B were relatively more
contiguous. This provides a straightforward explanation of performance on the easy
discrimination task. Second, at the same time a differentiation process operates to
develop stimulus representations. This process separates and refines the stimulus
representations during preexposure, thereby possibly facilitating performance on
subsequent discriminations. Since the benefit of comparison is seen most when the
discriminanda are similar (see Chapter 3), it only makes sense that differentiation
outweighs association when the discrimination is difficult but not when it is easy.

These two mechanisms provide a convincing explanation of the data.

As seen in the previous experiment, the current model can reproduce the effect

of mixed versus blocked preexposure on a difficult discrimination. However,
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according to the model, on an easy discrimination mixed and blocked preexposure
should produce effects similar to each other: Because the competitive units should
be well-separated from the start there should be no interaction between the units
that could lead to a difference in learning between the two types of preexposure. In
order to verify this prediction, I replicated Experiment 4 using a much more

discriminable pair of inputs.

Methods

In this simulation, two groups of 10 netwotks each, group Mixed and group
Blocked, were initialized. Group Mixed was preexposed for four blocks of 10 trials
with intetleaved presentations of two stimuli, <5, 4> and <5, 8>. Group Blocked
was preexposed to two blocks of 10 trials of stimulus <5, 4> followed by two blocks
of 10 trals of stimulus <5, 8>. Thus, both groups received the same number of
stimulus presentations during preexposure, but for the first group the two stimuli
were interleaved whereas for the second group the stimuli were not. Both groups
were then trained on a discrimination in which the S+ was <5, 4> and the S- was

<5, 8>,
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Results and Discussion

Effect of Mixed vs. Blocked Preexposure on an Easy
Discrimination
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Figure 4-5: Learning curves for a discrimination between relatively different patterns (A=<5,
4> vs. B=<5, 5.8>). Group Blocked were preexposed to the discriminanda in a blocked
fashion (i.e., 20 presentations of stimulus A followed by 20 presentations of stimulus B).
Group Mixed were preexposed to the discriminanda in a mixed fashion(i.e., 40 interleaved
presentations of A and B). There appears to be no difference between groups on this
manipulation when the stimuli are easily disctiminable.

As expected, there was no difference between group Mixed and group Blocked
on learning the easy discrimination after the two types of preexposure (see Figure
4-5). For an easy discrimination it is simply much less likely that one would see a
differential effect between mixed and blocked exposure because the initial winning
competitive units are so far apart that there is not likely to be any interaction
between them. Thus, whereas the current model provides a differentiation
mechanism that can account for the facilitatory effect of mixed exposure on a
difficult discrimination, it cannot account for the superior effect of blocked exposure

on an easy discrimination.

Honey et al. attribute the inferior performance of the mixed group on the easy

discrimination to interference between stimuli as presenting stimuli close together in
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time results in their becoming associated with one another. The idea of associative
links forming between contiguous stimuli has much support in the literature both
generally (Domjan & Burkhard, 1986) and with respect to preexposure (Honey &
Bateson, 1996). As the current model is trial-based, however, it cannot account for
any temporally-dependent effects. This was cleatly demonstrated in the current
simulation, and as such points out an apparent shortcoming of the current model. In
future work it might be very useful to develop a finer-grained version of this model
which would allow for exploration of non trial-based effects. It seems that the added
complexity that such an undertaking would entail would be worthwhile in the face of

the additional phenomena that might be investigated and accounted for.

Experiment 6: Further Analysis of Stimulus Comparison

As shown in Experiment 5, the stimulus comparison data can be accounted for
by the differentiation mechanism of the current model. The stimulus comparison
data are equally consistent with at least one mechanism—mutual inhibition—
postulated by McLaren and colleagues (1989). These authors suggest that the
inhibition that can develop during mixed preexposure will tend to be different from
that which develops during blocked preexposure. In the former case, the inhibition
will be mutual in that the unique elements of A will inhibit the unique elements of B
and vice versa. In the latter case, only the unique elements of the stimulus presented
in the second session will inhibit the unique elements of that presented in the first.
This difference in inhibition could lead to an advantage for subjects given mixed

stimulus preexposure.

Thus in order to distinguish between the two proposed mechanisms for
stimulus comparison one must devise an experiment to test mixed versus blocked
preexposure in which the likelihood of mutual inhibition is minimized. If an
advantage of mixed preexposure is demonstrated while the likelihood of mutual
inhibition is low, then this would provide evidence against a mutual inhibition

account of stimulus comparison, and suggest that an alternative theory may be

Chapter 4: Dimensional Attention 77



needed. A hint in this direction is provided by Saldanha and Bitterman (1951). In this
experiment, two pairs of stmuli were used, one consisting of two differently shaded
cards (A and B), the other consisting of two vertically striped cards (X and Y) in
which the stripes were of different widths. One group of rats (“paired”) were initially
trained on two concurrent discriminations in which stimuli differing along the same
dimension were compared ( A+ vs. B- and X+ vs. Y-). A second group (“unpaired”)
were trained on two concurrent discriminations in which stimuli differing along
different dimensions were compared (A+ vs. Y- and X+ vs. B-). Once each group
attained criterion on their first set of discriminations, they were switched to the other
set of discriminations. The authors found that the unpaired group was impaired, on

both sets of disctiminations, relative to the paired group.

These data have been taken to imply the use of relational cues—for example, “A
is brighter than B”—during very difficult simultaneous discriminations. Honey et al.
(1994) argue that these data are contrary to what a mutual inhibition account of
stimulus comparison would predict: for the unpaired group, mutual inhibition
between the unique elements, and associative strength between the common
elements, should be greater than in the paired group. As a result, according to a
mutual inhibition account of stimulus comparison, the unpaired group of animals
should have performed better than the paired group. In this experiment, I tested
whether the current model makes a false prediction as would a mutual inhibition-

based model.

Methods

In this simulation, two groups of 25 networks each, group Paired and group
Unpaired, were initialized. Group Paired was trained to a criterion of 80% correct on
two pairwise concurrent discriminations in which the stimuli varied on the same

dimension’(S+=<5,0>, S-=<6,0>;S+=<0,6>, S-=<0,5). This was followed by

5 A dimension is assumed to cotrespond to one axis of the two-dimensional stimulus
representation in the input layer and the competitive layer.
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training on two pairwise concurrent discriminations in which the stimuli varied along
different dimensions (S+=<5,0>, S-=<0,5>;S+=<0,6>, S-=<6,0). Group Unpaired
was trained on the same discriminations in reversed order. That is, Group Unpaired
was trained first on the unpaired discrimination (S+=<5,0>, S-=<0,5>;8+=<0,6>,
S-=<6,0) and second on the paired discriminaton (S+=<5,0>, §-

=<6,0>:8+=<0,6>, $-=<0,5).

Results and Discussion

Simulation of Saldanha and Bitterman (1951)
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Figure 4-6: Trials to criterion on two discrimination problems. Group Paired was first trained
to a criterion of 80% correct on Discrimination 1, in which the stimuli varied along the same
dimension, and was then trained on Discrimination 2, in which the stimuli varied along
different dimensions. Group Unpaired was trained first on Discrimination 2 and then on
Discrimination 1. There was no significant difference between Group Paired and Group
Unpaired on performance of either problem.

Figure 4-6 shows performance as measured by trials to criterion for Group
Paired and Group Unpaired on two discrimination problems. Group Paired was first

trained on Discrimination 1, in which the stimuli varied along the same dimension,

Chapter 4: Dimensional Attention 79



and was then trained on Discrimination 2, in which the stimuli varied along different
dimensions. Group Unpaired was trained first on Discrimination 2 and then on
Discrimination 1. There was no difference between Group Paired and Group

Unpaired on performance of either problem.

Unlike the Mclaren et al. model, the current model does not make the incorrect
prediction of an advantage for the unpaired group. At the same time, however, the
current model does not predict the advantage for the paired group that was found by
Saldanha and Bitterman (1951). Thus the current model, at least in its present form,
1s insufficient to account for this particular experiment. Two reasons for this seem
likely. The first problem is with basic stimulus representation. In this experiment I
used a two-dimensional representation with the x axis representing one dimension
and the y axis representing a second dimension. This particular representation may
not be able to capture the different stimulus dimensions in a reasonable manner, thus
the interactions between paired and unpaired may not make sense. In order to
investigate this possibility further, I re-ran the current experiment using a more
developed stimulus representation that is described in Chapter 6. However, the
results were very similar to those presented in Figure 4-6, and thus are not presented
here. Even with a more complex stimulus representation, there was no difference
between the paired and unpaired groups, suggesting that the impoverished stimulus
representation is not the reason that the current model did not replicate Saldanha

and Bitterman’s (1951) data.

A second, more important, problem with this simulation is that there was
essentially no difference between the paired and the unpaired stimulus presentations
in terms of how the stimulus representation weights in the network were altered. In
Saldanha and Bitterrman’s (1951) experiment, the same stimuli were presented in
both conditions, the only difference between groups being the timing of their
presentation. Although the organization of the experiment and this simulation are
the same, because of the lack of temporal information in the model’s framework it
does not really matter whether stimuli are presented on the same trial or on

consecutive trials; the changes to the weights will be essentially the same. As in the
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Experiment 5, the current simulation points to the limitations of the current trial-
based model and the necessity of constructing a real-time version. Adjustable inter-
trial intervals, combined with decaying stimulus representations over time, should
have an imnfluence on the dynamics of the weight changes. In addition, it would be

interesting to explore how interference between stimuli would affect the simulations.

Experiment 7: Extradimensional versus Intradimensional

Shifts

Explicit comparison of performance on transfer tests consisting of intra- versus
extra-dimensional stimulus shifts can show more transfer across the ID shift than
the ED shift. Mackintosh (1974) suggests that this is compelling evidence for shifts
in attention to the aspects of the stimuli that are critical to solution of the initial
problem. In this experiment, I investigated whether the cutrent model could
reproduce the phenomena associated with ED and ID shifts without invoking the
dimensional attention explanation. I predicted that the stimulus representations on
the competitive layer would become further separated along the “color” dimension
in the model than the “orientation” dimension. Thus, during the transfer test, the
winning units belonging to networks subjected to an intradimensional shift would be
better separated than those of the networks subjected to an extradimensional shift
along the dimension critical to the discrimination, resulting in the networks in the

mntradimensional group learning the transfer test more quickly.

Methods

In this experiment, as in Experiment 6, two dimensions were explicitly
represented: The x axis represented “color” and the y axis represented “orientation”.
Using this representation allowed for simulation of  Mackintosh’s original
(Mackintosh & Little, 1969) experiment. In order realistically to model the

continuous nature of the dimensions being simulated, in this experiment the input
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representations were “wrapped”. That is, the value <1,0> was considered to be

equidistant from <1,1> and <1,10>.

In this simulation, two groups of 25 networks each, group ID and group ED,
were initialized. Group ID was first trained to criterion on a discrimination in which
a red, horizontal line <8,8> or a red, vertical line <8,4> was reinforced and a green,
horizontal line <4,8> or a green, vertical line <4,4> was not. Group ED was first
trained to criterion on a discrimination in which a red <8,4> or green <4,4> vertical
line was reinforced and a red <8,8> or green <4,8> horizontal line was not. Both
groups were then tested on a transfer test in which the relevant dimension was color:
blue left-diagonal lines <2,6> and blue right-diagonal lines <2,2> were reinforced

and yellow left-diagonal <6,2> and yellow right-diagonal <6,6> lines were not.

Results and Discussion

As can be seen in Figure 4-7, there was no difference between the ED and the
ID groups on either the initial training or on the transfer test. Thus, of all of the data
that have been explored in this chapter, only the ED versus ID effect does not seem

to be explainable in terms of differentiation alone.

If one looks at the positions of the winning units during the transfer tests (Figure 4-8
and Figure 4-9) , however, it seems that the networks did behave as expected with
respect to differentiation. As a result of changes in the competitive layer that
occurred during initial training, the winning units during the intradimensional
transfer test were better separated than those of the extradimensional transfer test.
Furthermore, in the case of the ID shift there is no overlap in the neighborhoods of
any of the winning units that have opposing reinforcement parameters. In contrast,
the winning units of the ED shift network are closer together along the “color” (x
axis) dimension and there is some overlap between non-reinforced and reinforced
areas of activation. This suggests that there should be at least a slight superiority of
the ID shifted networks over the ED shifted networks on the transfer test. If

anything, however, the nonsignificant trend is in the opposite direction.
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Intra- vs. Extra-Dimensional Shift
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Figure 4-7: Performance on a an initial discrimination and a subsequent transfer test.
Discrimination 1 for Group ID consisted of a discrimination in which a red, horizontal line
<8,8> or a red, vertical line <8,4> was reinforced and a green, hotizontal line <4,8> or a
green, vertical line <4,4> was not. Discrimination 1 for Group ED consisted of a
discrimination in which a red <8,4> or green <4,4> vertical line was reinforced and a red
<8,8> or green <4,8> horizontal line was not. Discrimination 2 for both groups was a transfer
test in which the relevant dimension was color: blue left-diagonal lines <2,6> and blue right-
diagonal lines <2,2> were reinforced and yellow left-diagonal <6,2> and yellow right-
diagonal <6,6> lines were not.

The reason for this unsuspected effect becomes clearer after looking closely at
the positions of the stimulus units in initial training, shown in Figure 4-10 and Figure
4-11. For the ID shift group, there is a good deal of overlap between reinforced
training units and nonreinforced test units (and vice-versa), suggesting that there will
be a large negative effect of associative transfer on the transfer test. For the ED shift
group, on the other hand, there is some overlap between reinforced training units
and nonreinforced test units, but a greater degree of overlap between reinforced
training and reinforced transfer units, suggesting that there will be an overall positive
effect of associative transfer on the transfer test. Thus, it appears that in this
particular simulation, the effect of associative transfer outweighs the effect of

differentiation.
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The above explanation for the current result points out a critical problem with a
differentiation-based explanation of the ED/ID shift effect. It might on first glance
seem that the current differentiation model would produce the appropriate
simulation data if one simply further separated the training and transfer input
stimulus patterns in order to eliminate the possibility of associative transfer. After
all, researchers investigating this issue in animal subjects take pains to eliminate
associative transfer as much as possible. Unfortunately, however, the proximity of
these input stimuli is exactly what would allow the differentiation approach to work
at all in this case. If the inputs were separated such that there was no interaction
between the winning units on the competitive layer, then there would be little
difference between the ID trained and the ED trained network’s competitive layers,

and a consequent lack of the ED/ID shift effect.

In sum, it seems that a differentiation model can account for many effects that
have been atttributed to dimensional attention, but the ED /ID shift transfer effect is

not one of them. The implications of this are discussed in the following section.
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Figute 4-8 The positions of the winning competitive units after 50 trials of the
intradimensional transfer test. Black units are reinforced, gray units are nonteinforced. The
latger circles around the central point denote the Gaussian area of activation around the

winners.
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Figute 4-9: The positions of the winning competitive units after 50 trials of the
extradimensional transfer test. Black units are reinforced, gray units are nontreinforced. The
latger circles around the central point denote the Gaussian area of activation around the

winners.
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Figure 4-10: Stimulus input winning units for intradimensional training (circles) and the
transfer test (triangles). Black units are reinforced, gray units are nonreinforced. There is a
good deal of overlap between reinforced training units and nonteinforced test units (and vice-
versa), suggesting that there will be a large negative effect of associative transfer on the
transfer test. The atrow depicts the axis along which the competitive layer stretches.
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Figure 4-11: Stimulus input winning units for extradimensional training (circles) and the
transfer test (triangles). Black units are reinforced, gray units are nonreinforced. There is
some overlap between reinforced training units and nonreinforced test units, but a greater
degree of overlap between reinforced training and reinforced transfer units, suggesting that
thete will be an overall positive effect of associative transfer on the transfer test. The arrow
depicts the axis along which the competitive layer stretches.
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General Discussion

The current chapter demonstrates that several effects that have been attributed
to the concept of dimensional attention in fact may be explained simply as a result of
differentiation processes operating on topographically organized stimulus
representations. It was shown that the overtraining reversal effect , transfer along a
continuum, and reversed transfer along a continuum can all be explained as a result
of differential differentiation of the discriminanda. Data pertaining to the influence
of stimulus comparison were also shown to be accounted for by the current model.
Thus, it seems that a simple differentiation mechanism, when well-defined, is
perhaps more general and powerful than generally considered: in addition to
preexposure effects, differentiation can also account for several phenomena that are

usually attributed to higher-level processes.

The ED/ID effect

Whereas differentiation was able to account for several phenomena, simulations
of ED/ID transfer experiments demonstrated a complete lack of that effect. There
are two possible reasons for this. First, differentiation may simply be inappropriate
as a mechanism for perceptual learning. However, a second possibility is that the
ED/ID shift is a tesult of a higher level, “top-down” system similat to Mackintosh’s
dimensional attention analyzers. That dimensional attention requires such a higher-
level process is supported by at least two lines of evidence. First, whereas the
ED/ID effect is somewhat difficult to obtain in “lowet” species such as rats and
pigeons, with some authors obtaining such effects (Klosterhalfen, Fischer, &
Bitterman, 1978; Mackintosh & Little, 1969) and others not (Couvillon, Tennant, &
Bitterman, 1967; Hall & Channell, 1985; Tennant & Bitterman, 1973), in “higher”
species such as monkeys and humans the effect is more robust (Roberts, Robbins, &
Everitt, 1988). Second, Dias, Roberts, and Robbins (Dias, Robbins, & Roberts, 1996)
have provided evidence from the monkey that the prefrontal cortex is the critical

region for dimensional attentional set-shifting. These two pieces of evidence suggest
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that dimensional attention is a higher-level process that is most developed in higher
species, and is subsetrved by higher-level brain regions that appear late in evolution.
Thus the current model appears to be successful at simulating effects that are readily
observed in lower species, but is less able to handle higher-order functions
characteristic of higher species. For this, higher-order top-down processing would
need to be added to the network. In order to advance the current model to produce
these effects, it may be more feasible not to look for an alternate bottom-up process,

but instead to incorporate a high level attentional process.

While the fact that ED vs. ID transfer was not replicated in this chapter may
point to one reason that the phenomenon is not able to be modeled using a simple
differentiation process, the fact that differences in ED vs. ID transfer do occur
reliably in certain species suggests that the phenomenon is real. Since this effect
cannot be accounted for by the current model, whereas other data attributed to
dimensional attention can, it would be useful at this point to try to understand what
the critical differences are between those experiments that can, and those that

cannot, be accounted for by differentiation.

Real-Time Effects

The reason that the current model was unable to account for two sets of
experimental data investigated in this chapter is the fact that the model is currently
trial-based. As such, it cannot be expected to simulate effects that are critically
dependent on intra- or intertrial temporal parameters. It seems clear, however, that if
a simple representation of time were incorporated into the current model then it
would be able to account for these data. For example, consider an alteration of the
model such that each trial and inter-trial interval is divided into, say, one second bins.
In addition, each stimulus would be present for only the first second of the trial. In
the subsequent absence of the stimulus, the activity of the input units would be set to

zero and the activity of the competitive units would decay exponentially. If this real-
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time version of the model were run, I would expect it to account for the data

presented in Experiments 5 and 6 as follows.

In Experiment 5, the effect of mixed versus blocked preexposure on easily
discriminable stimuli was investigated. Honey et al. (1996) have shown that with this
type of stimuli blocked exposure tends to facilitate subsequent discrimination
learning more so than mixed exposure. A simple explanation for this finding, in the
real-time version of the model, would be that during mixed exposure there is a
greater degree of interference between the stimuli. As a result, the stimulus
representations on the competitive layer would not be as well-separated as in the case
of networks subjected to blocked exposure, and the blocked exposure networks

would perform better on subsequent tests of discrimination.

In Experiment 6, the influence of stimulus comparison was investigated.
Saldanha and Bitterman (1951) showed that the opportunity to compare stimuli on a
trial led to a facilitation of subsequent discrimination. In the simulations of this
experiment the appropriate pattern of results was not produced because there was
essentially no difference between paired and unpaired stimulus presentations in the
way in which weights were changed. A real-time version of the model, however,
would allow for the manipulation of the sampling rate. In the current model, the
network samples the input once at the beginning of each trial. In a real-time version
it would be possible to allow the network to sample the stimuli a number of times
during each trial (e.g., once per second). One would have to make the additional
assumption of the existence of some kind of confidence criterion that guides the
animal in making its choice of stimuli (L.e., the animal repeatedly samples a stimulus
until it surpasses an internal confidence threshold regarding the identity of the
stimulus). Thus, on easier discriminations, such as those in which the stimuli vary
along different dimensions, one would expect the confidence threshold to be
reached more quickly. As a result, animals in the more difficult paired condition
would spend more cycles per trial sampling the stimuli. If one assumes that the

differentiation mechanism updates on each perceptual sample then one would expect
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more differentiation to occur for the animals in the paired group than for those in
the unpaired group, thereby facilitating their performance. This mechanism makes
the plausible prediction that although animals in the paired condition may require the
same number of trials to learn the discrimination, they should take longer to

respond.

Summary

In sum, the current chapter demonstrated that several results typically ascribed
to mechanisms of dimensional attention can in fact be accounted for by a simple
differentiation mechanism. As differentiation is a lower-level process than
dimensional attention, and as differentiation can account for many additional effects
such as those nvolving preexposure, differentiation may provide a more
parsimonious account of the data discussed in this chapter. Furthermore, the
development of a real-time version of this differentiation model would allow it to
account for a larger body of data, including those presented in Experiments 5 and 6.
Finally, the current chapter demonstrated that although differentiation may account
for some of the data attributed to dimensional attention, it cannot produce the
ED/ID shift pattetn of effects. Focusing on the differences between those data that
are explicable in terms of differentiation and those that are not may provide

additional insight into the nature of dimensional attention.
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CHAPTER 5 ACQUIRED EQUIVALENCE
AND ACQUIRED
DISTINCTIVENESS

Introduction

A second set of effects, separate from those addressed in dimensional attention
theories, that have been attributed to attentional processing involves what appears
to be the influence of task-specific information on discrimination learning. If two
stimuli share the same reinforcement history, labels, or associated responses their
discriminability may be reduced, thereby leading to a phenomenon called “acquired
equivalence” (AE). On the other hand, if the same two stimuli have vastly different
reinforcement histories, labels, or associated responses they may become more
discriminable, in which case they are said to have undergone a process of “acquired
distinctiveness” (AD). Like dimensional attention, these effects are usually explored
through a transfer test in which subjects are trained to categorize objects and then

are tested to see whether the objects are then more (or less) quickly discriminated.

The critical aspect of these phenomena that separates them from other issues
addressed in this dissertation is that they require information additional to visual
feature representations that can be refined to make similar features discriminable. As
will be seen in the following section, the key commonality in experiments on AD and
AE is that they introduce task-specific information that is not necessarily directly
related to the discriminanda (i.e., may be of a different modality etc), but that allows
the discriminanda to be distinguished not on the basis of stimulus similarity per se,

but on the basis of some kind of task-specific semantic similarity.

The model as developed up to this point is capable of categorizing inputs on the

basis of their physical similarity only. With experience, the model is able to refine its
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representation of the degree of similarity of stimuli, and as such can leam to
discriminate initially indistinguishable stimuli. However, the model has no ability to
deal with task-specific constraints that are not in line with the stimulus
representations. In this chapter I explore a mechanism for incorporating an “event”
signal into the competitive learning architecture that allows the model to classify

dissimilar inputs to similar outputs, thus producing effects of AD and AE.

In the following section of this chapter, I briefly review evidence for the
phenomena of acquired equivalence and distinctiveness. I then discuss theories
which have attempted to provide mechanisms for these phenomena. Finally, I
present a version of the current model that can account for these effects, based on
the assumption that reinforcement or labeling information can become incorporated
with the stimulus representation to form an event representation. Next I present

simulations of AD and AE effects and discuss the implications of the results.

Evidence for Acquired Equivalence and Distinctiveness

The first work that explicitly investigated AD was Lawrence’s (1949) experiment
that was described at the beginning of Chapter 4. To summarize, rats were trained
on a simultaneous black-white discrimination and then were tested on a transfer test
during which either both ends of the maze were black and response to the right was
rewarded or both ends were white and response to the left was rewarded. Animals
in the latter experimental condition learned the successive discrimination motre
readily than controls, suggesting that the black and white stimuli had “acquired
distinctiveness”. As discussed previously, Lawrence attributed this effect to
dimensional attention. Other non-attention based explanations, in addition to the
idea presented in the previous chapter, have been proposed, as will be seen in the

following section.

Additional evidence for AD, which focuses on the critical contribution of
categotization, has also been produced. For example, Norcross and Spiker (1957)

found that children given training in applying different names to two faces were
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supetior in subsequent test performance to controls who were pretrained in a same-
different task. This result was confirmed by Spiker and Norcross (Spiker &
Norcross, 1962). The authors suggest that training in which critical stimuli become
linked to different events generates transfer to subsequent discrimination learning.
However, their result may have been due to a difference in the difficulty of two
stages. Reese (1972) addressed this issue by conducting an experiment in which
children were trained with three nonsense figures, learning to apply one verbal label
to two of them and a different label to the third. All groups received the same
training thus there were no differences in difficulty between groups. Children were
subsequently divided into two test groups and received successive disctiminations in
which they were instructed to press one button in response to one of the pretrained
cues and a different button to another pretrained cue. For children in the first test
group—the acquired distinctiveness group—the two stimuli had had different labels
during pretraining. For children in the second group—acquired equivalence—the
two stimuli had had the same labels during pretraining. The researchers found that
subjects in the distinctiveness condition learned the discrimination more quickly.

Nortcross (1958) reported similar results.

Grice and colleagues (1958; Grice & Davis, 1960; 1963) have obtained evidence
for AD and AE in adults. In a preliminary training stage subjects were asked to
press one key in response to a given tone and to press a different key when a light or
a different tone was presented. In the next stage the light was presented alone and
was reinforced with an air puff to the subject’s eye, leading to the acquisition of a
conditioned eye blink in response to the light. In the final phase generalization from
the light to the tones was measured and it was found that there was significantly
more generalization from the light to the tone which had been pretrained with the

same response.

Honey and Hall (1989) have investigated the influence of an initial phase of
discrimination training on a generalization test in rats. In order to distinguish the CR

of the test stage from the first stage, the nature of reinforcer was changed from
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appetitive to aversive. Two groups of rats received Pavlovian training with two
auditory stimuli, A (a burst of white noise) and B (a tone). For the first group both
sounds signaled food, while for the second group B was reinforced and A was not.
The effect of this preliminary training on generalization between A and B was tested
by establishing A as a CS for a new response and then testing for B’s ability to evoke
that response. A was next trained as a signal for shock in both groups. Little
generalized suppression was shown for the group given initial discrimination training
suggesting that these subjects were better at discriminating A from B. Since there
was no guarantee, however, that the animals acquired the same degree of aversion to
A, Honey and Hall performed another control experiment. Two groups of rats
received initial training with three auditory stimuli A, B, and C. For both groups, B
(a tone) and C (a clicker) had different consequences: one was followed by food and
the other was not. For the first group, A (white noise) was reinforced whereas for
the second group A was not reinforced. All subjects then received A=>shock
pairings followed by a generalization test to B and C. Each group showed more
suppression to the stimulus that had had stage one training equivalent to A. The
advantage of this procedure is that the degree of suppression does not depend on

whether it was reinforced appetitively during the first stage.

Finally, a phenomenon called the “differential outcomes effect” provides
additional evidence for both AD and AE (Peterson & Trapold, 1980). Rats were
tested on a food-rewarded (conditional go left/go right) disctimination between a
tone and a clicker. Those in the correlated condition experienced a light only after a
correct response in the presence of one cue; those in the uncorrelated condition
received a light after 50% of rewarded responses whether paired with the tone or
the clicker. The researchers found that accurate choice performance increased more
quickly in the correlated group. This is called the differential outcomes effect
because the superior performance of the correlated group depends on the fact that
the outcome of the correct response is reliably different for the two trial types.
Similar results are produced when the reinforcers differ in their nature (Trapold,

1970), in their timing (Carlson & Wielkiewicz, 1972) or magnitude (Carlson &
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Wielkiewicz, 1976). The differential outcomes effect has been interpreted as
showing that expectancies can act as effective cues in the control of choice

responding.

The above evidence suggests that discrimination training, in which each of a pair
of cues becomes associated with a different outcome, enhances performance on a
further discrimination task with the same cues. However, as Hall (1991) notes, none
of the above studies can tell us whether this is due to acquired equivalence, acquired
distinctiveness, or both. Goldstone (1994, Experiment 2), however, has investigated
this particular issue in the context of a human categonization task. In this
experiment, stimuli consisted of sixteen squares, each of which had a brightness
value of 1, 2, 3, or 4 and a size value of 1, 2, 3, or 4. Subjects were given different
categotization rules: for one group, size was relevant (objects of size 1 or 2 belong
to category A, those of size 3 or 4 belong to B), for a second group brightness was
relevant (objects of brightness 1 or 2 belong to category A, the others to B), and a
third group received no categorization training. The results of a subsequent same-
different test in which the trained stimuli were used showed that perceptual
discriminations along the categorization-relevant dimension were better for both
categotization groups than for controls, thus providing specific evidence for
acquired distinctiveness. The evidence for acquired equivalence, however, was
mixed. Two types of acquired equivalence were possible: acquired equivalence of the
irrelevant dimension or acquired equivalence within the relevant dimension. In the
first case, the brightness group was significantly worse than controls at making size
discriminations; there was no difference, however, between the size group and
controls on brightness discriminations. Thus the evidence regarding acquired
equivalence of the irrelevant dimension was ambiguous. In the second case, both
experimental groups showed that squares with different values along the trained
dimension were more discriminable, demonstrating a trend in the opposite direction

of acquired equivalence.
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The evidence against acquired equivalence within the categorization-relevant
dimension is also evidence for a dimension-wide shift in attention. For example,
Goldstone found that when squares of size 1 and 2 were categorized as A and when
squares of size 3 and 4 were categorized as B, there was sensitization to the
difference between sizes 1 and 2 relative to controls. According to Goldstone, this
suggests that subjects learn to attend not just to specific values on a given dimension,
but to the dimension itself. However, although the difference between sizes 1 and 2
was sensitized, the difference between 2 and 3—a difference critical to correct
categorization—was much further sensitized. So from this experiment it appears that

enhanced attention to local areas of a dimension are also possible.

Theoretical Interpretations

According to Hull (1939), primary generalization occurs between stimuli that are
similar, due to common features. Secondary or learned similarities, however, can
mediate generalization between otherwise dissimilar stimuli. Hull’s account of the
mechanism undetlying this is framed in the SR theoty that was popular at the
time. If two stimuli, SA and SB, are followed by the same response RX then each of
them will develop associative links with it (SA2>RX and SB>RX). When RX
occurs, it will elicit a set of feedback cues SX that will be evoked upon presentation
of either SA or SB. Training subjects to then make a new response, RY, in response
to SX, allows for the formation of SX->RY associations. Since SB is capable of
evoking SX, however, it too will be able to elicit RY even though the association has
not been trained directly. From a modem associative theory perspective, mediation
theory does not have to be strictly S>R: representations of SA and SB could be
linked directly to the representation of SX. While mediation theory provides a
mechanism for acquired equivalence, Hull does not attempt to deal with acquired
distinctiveness.  In order for mediation theory to account for  acquired
distinctiveness it must include a processes that reduces the role of common elements

in producing generalization from A to B. It is not clear how associations between

SA and SX and SY and SB would be able to do this.
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Contrary to mediation theory, the Gibsons’ theory of differentiation, described
in Chapter 3, ignores the possibility of acquited equivalence. Furthermore,
differentiation does not specify why explicit training enhances the discrimination
effect. In other words, although differentiation does provide a mechanism for
acquired distinctiveness, the mechanism is not dependent on reinforcement. As a
result, their theory may provide a partial mechanism for acquired distinctiveness but
it cannot account for the fact that differential previous reinforcement significantly

facilitates disctimination.

A third account of acquired equivalence and distinctiveness, although not
usually specified as such, can be found in backpropagation based neural network
models. This is exemplified by the concepts of “redundancy compression” and
“predictive differentiation” proposed by Gluck and Myers (1993) to be critical
functions of the hippocampal region. Their model consists of an autoencoder which,
given input representing the stimuli present, learns to reconstruct the inputs as well
as to predict future reinforcement. The critical aspect of the model is that the hidden
layer is narrower than the input and output layers. As such, the network is forced to
develop hidden layer representations that compress redundancies in the input (as in
acquired equivalence) while at the same time preserving predictive information (as in
acquired distinctiveness). The network 1s able to develop this compressed stimulus
representation through the backpropagation of the error signal from the output
units to the input units in order appropriately to adjust the weights in each layer of

the network (see Chapter 2).

The evidence for acquired distinctiveness makes it clear that differential
categotrization of stimuli facilitates their discrimination. Differentiation theory,
however, does not address the importance of reinforcement in this result. The data
regarding acquired equivalence are quite a bit less conclusive, so while mediation
theory may provide an adequate account of this phenomenon, it is difficult to see
how it could explain the more robust acquired distinctiveness effect.

Backpropagation, while providing a reasonable simulation of AD and AE effects,

Chapter 5: Acquired Eqguivalence and Acquired Distinctiveness 97



requires full supervision rather than just a reinforcement signal and thus is not
compatible with the current Kohonen-based model of differentiation and perceptual
learning. Thus, in the following section I develop a mechanism for producing AD
and AE effects that is simple and compatible with the current model of

differentiation and perceptual learning.

Adding Task-Specific Information to the Model

The current model bases discrimination solely on input similarity and as such
has no mechanism for dealing with task-dependent effects. One method for
achieving classification based on task-dependent similarity rather than input similarity
is to provide the competitive learning mechanism with more information. Machine
learning researchers have done this with a “teaching” input—cortesponding to
reinforcement or a categorization label—that tells the network which inputs should
be mapped to the same output. The general effect of the incorporation of this
information is to move competitive-layer input representations with similar
reinforcement histories closer together and representations of inputs with differential

reinforcement histories apart (de Sa, 1994; Rumelhart & Zipser, 19806).

The incorporation of reinforcement information with stimulus representations
1s a mechanism that seems likely to lead to effects such as AD and AE, and is easily
compatible with the current model. Furthermore, two disparate pieces of evidence
from the animal learning field support the likelihood that this may occur. First,
Bouton and colleagues have provided much evidence suggesting that separate
representations of stimuli may be maintained according to context including
reinforcement histoty (e.g., spontaneous recovety, reinstatement, renewal, see
Bouton, 1994). Second, “expectancy theory”, the idea that the representation of the
reinforcer is encoded in an associative structure which mediates the CR, has been a

subject of much supporting research (see Dickinson, 1989).

Chapter 5: Acquired Eqguivalence and Acquired Distinctiveness 98



In the extended model, it is assumed that the incorporation of external
information is not limited to reinforcement signals; any type of cue that co-occurs
with a stimulus—response, verbal label, auditory signal—is a candidate for inclusion
with the stimulus representation. Furthermore, multiple cues may separately be
linked with a given stimulus representation to form an “event” representation. Like
clusters of bits of stimulus information in configural learning theory (e.g., Pearce,
1994), these potentially large sets of cues may be represented as configurations in a
multidimensional psychological space, and the event representations that are
retrieved from memory will be those that best match external cues present at the
time of retrieval. In the following section I desctibe more specifically how the model

incorporates reinforcement information with stimulus representations.

Architecture of the Extended Model

Outcome
|
Competitive (Event)
Layer
N\
|
|
|
|
|
1 Competitive (Stimulus)
[~ Layer
A
= Associative Link (AL)
— Competitive Link (CL)
— — CL with AL information Input Layer
L7

Figure 5-1: The differentiation model extended to incorporate reinforcement information with
stimulus representations. As in the original differentiation model, input of a stimulus to the
network leads to the activation of a two-dimensional layer of input units and these inputs feed
into a two-dimensional layer of competitive units to form the stimulus representation. The
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difference is that in the extended model, the stimulus representation units are fully connected
to an additional, three-dimensional layer of “event” units. The three dimensions of the event
layer consist of the two stimulus dimensions plus a third dimension representing the
predicted outcome of a stimulus presented to the network. Thus an event (i.e., stimulus
representation plus associated outcome information) is represented as a point in this
topographically organized three-dimensional space.

Figure 5-1 illustrates the structure of the extended network. The learning
mechanisms in the extended network are identical to those used in the original
model; the only differences are those of architecture. As in the original
differentiation model, input of a stimulus to the network leads to the activation of a
two-dimensional layer of input units and these inputs feed into a two-dimensional
layer of competitive units to form the stimulus representation. In the extended
model, these stimulus representation units are fully connected to an additional, three-
dimensional layer of “event” units. The three dimensions of the event layer consist
of the two stimulus dimensions plus a third dimension representing the predicted
outcome of the presentation of a given stimulus to the network. Thus an event (i.e.,
stimulus representation plus associated outcome information) is represented as a
point in this topographically organized three-dimensional space. The proximity of
two event representations is therefore dependent on both stimulus similarity and
reinforcement history. Two similar stimuli with similar reinforcement histories will
remain close together along the predicted outcome dimension, resulting in a
relatively large degree of generalization between them. If two stimuli are presented
and differentially reinforced, however, then winning units in the event layer will tend
to become increasingly far apart as the CR is developed, leading to the effect of

acquired distinctiveness.

Operation of the Extended Mode/

On a training trial, the x and y values of a stimulus S are fed into the network
and the unit in the input layer whose coordinates correspond to the x and y values of
S becomes maximally activated. This unit affects nearby units such that those that
are within a certain radius (O) of the unit will also be activated proportionally to their

distance from it, thereby forming a “blob” of activation on the input layer.
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Equation 5-1 is the input layer activation function for a stimulus whose input
layer location is z*:<x9/>. The degree of activation of a input layer element with
location z}is 1 for zj':z)k and dectreases as a function of the distance between 4 and 7.
The width of the Gaussian is .

- -k 2
H H' p ! H

202

a, =exp (>-1)

Every unit in the input layer is connected to each unit in the subsequent
competitive layer C. The link between one input unit / and one competitive unit £ is
called w, Thus for competitive unit & there exists a corresponding set of weighted
links, w,, which consists of the set of links between each unit in the input layer and

unit A

In order that the competitive layer is roughly topographic from the start, , are
mitialized as Gaussian distributions, centered over the corresponding input unit
coordinates, that are corrupted by a significant degree of uniformly distributed

random noise 7.

Wik (0) =exp

0 lii-ed'D
2

- +r(-0.3,0.3) (5-2)
o

In the above equation, 7 is an <x,y> location in the input layer and ¢, is an <x,>

location in the competitive layer.

When a stimulus is presented to the network, the Euclidean distance between w,
and the pattern of activation on the input layer (a) are calculated (see Equation 5-4)

and compared (see Equation 5-3) for each competitive unit.

k™ =argmin(d) (5-3)
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dk = {Z(aj _ij)z (5-4)

As in the input layer, the winning unit influences neighboring units, and they are

activated proportionally to their distance from the winner. Competitive unit
activation a, is 1 for ¢, = ¢ and falls off with distance HCk -c Hwhere ¢, and ¢ are the

grid coordinates of units £ and E respectively. As a result, units close to the winner
are significantly more active than units further away. The degree of activation of a

unit £ is determined by a Gaussian defined as follows:

c, —C
a, = expE—HkZ—ZE (-5
0o < 0

As mentioned above, the extent of influence, or neighborhood size, of the

winning unit is reflected in the Gaussian width parameter O.

In addition to the winner, the w, corresponding to a set of nearby units are also
updated in proportion to their proximity to the winner. The result is that after
training is complete, nearby competitive units respond to nearby input patterns. The
effect of this is to set up regions of the competitive layer which code for similar
representations, that is, those with common features. Equation 5-6 is responsible for

the competitive weight update process.
Mw, =0, @&, a, -w, ) (5-6)

The competitive learning rate, J,, decreases as the outcome of trials become well

predicted (see Equation 5-10).

Fach stimulus unit has an associative link to the outcome representation. After
the stimulus layer is activated, the predicted outcome of that pattern of activation is
computed as the sum of each unit’s activation multiplied by its associative weight

(see Equation 5-7).
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0O, = ka 3, (5-7)

The stimulus layer is also fully connected to the three-dimensional event layer
via links »,. The three dimensions of the event layer consist of the two stimulus
dimensions plus a third dimension representing the CR, or predicted outcome (O,),
of the network.’ Input to the event layer consists of the pattern of activation of the

stimulus layer plus the outcome (O,) predicted by the stimulus layer.

The event layer is fully connected to the actual outcome representation (O,), and
the associative strengths of these links, as well as the stimulus layer associative links,
are updated on each trial by the Rescorla-Wagner rule (Equations 5-9 and 5-10). The
output of the network, or CR, consists of the sum of the associative strengths of the

event competitive units scaled by their activation (O,; see Equation 5-8).

O, = Z V, & (5-8)
AVk =ay EB EQ/\ _Oz) (5_9)
AV, =a, [BUA-0,) (>-10)

General Methods

Identical network parameters were used for all simulations presented in this
chapter. The network consisted of ten by ten grids of perceptual and stimulus

competitive units and a ten by ten by ten block of event competitive units. The

¢ As in the original model, the CR varies between 0 and 1. However, in the event layer, the
CR dimension ranges from 0 to 10 in order to be proportional to the stimulus
representations. The actual CR is mapped onto a position on the CR dimension by
multiplying it by 10.
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specific parameters were as follows: a(0)=1 , 3=0.005, d(0)=0.05 , y=0.95, A=1

(reinforced trials) or 0 (nonreinforced trials), 0°(0)=2.0.

The data of interest in this section consist of the degree to which the network
will generalize “perceptually” between stimuli after different types of training. Thus,
mnstead of looking at the CR, I look directly at the degree to which the winning unit
for a given stimulus is activated in the presence of another stimulus. For example, to
determine the degree of generalization between stimulus A and stimulus B I look at
the activation of the winning event competitive unit for B in the presence of A, and
the activation of the winning competitive unit for B in the presence of A. In all of
the simulations in this chapter, generalization between stimuli in a pairwise
discrimination is calculated as the average of these two values and will hereafter be
referred to simply as “generalization”. Since the activation refers to Euclidean
distance, a larger activation reflects /ss generalization and a smaller activation reflects

more generalization.

Experiment 1: Labeling Stimuli

Reese (1972) looked at the effect of categorization training on subsequent
discrimination by conducting an experiment in which children were trained with
three nonsense figures, learning to apply one verbal label to two of them and a
different label to the third. All groups received the same training thus there were no
differences in difficulty between groups. Children were subsequently divided into
two test groups and received successive discriminations in which they were
mnstructed to press one button in response to one of the pretrained cues and a
different button to another pretrained cue. For children in the first test group—the
acquired distinctiveness group—the two stimuli had had different labels during
pretraining. For children in the second group—acquired equivalence—the two
stimuli had had the same labels during pretraining. The researchers found that

subjects in the distinctiveness condition learned the discrimination more quickly. In
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this simulation, I investigate whether the extended version of the differentiation

model can produce a similar effect.

Methods

In this simulation, one group of 10 networks was initialized and then trained on
the following serial discrimination: A<55>+, B<3,3>+, C<7,7>-, in which the
positive reinforcement signal served as the stimulus label. Note that A is equidistant
from B and C. Subsequent to attainment of the critetion of 90% correct on 3
consecutive blocks of 10 trials, learning was turned off and the networks were tested

on one trial of each of two simultaneous disctiminations: A vs. C and A vs. B.

Results and Discussion

As can be seen in Figure 5-2, there was less overlap between A and C
(distinctiveness condition) than there was between A and B (equivalence condition).
Although A was equidistant from B and C in terms of perceptual similarity alone,
differential reinforcement of A and C caused the winning units for each stimulus to
be further separated along the predicted outcome dimension than were the winning
units for A and B. The success of this simulation demonstrates that the extended

model is able to produce the basic acquired distinctiveness effect.
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Simulation of Reese (1972)
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Figure 5-2: Discrimination performance after categorization training. Networks were initially
trained on the following discrimination A<5,5>+, B<3,3>+, C<7,7>- (not shown here).
Next, the networks were tested in extinction on one trial of each of two simultaneous
discriminations: A vs. C and A vs. B. Generalization between A and C (distinctiveness
condition) was less than generalization between A and B (equivalence condition) even
though the stimuli were perceptually equidistant.

Experiment 2: Differential Outcomes Effect

As discussed eatlier, the differential outcomes effect provides additional
evidence for AD and AE (Peterson & Trapold, 1980). Animals trained in a correlated
condition, in which an outcome is delivered only in the presence of one cue, are
better able to disctiminate cues than animals in an uncorrelated condition in which
an outcome is presented 50% of the time after each cue. This is called the
differential outcomes effect because the superior performance of the correlated
group depends on the fact that the outcome of the correct response is reliably
different for the two trial types. In this experiment, I investigated whether the

extended model could produce this different type of acquired distinctiveness effect.
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Methods

In this simulation, two groups of 10 networks each (Group Differential
Outcome (DO) and Group Same Outcome (SO)) were initialized. Group DO was
trained on a discrimination between A<5,5> and B<3,3>, in which A was reinforced
100% of the time and B was never reinforced. Group SO was trained for the same
number of trials on a discrimination in which A and B were each reinforced 50% of
the time. Next, the networks were tested, with learning turned off, on one trial of the

same A vs. B discrimination.

Results and Discussion

As can be seen in Figure 5-3, there was less overlap between A and B for the
group that had been trained with differential outcomes than for the group that had
been trained with the same outcome, demonstrating that the extended model is
capable of producing the differential outcome effect. Peterson and Trapold (1980)
explained their result by suggesting that expectancy (of the outcome) served as an
additional cue controlling choice responding. The current model instantiates this
view by considering expectancy to be simply another factor that is combined with
stimulus representations in the construction of an event representation. Expectancies
are represented topographically, just as stimuli are, thus differences between
expectancies contribute to the degree of generalization between two events just as do

differences between stimuli.
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Differential Outcomes Effect
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Figure 5-3: Group Differential Outcome was trained on a discrimination between A<5,5> and
B<3,3>, in which A was reinforced 100% of the time and B was never reinforced. Group Same
Outcome was trained for the same number of trials on a discrimination in which A and B
were each reinforced 50% of the time. This graph shows generalization between A and B at
the end of this training. Group Same Outcome evidenced more generalization between A and
B than did Group Differential Outcome.

Experiment 3: The Influence of Categorization on

Perception

In this experiment, I simulate Goldstone’s (1994) experiment on the influence
of categorization on perception. (The experiment and results are detailed in the
mntroduction to this chapter.) In Goldstone’s experiment, stimuli consisted of sixteen
squares, each of which had a brightness value of 1, 2, 3, or 4 and a size value of 1, 2,
3, or 4. Subjects were given different categorization rules: for one group, size was
relevant (objects of size 1 or 2 belong to category A, those of size 3 or 4 belong to
B) for a second group brightness was relevant (objects of brightness 1 or 2 belong

to category A, the others to B), and a third group received no categorization
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training. This experimental design allowed Goldstone to explore several aspects of
AD and AE . First, he looked at whether there was any evidence for AD. Next, he
looked at AE of the irrelevant dimension and within the relevant dimension. Finally,
he looked at whether or not there was local sensitization within a dimension. Each of

these aspects is explored in the current simulation.

Methods

Sixteen stimuli were created which had values of 2, 3, 4, or 5 on dimension 1
and values of 2, 3, 4, or 5 on dimension 2. The coordinates of these stimuli in the

mnput space are shown in Figure 5-4.

5 M N o P
4 | J K L
é 3 E F G H

5 A B C D

2 3 4 5
Dimension 1

Figure 5-4: Coordinates of the sixteen stimuli used for simulations of Goldstone (1994).

Three sets of 10 networks each were initialized. Group 1 was trained on the
following serial discrimination in which categorization was performed along
dimension 1: A+ B+ E+ F+ I+ J+ M+ N+ C- D- G- H- K- L- O- P-. Group 2 was
trained on a different serial discrimination in which categorization was performed
along dimension 2: A+ B+ C+ D+ E+ F+ G+ H+ I- J- K- L- M- N- O- P-. Each

network was trained on the appropriate discrimination for 5 blocks of 10 trials each.
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The third group of netwotks, Group Control, was exposed to the stimuli for 5
blocks of 10 trials each with no reinforcement. After discrimination training, each
group was presented with 16 pairwise discriminations and, as in the previous
experiments in this chapter, the degree of generalization between the two stimuli was
determined for each network. The pairwise discriminations, which will be discussed

in detail in the following section, were as follows:

Bvs.C |Fvs.G [Jvs. K [Nvs.O |Ivs.E |Jvs.F |Kvs.G |Hvs. L

9 10 11 12 13 14 15 16

Avs.B |Ivs.]J Kvs., |Cvs.D |IvssM |Ovs.K |Evs.A | Gvs. C

Table 5-1: Pairwise discriminations used for generalization testing.

Results and Discussion

Acquired Distinctiveness

The first issue explored here was whether or not categorical training led to AD.
Evidence for this effect would be provided if perceptual discriminations along a
categorization-relevant dimension are better than those of the corresponding
controls. In the simulations, for group 1 there are four comparisons that should
become sensitized if relevant dimensions acquire distinctiveness: discriminations 1, 2,
3, and 4. For group 2 the four comparisons are 5, 6, 7, and 8. Figure 5-5 shows
generalization for each pair, averaged over the four discriminations. The control
group showed more generalization between discriminanda for both dimensions,

llustrating that for both categorization groups there is evidence for AD between
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values of the categorization-relevant dimension that belong to different categories.

These results concur with those of Goldstone.

Acquired Distinctiveness

35
T T
31 1 1
2.5
2 4
]
g @ Control
@ O Category Training
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Figure 5-5: Acquired Distinctiveness. Evidence for AD would be provided if perceptual
discriminations along a categorization-relevant dimension are better than those of the
corresponding controls. In the simulations, for group 1 there are four comparisons that
should become sensitized if relevant dimensions acquire distinctiveness: disctiminations 1, 2,
3, and 4. For group 2 the four comparisons are 5, 6, 7, and 8. This figure shows the activation
of the winning units for one stimulus of the pair when presented with the second stimulus,
averaged over the four discriminations and the two stimuli. The control group showed more
generalization between discriminanda for both dimensions, illustrating that for both
categorization groups there is evidence for AD between values of the categotization-relevant
dimension that belong to different categories. These results concur with those of Goldstone.

Acquired Equivalence of the Irrelevant Dimension

Acquired equivalence of a dimension that is irrelevant to the categorization
occurs if discriminations along the dimension are worse than those of controls. The

simulation data are shown for the two dimension categorization groups in Figure
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5-6. The data consist of the average generalization between discriminations 5, 6, 7,

and 8 for group 1 and discriminations 1, 2, 3, and 4 for group 2.

Acquired Equivalence of Irrelevant Dimension

25

1.5 1

HE Control
O Category Training
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0.5 1
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Figute 5-6: Acquired distinctiveness along the irrelevant dimension. The data consist of the
average generalization between discriminations 5, 6, 7, and 8 for group 1 and discriminations
1, 2, 3, and 4 for group 2. The degree of acquired distinctiveness is much less substantial than
that seen for the relevant dimension.

Instead of demonstrating acquired equivalence, the simulation shows acquired
distinctiveness along the irrelevant dimension. The degree of AD is much less
substantial, however, than that seen for the relevant dimension. Goldstone found a
similar effect when he used stimuli from integral dimensions (saturation and
brightness). He found no effect when he used stimuli from separable dimensions

(brightness and size).

Acquired Equivalence within the Relevant Dimension

AE within a categorization relevant dimension would occur if stimuli that have

different values along a dimension but belong to the same category become less
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discriminable with categorization training. For the simulations, this compatison was
made across four discriminations for each dimension, each of which involved
discriminating between two stimuli that were of the relevant dimension but did not
straddle the categorization boundary. In other words, these were stimuli whose
values were different but categories were the same. For group 1, I looked at
discriminations 9, 10, 11, and 12 and for group 2 I looked at discriminations 13, 14,
15, and 16. Overall, for both dimensions, the degree of generalization for networks
in the control condition was greater than the degree of generalization for networks in
the categorization conditions (see Figure 5-7). This difference is in the opposite
direction as that hypothesized by AE within a dimension, and reproduces the effect
obtained by Goldstone.

Acquired Equivalence within Relevant Dimension

25

1.5 1

HE Control
O Category Training

Distance

0.5 1

T
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Figure 5-7: Acquired distinctiveness within a relevant dimension. For this simulation,
generalization was compared across four discriminations for each dimension, each of which
involved discriminating between two stimuli that were of the relevant dimension but did not
straddle the categorization boundary. In other words, these were stimuli whose values were
different but categories were the same. For group 1, I looked at discriminations 9, 10, 11, and
12 and for group 2 I looked at discriminations 13, 14, 15, and 16. Overall, for both dimensions,
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the degree of generalization for networks in the control condition was greater than the degree
of generalization for networks in the categorization conditions.

Local Sensitization of a Dimension

Given that acquired distinctiveness was found for category-relevant values
whether or not they straddled the category boundary, Goldstone next looked at
whether these values were equally sensitized. To test this, discriminations between
stimuli that belong to different categories were compared to discriminations between
stimuli that belong to the same category but vary along the categorization-relevant
dimension. Thus I compared generalization across stimulus pairs that straddled the
categoties (the “critical” condition) to generalization across stimulus pairs that were

within the same category along the relevant dimension (the “noncritical” condition).

Local Sensitization within a Dimension
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Figure 5-8: Local sensitization within a dimension. Discriminations between stimuli that
belong to different categories were compared to discriminations between stimuli that belong
to the same category but vary along the categorization-relevant dimension. For group 1, the
critical condition consisted of discriminations 1, 2, 3, and 4 and the noncritical condition
consisted of discriminations 9, 10, 11, and 12. For group 2, the critical condition consisted of
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discriminations 5, 6, 7, and 8 and the noncritical condition consisted of disctiminations 13, 14,
15, and 16.

For group 1, the critical condition consisted of discriminations 1, 2, 3, and 4 and
the noncritical condition consisted of discriminations 9, 10, 11, and 12. For group 2,
the critical condition consisted of discriminations 5, 6, 7, and 8 and the noncritical
condition consisted of discriminations 13, 14, 15, and 16. As shown in Figure 5-8,
there was more generalization between stimuli in the noncritical condition than
between stimuli in the critical condition. Thus, the extended model produces local
sensitization within a dimension: although the entire dimension appeared to acquire
distinctiveness, the stimuli that straddled the categorization boundary acquired more

distinctiveness than those that did not.

General Discussion

The simulations presented in Experiment 1 and Experiment 2 demonstrate that
the basic effects of acquired distinctiveness can be accounted for simply by
extending the basic differentiation model such that a representation of the reinforcer
(or category label) is combined with the representation of the stimulus. Furthermore,
the network demonstrated the same types of perceptual sensitization after expetience
in the acquisition of new categoties as did Goldstone’s subjects; training networks on
different categorization rules resulted in different abilities to make perceptual

discriminations

One interesting aspect of Goldstone’s results is that he found consistent support
for AD, even in cases in which he had expected AE to be produced. Secondly,
whereas Goldstone did find that sensitization occurred across an entite dimension,
the degree of sensitization depended on the proximity of the stimulus to the
categorization boundary. This provides evidence against the standard model of
dimensional attention (e.g., Kruschke, 1992; Suthetland & Mackintosh, 1971) in
which equivalent sensitization to the entire dimension is predicted. The fact that the

current model can account for these data suggests that there may be no high-level
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attentional effects at work to produce acquired distinctiveness. Instead, it may
simply be the result of a differentiation process that operates on an event

representation rather than a stimulus representation.

Another interesting aspect of Goldstone’s results concerns the bit of evidence
that he did find for acquired equivalence. He found AE of the irrelevant dimension
for only one dimension when the dimensions were separable (size and brightness)
and for neither dimension when the dimensions were integral (hue and saturation).
Goldstone explains this outcome in terms of dimensional attention by suggesting
that if two dimensions are naturally attended simultaneously then requiring that
attention be placed on one should not necessarily cause the other dimension to be
processed less. If the dimensions cannot be simultaneously attended, then
desensitization (acquired equivalence) of competing dimensions would be expected
when attention is required elsewhere. Thus he suggests that acquired equivalence
occurs as a result of divided attention. As was demonstrated in the simulation, the
current model has no mechanism for producing AE. From Goldstone’s analysis and
the data produced by the current model it seems plausible that acquired
distinctiveness and acquired equivalence, instead of being opposite sides of the same
coin as they are generally considered, instead they may be very different processes
that occur at much different levels. AD may be a low-level differentiation process,

whereas AE may be a much higher level attentional resource process.

The architecture of the extended model is interesting because, while accounting
for acquired distinctiveness effects, it may also have implications with respect to the
relationship between learning and memory. For example, it is well known that
reacquisition of a simple conditioning task after extinction occurs more quickly than
did the mitial acquisition (Konorski & Szwejkowska, 1950; Konorski &
Szwejkowska, 1952). The current model would explain this as follows. During the
mitial acquisition of the CR, a strong event layer representation of the stimulus at
<x,9,7> will be formed. During extinction, a second representation at <x;,),0> will

develop and the overall CR will decrease as the associative weights of the second
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representation develop enough to outweigh the effect of generalization to the initial
representation. During reacquisiion of the CR, the weights of the <x,7>
representation will not have to redevelop from scratch but will merely have to be
sufficient to outweigh generalization from <x,),0>. This may have mmplications
related to retention and recall issues such as spontaneous recovery and occasion

setting.
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CHAPTER 6 APPLICATION TO
NEUROPSYCHOLOGY: EFFECTS
OF PERIRHINAL CORTEX
LESIONS ON STIMULUS
REPRESENTATIONS

Introduction

The perirhinal cortex (PRh)—a polymodal region located in the anterior portion
of the temporal lobe—is a site of convergence of distinct brain systems involved in
memory and perception. For example, PRh has been considered to be part of a
functionally unitary medial temporal lobe memory system, damage to any part of
which can result in “declarative” memory impairments (Eichenbaum, Otto, &
Cohen, 1994; Squite & Zola-Morgan, 1991; Zola-Morgan, Squite, & Ramus, 1994).
An alternative view has been that PRh is important for visual information processing
leading to “object identification” (Buckley & Gaffan, 1998b; Murray, Malkova, &
Goulet, 1998)."

Because different researchers have assigned either perceptual or cognitive
functions to PRh, it is a particulatly interesting brain region when it comes to trying
to understand the neural underpinnings of perceptual learning. The dual functions
proposed seem to support the idea that the boundary between perception and
cognition is not as clear as it was once assumed. Over the past several years,

researchers have been trying to determine whether PRh is best characterized as being

7 For a more detailed discussion of PRh see Appendix B.
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specialized for a specific mnemonic function or whether PRh is more simply
involved in visual information processing. Resolving this issue has been difficult, in
part due to the diverse and puzzling pattern of effects observed following lesions of
PRh. It is well established that PRh has an important role in recognition memoty for
complex objects (Aggleton, Keen, Warburton, & Bussey, 1997; Bussey, Muir, &
Aggleton, in press; Ennaceur, Neave, & Aggleton, 1996; Meunier, Bachevalier,
Mishkin, & Murray, 1993; Mumby & Pinel, 1994), thought to be a paradigm example
of declarative memory (Squire & Zola-Morgan, 1991). More recent research has
shown, however, that the use of object recognition paradigms is not necessary to
obtain PRh lesion-induced deficits. Buckley and Gaffan (1997), for example, using a
large set of object stimuli in a concurrent discrimination paradigm, found that lesions
of PRh disrupted retention of preoperatively learned stimuli as well as the acquisition
of new discriminations. These results suggest that a general function of PRh might
be the discrimination of visual stimuli. However, visual discrimination learning can
be preserved following lesions in this region, provided small object sets are used
(e.g., Aggleton et al.,, 1997; Buckley & Gaffan, 1997; Buckley, Gaffan, & Murray,
1997; Bussey, Duck, Muir, & Aggleton, 1999; Bussey et al., in press; Gaffan &
Murray, 1992; Rothblat, Vnek, Gleason, & Kromer, 1993; Thornton, Malkova, &
Murray, 1998; Thornton, Rothblat, & Murray, 1997). At the same time Buckley and
Gaffan (in press), using a relatively small stimulus set size, found that PRh lesions
impaired a “configural” discrimination learning task. Furthermore, a consistent yet
puzzling effect of PRh lesions is that retention of pre-operatively learned
discriminations can be distrupted while the acquisition of new discriminations is not
(Buckley & Gaffan, 1997; Eacott, Gaffan, & Murray, 1994; Gaffan & Murray, 1992;
Horel, 1994; Horel & Stegner, 1993; Thornton et al., 1997). These inconsistencies in

the effects of lesions in PRh require resolution.

In this chapter I investigated whether such effects following lesions in PRh can
be accounted for by assuming PRh to have visual information processing properties
similar to those in other regions of I'T. I constructed a neural network model based

on two general assumptions regarding the anatomical and electrophysiological
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propetties of I'T. First, I assumed that networks of neurons in I'T set up and maintain
representations of visual stimuli, and that these representations can change as a result
of experience (perceptual learning), thus facilitating visual discrimination.
Accordingly, the model in this chapter is based on the neural network model
presented in Chapter 3. Second, I assumed that visual representations in IT are
organized in a hierarchical manner, in which simple representations in eatly
processing regions combine to form more complex representations in later,
downstream regions. In this way more complex representations are built up as
information progresses through the ventral visual stream, culminating in maximum
complexity in PRh (perhaps resulting in gestalt representations of complete visual
stimuli). I hypothesized that a model embodying these simple functional and

organizational principles should be able to account for effects of lesions in PRh.

In order to test this model, lesions were made in the component of the network
corresponding to PRh, and the resulting effects compared with the effects of lesions
in PRh in monkeys. I have focused on recently reported effects of lesions in PRh in
monkeys that have provided key insights into the functions of this region, and that
have led to a reappraisal of the function of PRh in terms of “object identification”
(Buckley & Gaffan, 1998b; Murray et al., 1998) .

Functional and Organizational Principles

In the present model, I assume that the function of IT is to prepare and store
visual stimulus representations which, in cooperation with downstream brain regions,
are subsequently associated with responses and reinforcers. Such regions may include
the amygdala, basal ganglia, and prefrontal cortex, all of which receive projections
from IT (Iwai & Yukie, 1987; Ungerleider, Gaffan, & Pelak, 1989). I suggest that I'T
accomplishes this stimulus preprocessing through mechanisms of discrimination and

perceptual learning.

Lesions in IT lead to impairments in visual discrimination (Desimone, Albright,

Gross, & Bruce, 1984; Desimone & Gross, 1979; Tanaka, 1996). In order to
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mnvestigate whether activity of cells in IT is correlated with disctimination behavior,
Jagadeesh and Desimone (1997) created a testable dimension by isolating stimuli that
were “good” or “poor” for a given cell in PRh and then “morphing” these images
together in various proportions to generate a continuum of stimuli ranging between
the two extremes. Using a pair-wise discrimination paradigm it was found that
neurons’ discrimination learning curves for these stimuli matched the behavioral
discriminations almost identically. This result suggests that stimulus-selective neural
activity in IT drives behavioral selection of visual stimuli in disctimination learning

(see also Kobotake, Wang, & Tanaka, in press).

Perceptual learning can be thought of as the changes in stimulus representations
that occur with experience. Thus the development of stimulus representations as
manifested in the selective firing of neurons is an example of perceptual learning,
and the existence of neurons that have learned to fire to particular stimuli is evidence
that perceptual learning has occurred. These learned responses, however, must be
distinguished from innate, hard-wired patterns of neuronal selectivity. Evidence that
experience may be sufficient to alter representations in I'T has been obtained in
several studies (e.g., Booth & Rolls, 1998; Logothetis & Pauls, 1995; Sakai &
Miyashita, 1991; Tanaka, 1993). Furthermore, Tovee, Rolls, and Ramachandran
(1996) demonstrated perceptual learning by neurons in IT. These authors first
located a population of face-sensitive cells. The monkeys were then presented with
an ambiguous (degraded) picture of a face to which the neuron did not respond. The
unambiguous version of that same face was then presented, and the neuron
responded. Finally, in the critical test the same ambiguous face was re-presented. The
neuron now responded to this previously ambiguous stimulus. This suggests that the
neuron learned to identify a degraded form of the stimulus following preexposure to

a complete version.

The foregoing studies suggest that discrimination and perceptual learning are
processes intrinsic to I'T. The present model thus takes as its starting point the basic

competitive netwotk, discussed earlier in this dissertation, that petrforms these
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functions in a manner consistent with extant data on discrimination and perceptual

learning in animals.

In the present model the visual preprocessing in I'T is viewed as nonassociative:
No reinforcement signal is required to instruct representational changes. Instead, this
occurs in an automatic, “unsupervised” manner. This assumption seems reasonable
given that changes in visual representations—as evidenced by changes in selectivity
of neuronal encoding of visual stimuli in I'T—can occur during passive viewing of
visual stimuli, without reinforcement and outside of the context of a “task” (Brown,
1996). Furthermore, certain changes in neuronal responding to visual stimuli have

been observed even in anaesthetized animals (Miller, Li, & Desimone, 1991).

As a visual preprocessor, an intact I'T will be necessary for the performance of
many visual tasks, such as discrimination learning and categorization. However, while
lesions within IT often produce deficits in such tasks, equally often they do not. I
propose that this can be explained by considering the hierarchical organization of the
ventral visual stream, in which neurons code representations of increasingly complex
stimuli (Desimone & Ungerleider, 1989). This complexity appears to reach its
maximum in PRh, and there is evidence that this complexity can involve the “fusion”
of visual stimuli (Tanaka, 1996). Thus while lesions in PRh cortex will abolish
representations of certain complex stimuli, representations of the features that
comprise those stimuli will be preserved in upstream regions of I'T such as TE. One
consequence of this is that stimuli that differ according to these simple features will
be discriminable even without the complex representation stored in PRh. The
implications of this will become clearer when I consider how the model accounts for

some known effects of lesions in PRh.

In the following section I describe the architecture of the model, which is based
on the differentiation network that is described in Chapter 3. The differentiation

network is henceforth referred to as the “basic component network”.
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Architecture of the Model

As outlined above, the model is based on several assumptions, including (1) IT
supports discrimination and perceptual learning, (2) stimulus representations are built
up in a hierarchical manner, and (3) this learning occurs in a nonassociative,
unsupervised manner. The first and third features of the model are intrinsic to the
basic component network. The second is a consequence of how the basic
component networks are arranged within the full architecture of the model (see
Figure 6-1). Both the Feature Conjunction Layer and the Feature Layers have the
propetrties of the competitive layer in the basic component network, with the
exception that the Feature Conjunction Layer receives input from two Feature
Layers (F, and F,), which receive input from two input layers (I, and I,). F; is fully
connected to I, and F, is fully connected to L. The Input and Feature Layers consist
of seven-by-seven unit grids. The Feature Conjunction Layer consists of a four-
dimensional space of units (seven-by-seven-by-seven-by-seven). All three of these
layers are fully connected with the outcome representation. As in the basic
component network, the nonassociative preprocessor represents IT and the
associative processor represents downstream brain areas involved in associating
visual stimulus representations in IT with reinforcers and responses. The Feature
Conjunction Layer represents PRb and the Feature Layers represent upstream areas in IT such as
area TE.

In the full architecture, a stimulus comprised of two features can be fed into the
network. Stimuli consist of vectors of quadruples of values (e.g., <x7,y7,x2,92>).
There are two values within the quadruple for each of the two features. Thus if a
stimulus consisting of a large red rectangle is presented to the network, then <x7,y7>
might represent hue and saturation of the color and <x2, 32> might represent length
and width of the rectangle. By way of the mechanisms detailed in the previous
section, these features come to be represented in the two Feature Layers. The
Feature Layers converge on the Feature Conjunction Layer such that a complex

stimulus consisting of the two features is represented. Note that both of the features
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of this complex stimulus in the Feature Layer as well as the full representation in the
Feature Conjunction Layer can be associated with an outcome (reinforcer or

response) via direct, full connectivity with the output node.

_ Outcome

Associative
Processor
— Feature Conjunction Layer
(PRh)
Nonassociative Feature Layers
Preprocessor (Other regions in IT)

Input Layers

! I

Stimulus Feature 1 Stimulus Feature 2

Figute 6-1: The full architecture of the model. Two separate input layers (Iy and Iz) are
utilized. Each input layer represents one feature of a complex stimulus. When a stimulus is
input to the network, each of the input layers is activated depending on the value of the
stimulus on the particular feature that it represents. The competitive portion of this network
consists of 3 separate groups of units. The Feature Layers (F; and F») consist of two groups of
units, one associated with feature 1 and one associated with feature 2. F; is fully connected to
I; and F; is fully connected to I,. The Feature Conjunction Layer is fully connected with both
Fi and F, and therefore can represent the conjunction of the features represented in these
layers. All three of these layers are fully connected with the outcome representation. As in the
basic component network, the nonassociative preprocessor represents I'T and the associative
processor represents downstream brain areas responsible for associating visual stimulus
representations in I'T with reinforcers and responses. Within the nonassociative preprocessor,
the Feature Conjunction Layer represents PRh and the Feature Layers represent upstream
areas in I'T such as area TE.
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General Methods

The experiments in the cutrent study compare the performance of intact
netwotks to those that have been “lesioned”. In the present model, the Feature
Conjunction Layer occupies the same relative position as PRh in the ventral visual
processing stream. Thus, removal from the netwotk of the Feature Conjunction
Layer corresponds to a lesion of PRh. When the network is lesioned, the Feature
Layers are still fully functional since neither their inputs from the Input Layers nor

their outputs to the Outcome representation are affected by the lesion.

Identical network parameters were used for every simulation presented in this
paper. In each experiment, five simulations were run in both the lesioned and intact
conditions. In this way the experiments are designed in a manner similar to lesion
experiments in animals, comparing the performance of a “Lesion” group (n=5) with

that of an intact “Control” group (n=5). The specific parameters used were as

follows: A = 1.0 ot 0.0,8 = 0.05, & = 0.05, B= 0.005, 3= 1.0.

Experiment 1: Stimulus Set Size Effects in Concurrent

Discrimination Learning

Much evidence points to a role for PRh in the learning and retention of visual
discriminations. Lesions of PRh have been shown significantly to disrupt learning
and retention of visual pair-wise discriminations when a large number of stimulus
pairs must be discriminated concurrently (Buckley & Gaffan, 1997). PRh does not,
however, appear to have a general role in discrimination learning. Several studies
using small stimulus set sizes, in monkeys as well as in rats, have found preserved
discrimination learning following lesions that include this region (e.g., Aggleton et al.,
1997; Buckley & Gaffan, 1997; Buckley et al., 1997; Bussey et al., 1999; Bussey et al.,
in press; Gaffan & Murray, 1992; Rothblat et al., 1993; Thornton et al., 1998;
Thornton et al, 1997). Similar set-size effects are observed in the delayed

nonmatching-to-sample paradigm (Eacott et al., 1994).
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In this experiment I investigated the effects of stimulus set size in a concutrent

learning paradigm similar to that used by Buckley and Gaffan (1997).

Methods

Three sets of stimulus pairs were created by randomly selecting a quadruple of
numbers for each stimulus. Set “Small” consisted of one pair of stimuli, set
“Medium” consisted of five pairs of stimuli, and set “Large” consisted of ten pairs of
stimuli. Two groups of five networks each were then initialized: Group “Control”
consisted of intact networks whereas group “Lesion” consisted of networks that had
been lesioned in order to simulate the effect of a lesion in PRh. Fach network was
trained on a pairwise concurrent discrimination task using set “Small” until it reached
criterion (90% correct on five consecutive sessions). The networks were reinitialized
to prevent interference effects across stimulus sets, after which each network was
trained to criterion on the five pair concurrent discrimination (set “Medium”). The
networks were again reinitialized, and then were trained to criterion on the ten pair

concurrent discrimination (set “Large”).

Results and Discussion

As shown in Figure 6-2, group Lesion was impaired relative to group Control on
concurrent discrimination learning when the stimulus set size was medium or large,
but not when it was small. Two-way analysis of variance with Group and Set Size as
factors revealed a significant main effect of Group, F(1,8)=50.9,p=0.0001, a
significant main effect of Set Size, F(2,16)=106.3,p<0.0001, and a significant Group
x Set Size interaction, F(2,16)=41.1,p<0.0001. Analysis of simple main effects
revealed that group Lesion committed significantly more errors in reaching criterion
than did group Control in the large set size condition, F(1,8)=46.3,p<0.001, and in
the medium set size condition, F(1,8)=11.6,p<0.01, but not in the small set size
condition, F(1,8)=1.31,p=0.29. Both groups committed more etrors as the set size
increased, as indicated by a significant effect of Set Size for both group Control,
F(2,16)=8.02,p<0.01, and group Lesion, F(2,16)=139.4,p<0.001.
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Effect of Set Size on Concurrent Discrimination
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Figure 6-2: Effect of set size on acquisition of pairwise concurrent discrimination. Error bars
represent +/- SEM. Asterisks indicate significant difference from group Control; ** p<0.01;
Wbk n<0.001.

This experiment shows that lesioning the Feature Conjunction Layer of the
netwotk can reproduce stimulus set-size effects similar to those observed following
lesions of PRh in monkeys (Buckley & Gaffan, 1997). Specifically, the larger the set
size, the greater the effect of the lesion. This occurs because whereas the intact
networks can represent individual features of a stimulus as well as their conjunction
(e.g., they can represent “red”, “square”, and “red & square”), the lesioned networks
can represent only the individual stimulus features (“red” and “square”). In this
sense, the current model of PRh is similar to Gaffan, Harrison, and Gaffan’s (1986)
computational model of I'T, in which lesions in I'T are thought to reduce the number

of “stimulus attributes” available during visual discrimination learning. As a result,
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due to their richer stimulus representation the intact netwotks can build several
associative links (red=>+; square>+; red&square>+) whereas the lesioned
networks can only build associative links from the individual feature representations
to the outcome (red=>+; squate>+). As the stimulus set size increases, the
probability increases that a particular feature will be part of both a reinforced and a
non-reinforced stimulus. The probability of a specific conjunction of features being
both reinforced and non-reinforced, however, is much smaller. Thus an intact
network, and an animal with an intact PRh, will have an advantage over their
lesioned counterparts because they can represent separately the conjunction of
stimulus features. In contrast the lesioned network, or animal, must rely on the
spared individual stimulus features to attempt to solve the discrimination. This
advantage increases as the degree of feature overlap increases. Since the probability

of feature overlap increases with set size, so does the advantage of the intact group.

In this sense large-set concurrent disctrimination is similar to “configural” tasks
in which overlap of features is at a maximum. To illustrate, if I represent features by
the letters A,B,C, and D, objects by the conjunction of two of these features (e.g.,
AB), reinforcement by +, and nonreinforcement by -, then an example of such a
configural task is the “biconditional discrimination task”: AB+, AC-, CD+, AD-. In
discriminating a trewarded stimulus conjunction from a nonrewarded one, the
probability of feature overlap is one. Therefore, it would be predicted that, given
stimuli of appropriate complexity, PRh lesions would have a severely disruptive

effect on the acquisition of such a task. This issue is addressed in Experiment 2.

A central theme of the present study is that it may not be necessary to assign a
special function for PRh distinct from that of other areas of IT—in specific
mnemonic or associative processes, for example—to account for effects of PRh
lesions on tasks such as concurrent discrimination. Instead, whether or not deficits
are observed following a lesion in PRh will depend on the stimulus demands of the
task. Furthermore, provided an appropriate level of stimulus complexity, lesions in
IT that spare PRh should also disrupt concurrent discrimination learning. Indeed,

just such a result has been reported (Iwai & Mishkin, 1968; Malkova, Mishkin, &

Chapter 6: Application to Neuropsychology 128



Bachevalier, 1995; Moss, Mahut, & Zola-Morgan, 1981; Phillips, Malamut,
Bachevalier, & Mishkin, 1988).

It was once thought that the critical factor in explaining lesion-induced deficits
in concurrent learning was not the stimulus demands of the task, but the intertrial
mnterval. Specifically, a version of the concurrent task that featured an intertrial
interval of 24 hours was viewed as a “habit” (or “procedural”) task that should be
spared by a lesion of PRh and other components of the “medial temporal lobe
memoty system”, but may be impaired by lesions in other regions of IT (Phillips et
al., 1988). Buckley and Gaffan (1997), however, obtained their PRh lesion-induced
deficits using a 24-hour version of the concurrent discrimination task. Thus it
appears that, consistent with the present model, the idea that PRh can be
distinguished from other tegions in IT according to a memory/habit (or

declarative/procedural) dichotomy is in need of tevision (Buckley & Gaffan, 1997).

Experiment 2: Configural Learning

In Experiment 1 it was shown that that lesioning the Feature Conjunction Layer
of the network can reproduce stimulus set-size effects similar to those observed
following lesions of PRh in monkeys. According to the present model this is because
the representations of feature conjunctions which are normally used to represent and
discriminate objects are unavailable to the animal (or network), and it must rely on
the spared simple feature representations to attempt to solve the discrimination. In
situations such as large-set concurrent learning, stimuli are more likely to have
features in common, and thus the lesioned animal or network will experience much

greater inter-item intetference.

Such feature overlap reaches a maximum in “configural” tasks in which items
cannot be discriminated according to simple features, but rather can only be
discriminated through the use of representations of the conjunction of features. An
example of such a task is the biconditional disctimination task. The biconditional

discrimination task can be formalized as AB+, AC-, CD+, AD- (where features ate
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represented by the letters A,B,C, and D, objects by the conjunction of two of these
feature (e.g., AB), reinforcement by +, and nonreinforcement by -). It can be seen
that this task cannot be solved by assigning reinforcement or nonreinforcement to
any of the features A,B,C or D, as each of these features is associated equally with
both reinforcement and nonreinforcement. Only by associating the conjunctions of
features (e.g., AB) with reinforcement can the problem be solved. For this reason it
is predicted that lesioning the Feature Conjunction layer of the network should have
a devastating effect on the acquisition of such tasks. Similatly, given stimuli of
appropriate complexity, lesions in PRh in monkeys should lead to deficits in
configural learning. Furthermore, because of the high degree of ovetlap of features
in such tasks, deficits should be obtainable using a smaller set size than is necessary
to produce deficits on a concurrent learning task. Indeed precisely this finding has
recently been reported by Buckley and Gaffan (in press) using an extended version
of the biconditional discrimination task. The present experiment tests these

predictions using the standard version of the task, AB+, AC-, CD+, AD-.

Methods

Four stimulus features were created: A=<1,7>; B=<7,7>; C=<1,1>; D=<7,1>.
These parameters were chosen in order to maximize the discriminability of the
features A, B, C, and D by maximizing the Fuclidean distance between them on the
mput grid. These features were then combined to produce a biconditional

discrimination as follows:
Pair 1:  AB (<1,7> <7,7>) 2> + AC (<1,7> <1,1>) 2> -
Pair2:  CD (<1,1><7,1>) 2>+ AD (<1,7> <7,1>) > -

Two groups of 5 networks each were then initialized: Group “Control”
consisted of intact networks whereas group “Lesion” consisted of networks that had
been lesioned in otrder to simulate the effect of a PRh lesion. Each network was

trained on the biconditional pairwise concurrent discrimination task until it either
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reached criterion (90% correct on five consecutive sessions) or exceeded 400

sessions, at which point it was deemed to have “failed” the discrimination.

Results and Discussion

Lesioning the Feature Conjunction Layer of the network had a devastating
effect on the acquisition of the biconditional disctimination (see Figure 6-3). Analysis
of variance revealed a highly significant effect of Group, F(1,8)=297.4,p<0.0001. All

networks in group Lesion failed, taking more than 400 sessions to attain criterion.

Biconditional Discrimination
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300+ O Control

@ Lesion
200
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Figure 6-3: Acquisition of a biconditional disctimination. Ertor bars represent +/- SEM.
Asterisks indicate significant difference from group Control; *¥¥* p<0.0001.
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Lesioned networks were severely impaired on the biconditional discrimination.
Although the biconditional discrimination set size was considerably smaller than that
used for the large set concurrent discrimination (Experiment 1), the lesioned
netwotks showed a relatively greater impairment in acquisition of the biconditional
discrimination task. This is because the biconditional discrimination task shifts the
probability of feature overlap to one: Each feature is both reinforced and
nonreinforced, thereby eliminating the need for a large set size in order to bring out a
deficit in the lesioned networks. Concurrent discriminations are, however, very
difficult for the lesioned network and for PRh-lesioned animals when the probability
of feature overlap is high (i.e., when the stimulus set-size is large; Experiment 1;
Buckley & Gaffan, 1997). In this sense a large set-size concurrent discrimination can

be thought of as a “partial” configural task.

In the present model, PRh is represented by the Feature Conjunction Layer of
the network, which contains configural representations of stimuli constructed from
features in upstream areas in IT. This allows the network to simulate lesion effects
on the biconditional discrimination task; and on concurtrent discrimination with a
large set size (Experiment 1). However, it is important to emphasize that I do not
view PRh as specialized for configural learning as opposed to “elemental” learning,
in a manner akin to that proposed for the hippocampus (Sutherland & Rudy, 1989).
In the present model a particular region of IT is configural only relative to areas
immediately upstream, which could be thought of as containing elemental
representations. That elemental area, however, would serve as a configural layer for
the area immediately upstream from it, and so no region of IT can be considered
exclusively configural or elemental, and deficits on “configural” tasks will depend on
the complexity of the stimulus material. (Consistent with this, Bussey, 1997, using
simple light and tone stimuli, found no effect of lesions including perirhinal cortex
on configural learning in the rat.) Thus it may not be necessary to propose distinct
configural versus elemental learning systems in the brain to account for deficits on
“configural” tasks (Bussey, Warburton, Aggleton, & Muir, 1998). For the same

reasons, the present view is not strictly aligned with either configural (Pearce, 1987b;
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Pearce, 1994) or elemental (Rescorla & Wagner, 1972) psychological theoties of
learning. It is, however, close in spirit to Pearce’s view that all stimulus

representations should be regarded as configural.

Experiment 3: Greater Effects of Lesions in PRh on

Retention versus Acquisition

A consistent yet puzzling effect of PRh lesions is that retention of pre-
operatively learned discriminations can be disrupted while the acquisition of new
discriminations is not (Buckley & Gaffan, 1997; Eacott et al., 1994; Gaffan &
Murray, 1992; Horel, 1994; Horel & Stegner, 1993; Thornton et al., 1997). Only
when large stimulus set sizes are used are concurrent discriminations impaired
(Buckley & Gaffan, 1997). Somehow reacquisition and new learning are differentially
affected by PRh lesions (Buckley & Gaffan, 1997). Some authots have attempted to
explain this phenomenon by appealing to separate object-knowledge (PRh) and
procedural (non-PRh) systems in the brain (Thomton et al., 1997). I predicted that

that the simple properties intrinsic to the present model could account for this result.

In this experiment I test the prediction that lesions of the Feature Conjunction
Layer of the network should yield greater effects on retention of concurrent

discrimination problems than on acquisition.

Methods

Four sets of stimuli were created, two consisting of two randomly selected pairs
of stimuli each and two consisting of ten randomly selected pairs of stimuli each.
Two groups of five networks each were then initialized. For the first phase of this
experiment, both group “Control” and group “Lesion” consisted of intact networks.
Fach network was trained on a pairwise discrimination task using the first small
stimulus set until it reached criterion (90% cotrect on five consecutive sessions). For
the second phase of the experiment, the Feature Conjunction Layer was removed

from the networks in the “Lesion” group, and then both groups (using the same
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non-reinitialized networks) were trained again to criterion on the first stimulus set.
Finally, for the third phase of the experiment both groups (again not reinitialized)
were run on a new pairwise discrimination using the stimuli from the second small

set. The above procedure was then repeated using the two large stimulus sets.

Results and Discussion

As shown in Figure 6-4, group Lesion was impaired relative to group Control on
the retention, but not the acquisition, of a concurrent discrimination when the
stimulus set size was small. Two-way analysis of variance with Group and Stimulus
Set as factors revealed no significant overall main effect of Group,
F(1,8)=0.89,p=0.37, a significant main effect of Stimulus Set, F(2,16)=4.78,p<0.05,
and a significant Group x Stimulus Set interaction, F(2,16)=4.57,p<0.05. Analysis of
simple main effects revealed that group Lesion committed significantly more errors
than did group Control in reattaining criterion on the discrimination learned prior to
lesioning, F(1,8)=10.9,p=0.01, but the groups did not differ in the acquisition of a
discrimination with a new stimulus set, F(1,8)=0.38,p=0.56. There was no difference
between the groups in the acquisition of the discrimination learned prior to

lesioning, F(1,8)=0.74,p=0.41.

As shown in Figure 6-5, group Lesion was impaired relative to group Control on
the retention and acquisition of a concurrent discrimination when the stimulus set
size was large. Two-way analysis of variance with Group and Stimulus Set as factors
revealed a significant main effect of Group, F(1,8)=41.1,p<0.001, no significant
main effect of Stimulus Set, F(2,16)=0.31,p=0.74, and a significant Group x Stimulus
Set interaction, F(2,16)=13.5,p<0.001. Analysis of simple main effects revealed that
group Lesion committed significantly more errors than did group Control in
reattaining  criterion on the discrimination learned prior to lesioning,
F(1,8)=25.6,p=0.001, and in the acquisition of a discrimination with a new stimulus
set, F(1,8)=19.4,p=0.002. There was no difference between the groups in the

acquisition of the discrimination learned prior to lesioning, F(1,8)=0.18,p=0.68.
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Figure 6-4: Effect of lesioning the Feature Conjunction Layer on retention and acquisition of
a small set size pairwise concutrent discrimination. Error bars represent +/- SEM. Asterisks
indicate significant difference from group Control; ** p<0.01; *** p<0.001
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Figure 6-5: Effect of lesioning the Feature Conjunction Layer on retention and acquisition of
a large set size pairwise concurrent discrimination. Error bats represent +/- SEM. Asterisks
indicate significant difference from group Control; ** p<0.01; *** p<0.001

Chapter 6: Application to Neuropsychology 135



The present experiment reproduces the effect that following PRh lesions in
monkeys, retention deficits are obtained more readily than acquisition deficits. Using
a small stimulus set size, the lesioned netwotks were impaired in the retention of a
pre-operatively learned discrimination, but were unimpaired in acquiring a new
problem. However, when a large set size was used, the lesioned netwotks were
impaired in both retention of a pre-operatively learned discrimination and acquisition
of a new concurrent discrimination. Thus lesions in the network are able to produce
deficits in both retention and acquisition, but the former occurs more readily,
requiring only a small set size, whereas larger set sizes are needed to produce deficits
n acquisition.

The netwotk produces the above pattern of results as follows. During
acquisition of a discrimination in an intact network, three representations of the
stimulus, or portions of the stimulus, will have been formed: F,, F, and a
representation of the complete stimulus in the Feature Conjunction Layer. As a
result, associative links will be constructed between the outcome node and each of
the three stimulus representations. During training, the associative learning rule
operates such that the sum of the weights of the associative links, modulated by the
degree of activation of the corresponding stimulus representation units in F,, F,, and
the Feature Conjunction Layer, asymptotes at a value of one. This value is output as
the response of the network. After the netwotk has been trained and then lesioned,
however, the stimulus conjunction representation in the Feature Conjunction Layer
will no longer exist, and the associative links from the Feature Conjunction Layer
will no longer contribute to the response of the network. As a result, the
performance of the network on the previously learned discriminations will be
impaired.

The reason for this effect in PRh-lesioned monkeys has been puzzling. The
present model, however, provides a parsimonious explanation for this effect. Under
normal circumstances an Intact animal can solve a simple, small set size
discrimination using either the representation of the features of the stimulus or the

conjunction of those features. Normally the animal will use both: The learning is

Chapter 6: Application to Neuropsychology 136



distributed across these two types of representation. Thus when PRh is lesioned
following acquisition of the discrimination, a major contributor to the associative
connections leading to the response is removed. The result is an impairment in the
performance of the discrimination relative to an intact animal. If, however, the
lesioned animal is then presented with a new simple small set size discrimination, all
of the learning can be accomplished using the feature representation alone and there
will be no difference between the lesioned and the intact animal in their ability to

solve the discrimination (see also Experiment 1).

Experiment 4: Memory Capacity versus Visual
Information Processing Accounts of Lesion-Induced

Deficits

The finding that lesions in PRh lead to discrimination learning deficits using
large sets of stimuli but not small ones (see Experiment 1), as well as the observation
of greater effects of PRh lesions of retention versus acquisition (see Experiment 3),
suggests a simple explanation: The lesions may reduce the storage capacity of the
damaged system. Thus small numbers of stimulus representations can be formed and
stored, but large numbers of stimuli would exceed this reduced storage capacity. An
experiment by Horel and Stegner (1993), however, suggests that this is not the
explanation. These authors trained animals on eight concurrent pair-wise object
discriminations and then tested for retention. Monkeys with cooling-induced
suppression in IT were impaired in retention, but only on a subset of the
discriminations. Taken alone these data support the notion of impaired memory
capacity. However Horel and Stegner went on to test these monkeys on the subset of
discriminations they had previously failed, with IT both suppressed and fully
functional. Cooling again impaired discrimination on the pairs in this subset. If the
original deficit had been due to the number of stimulus pairs exceeding the memory
capacity of the damaged system, then the animals should have been unimpaired

when tested on this smaller subset of problems. This result thus does not support
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the idea that the lesion compromised memory capacity per se, but instead suggests
that the retention deficit was related to the properties of the particular stimuli with

which the lesioned animals had difficulty.

It should be noted that it is unclear whether the cooling in Horel and Stegner
(1993) affected functioning of PRh. However, this experiment addresses an issue of
particular relevance to the present study, namely whether discrimination impairments
following lesions in IT, and thus PRh, are better characterized as failures of memory
per se or of visual information processing. The present model is consistent with the
latter view, and thus makes the prediction that, using stimuli of approprate
complexity, a pattern of results similar to that obtained by Horel and Stegner (1993)

should be obtained following selective lesions of PRh.

The present model predicts that animals with a nonfunctional PRh should have
particular difficulty with discriminations in which there is a high degree of overlap
between features. This was illustrated in Experiments 1 and 3, in which lesioned
networks were impaired on large set-size concurrent disctiminations, and in
Experiment 2 in which lesioned networks were impaited on a configural
discrimination. This suggests that the particular stimulus pairs on which the lesioned
animals in the study of Horel and Stegner (1993) were impaired were those in which
the stimuli had a high degree of feature overlap. In this experiment, I test this idea in

the context of the experimental design of Horel and Stegner (1993).

Methods

One set of eight stimulus pairs was created by selecting a quadruple of numbers
for each stimulus. Each of five networks was then initialized and trained on a
pairwise concutrent discrimination using the eight pairs until criterion was reached
(seven out of eight correct on five consecutive sessions). Next, the networks were
damaged in order to simulate the effect of PRh lesions. The now-lesioned networks
were trained again on the same pairwise concurrent discrimination task for a total of

50 trials and the performance of the networks on each stimulus pair was recorded.
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The lesions were then reversed and each intact network was tested on only the
stimulus pairs on which the lesioned networks had performed at a level significantly
below chance. Finally, the five networks were again lesioned and tested on only the

stimulus pairs on which they had performed at a level significantly below chance.

Results and Discussion

All mtact networks reached the criterion of 87.5% (seven out of eight
discriminations) cotrect on five consecutive sessions on each of the eight problems
in a mean of 60.4 sessions. Following lesioning of the Feature Conjunction Layer,
performance on three of the problems dropped to below chance levels as indicated
by analysis of 95% confidence limits (lower 95% confidence limits: problem three =
27.6%; problem five = 37.8%; problem eight = 27.1%; see Figure 6-6). These were
the three most difficult problems for all five networks. The lesion was then reversed
and the performance levels of these three problems increased to 84%, 87.2% and
87.2%, respectively (Figure 6-7). When the network was again lesioned, performance
dropped to 50.4%, 62.4% and 58.4% (Figure 6-7). Analysis of 95% confidence limits
revealed that the performance of the lesioned network was not significantly above
chance on problems three and eight (lower 95% confidence limits = 41.5% and
45.4%, respectively) and only marginally above chance on problem five (lower 95%
confidence limit = 57.0%). Two-way analysis of variance performed on the data
from group Lesion and group Control on problems three, five and eight revealed a
significant main effect of Group, F(1,8)=93.6,p<0.0001, a main effect of Problem,
F(1,8)=5.67,p<0.05, and no Group x Problem interaction, F(1,8)=1.77,p=0.20.
Analysis of simple main effects revealed that group Lesion performed at a
significantly lower level than group Control on problem three, F(1,8)=89.9,p<0.001,
problem five, F(1,8)=109.8,p<0.001, and problem eight, F(1,8)=26.9,p<0.001.
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Figure 6-6: Performance of the network on the complete set of eight discrimination problems
following the lesion of the Feature Conjunction Layer. Following the lesion, the network
failed to perform above chance level (50% correct) on problems 3, 5 and 8.
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Figure 6-7: Performance of group Lesion and group Control on the three problems (3, 5 and
8) which the lesioned network failed during the original eight-pait concurrent discrimination.
Following the lesion, the network again failed to petform above chance level (50% correct) on

these problems. Errot bars represent +/- SEM. Asterisks indicate significant difference from
group Control; *** p<0.001.
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The results of this experiment explain the effect found by Horel and Stegner
(1993) by assuming that certain stimulus pairs which have a high degree of feature
overlap will be difficult for the lesioned networks to discriminate. Of the stimuli
generated for this simulation, pairs three, five and eight had a particularly high degree
of overlap in that seven of twelve “features”, either within or across pairs, were
identical yet had opposing consequences (stimulus pair 3 = <4 727> +,<4 527> -
; stmulus pair 5 =<3 656> +, <475 6> -; stmulus pair 8§ = <457 1>+, <567

1> ).

The present experiment thus supports an interpretation of PRh lesion-induced
deficits in terms of visual information processing, rather than memory per se. It also
suggests that PRh lesion-induced deficits on concurrent discriminations
(Experiments 1 and 3) may be due to animals failing to discriminate specific pairs of
stimuli (I would also expect a perhaps lesser contribution to the deficit from inter-
pair interference). Indeed this suggests that it is not the concurrent aspect of such
multiple-pair discriminations that is the important factor; the same pairs of stimuli
presented serzally should lead to similar deficits. This result has been reported
following lesions in I'T (Gaffan et al., 1986).

General Discussion

In this chapter I tested the hypothesis that lesion effects in PRh can be
accounted for by assuming that PRh has visual information processing properties
similar to those of other regions of inferotemporal cortex (IT). I constructed a neural
network model of IT function that is based on two basic assumptions. First, neural
circuitry intrinsic to IT is assumed to perform computations important for
discrimination and perceptual learning of visual stimuli. Second, complex visual
representations are assumed to be built up in a converging, hierarchical manner as
information passes from primary visual areas, through IT to PRh. The Feature
Conjunction Layer of the network, which corresponds to PRh, was lesioned and the

lesioned and unlesioned network tested on discrimination paradigms that have
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revealed PRh lesion-induced effects in monkeys. It was found that the foregoing
simple assumptions appear to be all that is required to account for effects of lesions
in PRh, including set size effects, impairments in “configural” learning, and greater
effects on retention versus acquisition of visual discriminations. I thus present this
model as a first step toward describing the possible neural mechanisms undetlying

“object identification” in PRh.

The Adaptive Value of Distributed Stimnlus Representations

If objects are already fully specified by the representations of their features in
early regions of IT, what is the advantage conferred by the complex representations
in downstream regions such as PRh? The results of the present study suggest that
complex representations disambiguate stimuli that have features in common, thus
reducing interference. When attempting to solve complex visual discriminations, an
animal with a dysfunctional PRh will rely more on the simple features to distinguish
the stimuli. For such animals, discriminations between stimuli will be difficult in
cases where there is much overlap between the features of the discriminanda
(Experiments 1 and 2). As a result it will often be the case that the more difficult a
discrimination problem is for an intact animal, the greater the impairment following
a lesion in PRh. An exception to this rule would be expected, however, if the
discrimination were made more difficult without manipulating stimulus features.
Indeed, Hampton & Murray (1998) have shown that even though rotation of visual
stimuli presented on a computer screen made disctimination more difficult for
normal animals, monkeys with PRh lesions were not disproportionately impaired. (A
similar result was found following lesions in IT; Gross, 1978 .) These results are
consistent with the observation of rotational mvariance in the response to specific
stimuli of neurons in IT (e.g., Desimone et al., 1984; Perrett, Rolls, & Caan, 1982;
Perrett et al., 1985). According to the present view, this is because object rotation—
at least “isomorphic” rotation within the vertical plane—leaves features of the
stimuli intact. Buckley & Gaffan (1998b), however, have reported that when three-

dimensional objects are rotated 7hrough the vertical plane (“rotation-in-depth”;
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Gochin, 1996 ) PRh lesions impair discrimination. According to the present view this
is because the stimulus will be degraded as certain features disappear behind the
object, and other features are revealed as they move to the front of the object. This
suggests a lower-level mechanism for the higher-level notion that PRh-lesioned
animals appear to fail to recognize the rotated image as zhe same object. Importantly,
such an account does not requite separate representation of the 3-dimensionality of
objects. Indeed, the 3-D structure of objects may be represented in the dorsal visual
stream (Tanaka, 1996), suggesting a highly distributed representation of the complete

set of attributes of an object (Tanaka, 1996).

Visual Information Processing versus Mnemonic Acconnts of PRh Function

That lesion effects in PRh can be accurately simulated by assuming that PRh has
visual information processing properties similar to those of IT leads to quite a
different view of PRh function to that proposed by other authors. Specifically, Squire
and Zola-Morgan (1991) suggest that PRh possesses mnemonic properties distinct
from IT, and along with other structures such as the hippocampus, forms part of a
unitary “medial temporal memory system”, damage to any part of which can lead to
impairments in “declarative”, but not “procedural”’, memory. This view has,
however, been challenged by experiments revealing functional double dissociations
between lesions including PRh, and disconnections of the hippocampus via lesions
of the fornix (Bussey et al, 1999; Ennaceur et al, 1996; Gaffan, 1994). Also
consistent with the view that PRh has properties more in common with I'T than with
the hippocampus is evidence that lesions in PRh can lead to similar effects to lesions
in other regions of IT on visual tasks including nonmatching-to-sample (Mishkin,
1982) and concurrent discrimination learning (Iwai & Mishkin, 1968; Malkova et al.,
1995; Moss et al., 1981; Phillips et al., 1988). Moreover, neurons in PRh and in other
areas of IT have similar properties, including firing patterns that may code for
“recency” and “recognition” of visual stimuli (Fahy, Riches, & Brown, 1993). Finally,
neuronal activity in the hippocampus has been shown to form a stable code for

spatial position (O’Keefe & Nadel, 1978), whereas neuronal activity in PRh appears
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to be a poor correlate of spatial position (Burwell, Shapiro, O'Malley, &
Eichenbaum, 1998). Hippocampal neurons do not, however, appear to code the
identity of objects. Thus I propose that in the absence of compelling evidence to the
contrary, rather than possessing unique mnemonic functions distinct from those of
IT, PRh may be best conceptualized as the final component of the ventral visual

stream.

Stimulus information is encoded in the present model in PRh and endowed with
meaning through associations with information in other brain regions. Thus this
information is more akin to “semantic” or factual information than episodic memory
which is associated with a specific context or learning episode. Indeed, there is
evidence from human studies that impairments in semantic memory can result from
lesions including damage to PRh (Hodges, Patterson, Oxbuty, & Funnell, 1994;
Kapur et al., 1994), and that temporal lobe lesions that spare PRh can lead to deficits
in episodic, but not semantic memory (Kitchener, Hodges, & McCarthy, 1998;
Vargha-Kadem et al., 1997). This is not to say that visual information in PRh could
not be combined with spatial information from the hippocampus, for example, to
form a complex episodic memory (Bussey et al, in press; Gaffan, 1994; Gaffan &
Parker, 1996), merely that such interactions may not be obligatory (Bussey et al., in

press).

The effects of lesions in PRh, according to the present model, are due not to the
impairment of a particular type of learning or memory—for example, stimulus-
reward or stimulus-response, declarative or procedural—but to compromising the
representations of visual stimuli. Thus, generally stated, the present view is that the
functions of PRh are more “perceptual” than “mnemonic”. The perceptual learning
achieved by the network does, however, result in the long-term memory of
processed visual stimulus representations. In the model this corresponds to the
adjusted weights of the connections to and from the Feature Layers and Feature
Conjunction Layer, and in the association of this information with information in
other brain regions. Because this information is not “consolidated” through, for

example, its eventual storage elsewhere in the brain, it would be predicted that
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lesions in PRh would not have a temporally-limited effect on retrograde memory—
disruption of the storage of recently but not remotely learned object discrimination
problems—Iike that observed following lesions of the hippocampus (e.g., Zola-
Morgan & Squire, 1990). Indeed, Thomton, Rothblat and Murray (1997) found no
evidence of a temporal gradient following lesions including PRh (although the use of
more remote time points would be required to rule out the possibility of a more
temporally extensive gradient). Furthermore, in humans damage extending beyond
the hippocampus into temporal cortical regions including PRh can result in a

temporally extensive, ungraded retrograde amnesia (Reed & Squire, 1998).

A Note on Delayed Matching and Nonmatching-To-Sample

It is now established that PRh is critically important for performance of the
matching or nonmatching-to-sample tasks (dms; dnms), in which on a given trial the
subject must report, during a choice phase, which of two objects had been seen
during a previous sample phase (Meunier et al., 1993; Mumby & Pinel, 1994).
Specifically, lesions including PRh lead to deficits on this task when large set-sizes
are used (with very large stimulus sets the stimuli may be considered trial-unique),
but have no effect when the task involves a small set of repeating stimuli (Eacott et
al., 1994). A common interpretation of this pattern of results is that PRh is important
for recognition memory (required when judging whether an object has been seen
previously) as opposed to recency memory (required when judging which object has
been seen most recently). Although the current model cannot operate in “real-time”,
and thus cannot simulate tasks such as dms and dnms, the principles of the model
lead to a plausible, tentative reinterpretation of these results. First, the results of the
simulations in the present study show that set-size effects in concurrent
discrimination learning can be accounted for by assuming that PRh-lesioned animals
rely on representations of simple features of stimuli to solve discriminations, and that
lesion effects emerge when stimuli share a common set of features. Set size effects in
dms and dnms might be explained in the same way, with inter- and intra-item

mnterference in the large set-size version posing a particular problem for lesioned
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animals. A related factor might be that the repeated presentations of the same stimuli
in small set size dms and dnms may provide the opportunity to encode these stimuli
in a number of different ways, and allow subjects to “sample” a number of different
features on which the discrimination can be made. This would reduce the probability
of feature ovetlap, thus aiding the lesioned animals. In contrast in the trial-unique
version subjects are allowed to view the stimulus only once, reducing the opportunity
for stimulus sampling and thus the number of features on which an animal can make
the subsequent discrimination during the choice phase. This could lead to substantial
difficulties for lesioned animals that must rely on an impoverished stimulus
representation to make the discrimination. This “perceptual” versus “mnemonic”
mnterpretation of PRh lesion-induced deficits on dms and dnms is supported by the
observation that lesioned animals show deficits even when no delay is interposed between
sample and choice (Eacott et al., 1994). To follow this line of inquiry still further, the
delayed aspect of this task could provide additional difficulties for lesioned animals,
as the decay of the stimulus trace during the delay could be thought of as reducing
the feature representations on which the subsequent discrimination can be made,
thus leading to impairments in lesioned animals (see discussion of stimulus
degradation above). Indeed, the impairment in these tasks following PRh lesions is
greatest when delays are longest. Furthermore, delays could lead to impairments in
lesioned animals because in remembering a visual stimulus, it may be more efficient
to keep one complex representation “on-line” in PRh than many representations of
the component features. In this way, the combination of simpler representations into
complex ones may be thought of as “visual chunking” similar to semantic chunking
of verbal material (Miller, 1956). Indeed, Luck and Vogel (1997) have found evidence
for such visual chunking in humans. This is of course highly speculative, and the
issue is complicated as it has yet to be established by what mechanisms stimulus
representations are held “on-line” during delays in dms and dnms, and whether such
a putative working memory function is dependent on other brain regions such as the
prefrontal cortex (Desimone, 1996). Nevertheless, these considerations suggest that

the concept of object identification, perhaps via the mechanisms proposed in the
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present model, may go some way toward accounting for PRh lesion effects on

recognition memory tasks.

Conclusion

To summarize, I have constructed a model of IT function that is built on some
very simple assumptions that are well-supported by the literature. By assuming that
PRh is a downstream component of IT that contains representations of complex
visual stimuli, this model can reproduce lesion effects in PRh that have been taken as
evidence for a role for this region in “object identification”. The extent to which a
lesion in the model mimics effects of PRh lesions in animals suggests that there is no
need to invoke special functions for PRh, distinct from those of other regions of IT,
in order to account for the effects of lesions in PRh. Of course it would be
premature to make the strong claim that special mnemonic or associative functions
of PRh will #ever be revealed. Indeed, some evidence is now emerging that may point
to such specialization of function. For example, it appears that PRh receives much
greater brainstem dopaminergic input than other regions in IT (Lewis, Campbell,
Foote, Goldstein, & Mottison, 1987), which could indicate a function for reward
signals in this region, a notion at odds with the assumption that perceptual learning
in PRh is unsupervised. This property of PRh may be related to the observation that
some neurons in PRh appear to code for the temporal proximity of reward (Liu &
Richmond, 1997), or that lesions which include PRh may disrupt object reversal
learning (Bussey et al., in press; Murray, Baxter, & Gaffan, in press). As another
example, PRh appears to receive many mote polymodal inputs than other areas of I'T
(Suzuki & Amaral, 1994), and this could indicate a special function of PRh in, for
example, cross-modal learning (Murray et al., 1998). Indeed, such polymodal
information may allow the binding of visual and nonvisual features of objects
(Murray et al., 1998). Another possibility is that the stimulus-stimulus associative
functions of PRh could be important for associating different views of objects
(Murray et al., 1998). It remains to be seen whether such putative associative

functions are shared by other regions of IT. Finally, there is anatomical (Martin-
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Elkins & Horel, 1992; Saleem & Tanaka, 1996), electrophysiological (Komatsu,
Ideura, Kaji, & Yamane, 1992), and behavioral (Buckley et al., 1997; Horel, 1994)
evidence that certain regions of IT (namely TEd) may be specialized for color
processing and may comprise a color processing stream that does not rely critically
on processing in PRh. Thus the present model may represent interactions between
PRh and TEw only. The search for specialized functions of regions within IT

therefore provides an important challenge for future research.
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CHAPTER 7 CONCLUSIONS

The exploration of a problem in animal learning theory through a statistical
model developed in the field of machine learning has contributed to, if not a
completely new way of looking at the problem, at least a much more well-defined
and testable theory. In addition, the use of the competitive learning technique to
provide a concrete framework for the investigation of nonassociative differentiation
has allowed me to show that certain experimental results that have until now been
attributed to high-level attentional processes may be accounted for instead by simple,
bottom-up differentiation. Third, the use of this connectionist framework has led to
the beginning of work on defining the mechanisms and brain regions responsible for
object identification. In the following section I list the specific contributions of this
dissertation, and in the final section of this chapter I discuss some important issues

and future research questions.

Contributions

The specific novel contributions of this dissertation research are enumerated

below:

1. T have developed a novel connectionist model of perceptual learing that
provides a mechanism for nonassociative differentiation (Gibson & Gibson,
1955). In contrast to other models (e.g.,McLaren, Kaye, & Mackintosh,
1989), in the current core model the mechanisms for these processes are
compatible with a configural model of associative learning. The present
model can account for critical perceptual learning phenomena such as

exposure learning and effects of similarity on disctimination. It is also
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shown that the model can explain the paradoxical result that preexposure to

stimuli can either facilitate or impair subsequent discrimination learning.

2. I have provided an analysis of learning phenomena that are normally
explained as being a result of “dimensional attention”, and have shown that
many of these phenomena may be more parsimoniously explained by the

aforementioned core model of differentiation.

3. T have extended the core model to show how the integration of
reinforcement and categorization information with the stmulus
representation may contribute to the phenomena of acquired distinctiveness

and equivalence.

4. 1 have also extended the core model to address issues regarding object
representation in the brain; specifically, I have developed a model of the

effects of lesions of monkey perirhinal cortex (PRh).

Further Questions

What is the relationship between top-down and bottom-up influences on stimulus representations?

In this dissertation it has been shown that a bottom-up, data-driven mechanism
can account for many of the phenomena associated with perceptual learning. This is
significant, as Occam’s razor suggests that the best solution to a problem is the
simplest, and the fewer mechanisms that are ascribed to an effect the better.
However, there are effects that cannot be simulated by the current model, such as
the ED/ID shift. Determining exactly what the difference between this effect and
the effects that were accounted for by differentiation in Chapter 4 could yield
insights into the attentional mechanisms that may be involved in perceptual learning.
Furthermore, a future version of the current model in which a top-down attentional
signal is incorporated could help to guide research on the regions of the brain

responsible for this type of attention. Frontal cortex lesion studies of some of the
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tasks simulated in Chapter 4 might also provide critical information regarding the
relationship  between top-down and bottom-up influences on stimulus

representations and their loci in the brain.
Would a real-time model acconnt for stimulus comparison effects?

The construction of a real-time version of the current model would enable the
mnvestigation of whether stimulus comparison effects can be accounted for within a
differentiation framework, as discussed in Chapter 4. If so, this would be another
subset of effects for which the current model could account, thereby providing more
support for the idea that differentiation is the bottom-up mechanism of perceptual

learning.
How plansible are multidimensional event representations?

Whereas the three-dimensional model presented in Chapter 5 may be
psychologically reasonable, it is not particularly realistic physiologically. Moving on to
a better representation for this idea would provide an additional constraint to the

model and would enhance its plausibility
Is LYV Q an alternate mechanism for acquired equivalence and distinctiveness effects?

The basic LVQ algorithm is the same as the standard Kohonen algorithm with
two exceptions. First, each weight vector on the competitive layer has an associated
class. Second, during training the weight update rule operates according to the class
of the input vector. As in the standard algorithm, the winning competitive unit
consists of the unit whose weights most closely match the input pattern. If the class
of the competitive unit matches the class of the winning competitive unit, the
competitive unit weights are updated as in the standard algorithm. If the classes of
the units do not match, however, the competitive unit weights are updated to move
them slightly away from the input pattern.. In order for LVQ to work, however, one
would have to have spatially separated layers of similarly tuned units, one layer

associated with class one and the other associated with class zero. If structured in

Chapter 7: Conclusions 151



this manner, LVQ would be creating acquired equivalence and distinctiveness effects
in essentially the same way as the extended model does, with stimuli associated with
class one being represented relatively far away from stimuli associated with class zero

and thus generalizing very little to each other.

Can menmory effects such as spontaneons recovery and faster acquisition affer extinction be explained

by the extended model?

A completely different field of research involves the relationship between
learning and memory in animals. As mentioned earlier, it is well known that
reacquisition of a simple conditioning task after extinction occurs more quickly than
did the mitial acquisition (Konorski & Szwejkowska, 1950; Konorski &
Szwejkowska, 1952). Interesting future work would involve the exploration of
whether this group of memory-related effects fits into a multidimensional event

representation framework.
How does the PR model relate to confignral learning theory?

The architecture of the PRh model in Chapter 6 is different from both
configural and elemental learning models. It is essentially a hybrid of these two
approaches in that both elements and configurations of elements are associated with
the US. To this point, I have only looked at the model in relation to effects of PRh
lesions. It would be interesting to apply the same model to experiments concerning
learning in intact animals to see if this hybrid models makes predictions differing

from those of straight configural and elemental theories.
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APPENDIX A PSYCHOLOGICAL MODELS OF
PERCEPTUAL LEARNING

Two different theoties of perceptual learning dominate the literature. The first
is fully sitvated within the associative framework, and suggests that perceptual
learning is the result of associative processes operating on elemental stimulus
representations (McLaren et al., 1989). The second suggests that perceptual learning
1s not related to associative learning, and that instead a nonassociative process called
differentiation is responsible for the effects (Gibson & Gibson, 1955). The following

sections outline the basic principles of each of these theories.

The associative view: McLaren, Kaye, and Mackintosh

(1989)

A strength of the approach taken by McLaren et al. (1989) is its parsimony: they
propose to account for preexposure effects by postulating only associative
mechanisms and, furthermore, they account for one type of perceptual learning,
exposure learning, with another type of perceptual learning, latent inhibition.
Specifically, they suggest that a latent inhibition mechanism operating on stimulus
elements might lead to the phenomena seen in exposure learning. While the authors’
main assumption is that of stimulus sampling theory (Estes, 1950), they extend this
by suggesting that in addition to associations between elements of different events,
associations also form between elements comprising a single event, such as the CS
itself. Varance in the stimuli is derived from the fact that only a subset of the
elements is activated on each trial. Over time, associations will form between the
most frequently sampled elements, thereby creating an elaborated stimulus

representation that reflects the central tendency of the sampled elements. McLaren et

Appendix A: Psychological Models of Perceptual I earning 169



al. (1989) refer to this process as “unitization”. The authors then argue that both
latent inhibition and exposure learning stem from this associative elaboration of the
stimulus representation over repeated presentations. They assume that latent
inhibition is due to a decline in the associability of a repeatedly presented stimulus,
which occurs as a consequence of the associations formed between stimulus
elements and between stimulus and context elements during the presentations. Their
postulated mechanism for this effect is a combination of Pearce and Hall’s (1980)
theory that associability decreases as the events following stimulus presentation
become well predicted, and Wagner’s (1981) theory which suggests that latent
inhibition occurs because the representation of the stimulus becomes associated with
the context in which it occurred, and is retrieved whenever the animal is placed in
that context. An example of how their theory would operate is as follows. One case
of exposure learning occurs when an animal is preexposed to stimuli .4 and B, then
conditioned to .4 and later tested for generalization to B (as in the Hall and Honey
experiments discussed in Chapter 3). According to McLaren and colleague’s point of
view, in this case conditioning occurs to the elements of .4 (4), some of which are
common to B (¢). Testing occurs with the elements of B (4) and the common
elements ¢, therefore the extent of the generalization between .4 and B is due to the
amount of conditioning to ¢« For non-exposed subjects, both ¢ and ¢ acquire
associative strength according to their relative saliences. For preexposed subjects
latent inhibition of the elements causes conditioning to # and ¢ to proceed more
slowly. Preexposure also facilitates discrimination of .4 and B, however, because ¢
elements receive twice as much latent inhibition since they are present when either .4
or B is present. As the common elements are thus suppressed relative to the
individual elements, later discrimination is facilitated. A second consequence of
exposure to .4 and B will be the establishment of interconnections between their
elements. This means that eventually the presence of a few # elements in a sample
will retrieve others, thereby increasing the probability of correct choice on the trial.
However, since associations will also form between 4 and ¢ elements, this also

suggests that exposure will increase generalization between the stimuli. McLaren et
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al. (1989) avoid this problem by claiming that, since # and / elements will not be
perceived exactly simultaneously, they will form znbibitory associations, which then
cancel out the effects of the #=¢ associations and thus aid disctimination. In sum,
according to McLaren and colleagues, exposure learning occurs as the result of three

Pprocesses:

* The unitization process ensures that the presentation of a complex
stimulus activates elements belonging to a central representation of the

stimulus, rather than a small, variable subset of the elements.

*  When two stimuli are preexposed, elements common to both, which are
responsible for generalization between them, will be subject to a

stronger latent inhibition effect than those unique to each.

* Associations between the common and unique elements of a stimulus
will contribute to generalization, but this will be counteracted by the

inhibitory associations that form between a and 4.

The non-associative approach: Gibson and Gibson (1955)

Gibson (1940) originally argued that much of what needs to be learned in a
paired associate task involves establishing a discrimination between the items.
Performance improvement depends not just on the strengthening of the association
between the stimulus and the response, but also on the extent to which the items
tend to be confused. Gibson equated this process with a steepening of the
gradient of generalization around each stimulus. Gibson called this phenomenon
stimulus differentiation and assumed that it would transfer to and facilitate

performance on a new task involving the same stimuli.
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The crux of differentiation theory is that percepts change over time by an
“elaboration of qualities, features, and dimensions of varation” (Gibson & Gibson,
1955 p. 34). With practice and experience a subject will become better able to detect
distinctive features and distinguish one environmental event from another, and also
become better at detecting invariant features that a given event displays from one

occurrence to the next.

Gibson (1969) expands on these ideas by describing three processes that

contribute to perceptual learning.

1. Abstraction is the process by which invariant relations are discovered over a
number of objects or events. The relationship must be extracted through
comparison of non-identical pairs, and does not necessarily reflect conscious
search. The critical invariant may be independent of absolute stimulus

values.

2. Filtering entails ignoring noncritical stimuli or idiosyncratic variations in

stimuli.

3. Peripheral attentional mechanisms (e.g., fixation of the eyes) serve to expose

sensory receptors to selected portions of the possible input.

The theoty is intuitive and it captures many perceptual learning phenomena.
Unfortunately, the mechanisms undetlying the above processes were not outlined in
detail beyond what is summarized above. As a result, the Gibsonian differentiation
theory is little more than a restatement of the data. Furthermore, the specification is

at such a high level that it is difficult to test the theory.
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APPENDIX B PERIRHINAL CORTEX: A
REGION AT THE INTERFACE
BETWEEN PERCEPTION AND
COGNITION

The perirhinal cortex (PRh) in the monkey is found at the ventromedial aspect
of the temporal lobe, and is comprised of Brodmann areas 35 and 36 (see Figure C-
1). It occupies the lateral bank of the rhinal sulcus plus a substantial portion of the
inferior temporal gyrus. Recently, interest in PRh has increased dramatically, due in

part to it being a region thought to be involved in (1) memory and (2) perception.

Figute C- 1: Medial and ventral views of the macaque brain. The approximate location of
perithinal cortex (visible only on the ventral view) is shaded gray (see Murray & Bussey,
1999).
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(1) Memory. The cutrent interest in the mnemonic functions of perithinal cortex
can be traced back to the case of the famous amnesic patient H.M.. H.M. became
profoundly amnesic after receiving, as a treatment for intractable epilepsy, bilateral
resection of medial temporal lobe structures including the hippocampus and
amygdala. In order to understand better the cause of H.M.’s amnesia, as well as the
neural basis of normal memorty, researchers attempted to model amnesia by making
combined lesions of the hippocampus and amygdala in monkeys, and testing these
monkeys on a variety of memory tasks. One of the tasks that was consistently
impaired by this lesion was the delayed nomatching-to-sample task, a measure of
visual recognition memory. Later studies provided evidence, however, that the
deficits observed for visual recognition memory were due not to damage to the
hippocampus or the amygdala, but rather to inadvertent damage to a small strip of
undetlying cortex: the PRh. Thus it was established that PRh has an important role
in recognition memory. Further investigations, however, revealed that lesions in this
region impaired a wide variety of visual memory tasks, including paired associate
learning (Murray, Gaffan, & Mishkin, 1993), concurrent discriminations (Buckley &
Gaffan, 1998a), and configural learning (Buckley & Gaffan, in press). Thus it seems
that the role of PRh cortex is clearly not limited to recognition, but has a more
general role in what some workers have called “object identification” (Buckley &

Gaffan, 1998b; Murray et al., 1993).

(2) Perception. PRh has also been of great interest to researchers interested not
in the neural basis of memory per se, but in what might be called “perception”: the
basic aspects of visual information processing. Most notably, Ungerleider (personal
communication) now considers PRh to be a part of the well-known “ventral visual

stream” or “what” visual pathway (Ungerleider & Mishkin, 1982).

These two views do not appear to be mutually exclusive. Indeed, much of the
evidence arguing for inclusion of PRh in the ventral visual stream comes from the
aforementioned lesion studies of object recognition. Prominent and influential views

of the neural substrates of memory and perception, however, continue to segregate
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these two functions in the brain. Specifically, it has been proposed that whereas PRh
has a role exclusively in memory, regions of IT upstream from PRh (e.g., area TE)
have a role exclusively in perception. The model presented in Chapter 6 may go
some way toward reconciling these views, showing how PRh could be thought of as

important for both memory and perception.
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