Interactive Simultaneous Editing of Multiple Text Regions

Robert C. Miller and Brad A. Myers
Carnegie Mellon University
http://www.cs.cmu.edu/~rcm/lapis/
{rcm,bam}@cs.cmu.edu

Abstract Users have a rich basket of tools for automating tasks
like these.Search-and-replagen which the user spec-
Simultaneous editing is a new method for automatingifies a pattern to search for and replacement text to be
repetitive text editing. After describing a set of regions substituted, is good enough for simple taskeyboard
to edit (therecordg, the user can edit any one record and macrosare another technique, in which the user records
see equivalent edits applied simultaneously to all othea sequence of keystrokes (or editing commands) and
records. The essence of simultaneous editing is genebinds the sequence to a single command for easy re-
alizing the user’s selection in one record to equivalentexecution. Most keyboard macro systems also support
selections in the other records. We describe a generasimple loops using tail recursion, where the last step in
ization method that is fast (suitable for interactive use),the macro reinvokes the macro. For more complicated
domain-specific (capable of using high-level knowledgetasks, however, users may resort towstom program
such as Java and HTML syntax), and under user contrabften written in a text-processing language such as Perl,
(generalizations can be corrected or overridden). Simulawk, or Emacs Lisp.
taneous editing is useful for source code editing, HTML

editing, and scripting, as well as many other applica-1his paper proposes a new technique to add to this bas-
tions. ket of repetitive text editing toolsimultaneous editing

In simultaneous editing, the user first describes a set of

regions to edit, called theecords This record set can

be defined by a pattern, direct selection, or some com-
1 Introduction bination of the two. After defining the records, the user
makes a selection in one record using the mouse or key-
board. In response, the system makes an equivalent se-
lection in all other records. Subsequent editing opera-
tions — such as typed text, deletions, or cut-and-paste —
affect all records simultaneously, as if the user had ap-
e Replace the string “Hashtable” with “Map” plied the operationsto each record individually. Figure 1

throughout a program. shows simultaneous editing in action.

Text editing is full of small repetitive tasks. Examples
include:

e Reformat a list of phone numbers from “(xxx) yyy- Simultaneous editing has several advantages over other
7277”10 “+1 XXX yyy z22Z". techniques for repetitive text editing. First, simultane-
ous editing is interactive. No programming is required.
e Insert print statements to trace entry and exit fromSecond, simultaneous editing uses familiar editing com-
each of a set of functions. mands, including mouse selection. Macro recorders
generally ignore or disable mouse selection. Third, the
¢ Generate get/set methods for the instance variablesffect of a simultaneous editing operation on any record
of a class. is readily apparent from the selection. If there is a tricky
step in a transformation, the user can check it before-
e Generate a mailing list from the From headers of ahand by scanning through all records and verifying the
large file of email messages. location of the selection. Finally, mistakes made in the
middle of a simultaneous editing transformation can be
immediately detected and corrected with undo. Other

Appeared inProceedings of USENIX 2001 Annual Technical techniques may require undoing’ debugging' and reexe-
ConferenceBoston, MA, June 2001, pp 161-174. cuting the entire transformation.

F=iLapis - paint.java M= B3
File Edit Go Patterns Scripts Tools Help
Lo =
& & | ® § Edit ‘ I SimulEdit ‘
Back| For I Ik
Command: paintiava E\newns: Text v|

lst ActualParameter

// Changing method interfaces.
/¢ paint [object, x, ¥} ==> object.paint (x, ¥
woid £ () {

paint (Eectangle, 0, 0):

for (int i = 0; i < circle.length; ++i) {
paint (Bizele[il, x, ¥):
paint (Girele[i].center, x + 2, ¥ + 2):

Names:
@ Business (=
@ Characters =

@ English
Feedhack

B L rThL

FiLapis - paint.java
File Edit Go Patterns Scripts Tools Help

Commantk: paint java

E\I’lewns: Text v|

| Pattern: | Go | Clear

just before MethodCall

// Changing method interfaces.
// peint (ohject, x, ¥) ==» object.paint (x, ¥)
woid £ (] {
rectangle.paint {, 0, 0j;
for [int i = 0; i < circle.length: ++i) {
circle[i].paine {, x, ¥):
circle[i].center.paint (, x + 2, ¥ + 2);

[
3 regions higl

Names: _ Neme.. |
) ' @ Business B
@ Characters
] 3 @ English =
1 Feedhack

Figure 1: Simultaneous editing on Java code. The records

(highlighted lightly) are calls to thpaint() ~ function, which

The greatest challenge to an implementation of simul-
taneous editing is determining the equivalent selection
where editing should occur in other records. Given a
cursor position or selection in one record, the system
must generalize it to a description which can be applied
to all other records. Simultaneous editing puts several
demands on the generalization algorithm:

e Generalization should be fast, so that the system is
responsive enough for interactive editing. We solve
this problem by preprocessing the records to dis-
cover useful features in advance, so that the gen-
eralization search for each selection is relatively
cheap.

e Generalization should be domain-specific. For ex-
ample, a user’s selection might best be described in
terms of Java syntax. Our solution to this problem
is a knowledge base, represented by a library of pat-
terns and parsers that detect structure in text. Users
can extend the library on the fly by specifying new
patterns, which can be either regular expressions or
high-level patterns calleéxt constraint$9].

e Generalization should be able to guess accurately
from only one example. When multiple general-
izations are consistent with the user’s selection, the
generalizer must make its best guess, which hope-
fully will often be the description the user intended.

e Generalization should be correctablethe gener-
alizer's best guess is wrong, the user must have a
way to correct it. In our system, the user can se-
lect or deselect regions in other records, providing
additional positive and negative examples that the
generalizer uses to improve its guess. The user can
also override the generalizer completely, making a
selection by hand or by a pattern.

is being transformed into an object-oriented method. (a) Uselcl-he rest of this paper is organized as follows. Section 2
selects “rectangle”, and the system generalizes the SEIGCtiogurveys related work. Section 3 describes the user in-
across all records. (b) User cuts the selection, pastes it bEforFerface to simultaneous editing, in the context of an ex-
paint , and inserts a dot. The same operation affects everyonded example. Section 4 describes some more exam-

record.

ples of simultaneous editing. Section 5 delves into the
details of our implementation, and Section 6 evaluates
its performance. Section 7 outlines some future direc-
tions, and Section 8 makes some conclusions.

2 Related Work

Simultaneous editing is similar in concept to Visual Awk
[6], a system for developing awk-like file transformers
interactively. Like awk, Visual Awk’s default structure

consists only of lines and words. When the user selectiference to be applied only selectionsand not to the
one or more words in a line, the system highlights thesequence ddctionsperformed.

words at the same position in all other lines. For other_, . . .
kinds of selections, the user must select the appropriat imultaneous editing also requires the_use_r to desc_rlbe
tool. For example, Visual Awk’s Cutter tool makes se. (he set of records. The record description is often sim-

lections by character offset, and its Matcher tool use§Ie (E;g. tlmes, (;r %ar?jgtraghs, (')kr) fugctlonst), btjt somet
regular expressions provided by the user. In contras ecord Sets may be hard to describe. By contrast, in mos

simultaneous editing is built into a conventional text ed-. E.’D sy;tgms, and k'eyboard macros too, the record set
s implicit in the user’s demonstration. For example, the

standard text editing operations, and automatically in_demonstratlon may end with the cursor at the start of the

fers general, domain-specific descriptions from a userd®Xt record.
selections.

Another closely-related approach to the problem of

repetitive text editing igprogramming by examplajso 3 User Interface

called programming by demonstratiaiBD). In PBD,

the user demonstrates one or more examples of the tran$his section describes the user interface of simultaneous
formation in a text editor, and the system generalizes thigditing implemented in our prototype system. Features
demonstration into a program that can be applied to thef the user interface will be introduced by presenting an
rest of the examples. PBD systems for text editing haveexample of the system in operation.

included EBE [12], Tourmaline [11], TELS [13], Eager our imol . £ simul diting is built
[1], Cima [7], and DEED [3]. ur implementation of simultaneous editing is built into

LAPIS, a text processing system which has been de-
Simultaneous editing is similar to PBD in many ways. scribed previously [9][10]. LAPIS has several unusual
Both approaches allow the user to edit with familiar op-features that make it well-suited to this effort. First,
erations, including mouse selection. Both approache&APIS supports multiple simultaneous text selections;
generalize the user’s actions on one example into a demost text editors allow only one contiguous selection.
scription that can be applied to other examples. BothMultiple selections make it easy to display the corre-
approaches must be able to incorporate multiple examsponding selection in every record. Second, LAPIS
ples into the generalization. includes an integrated text pattern languaiget con-
. Straints Text constraint patterns are convenient not only
However, simultaneous editing has a dramatically dlf'for the user to describe the record set, but also for the

ferer::] user |r,1tedrface fr(smt_PBDﬁ Intsn’n"ultanegus _ed'tl'system to describe how it has generalized the user’s se-
|tng, € Iuse'ro\sft er(;wons ratlort1_ atec staf rector st'mu Tlection. Finally, LAPIS has a library of built-in parsers
aneously. er demonstraling part ot a transiorma-,, , patterns for various kinds of text structure, including

tion, the user can scan through the file and see hoV?’-iTML and Java source code. The domain knowledge

the other records were affected by the partial transfor- ; :
. represented by this pattern library enables the system

mation. In PBD, on the other hand, each demonstra P y P y y

. . to make its generalizations more accurate and domain-
tion affects only a single example. In order to see whal

. . 5 ecific, as we will see in the example to follow.
the inferred program will do to other examples, the user P P

must run the program on other examples. One conse-

quence of this is a lack of trust [1][3]. Users do not 3.1 Example: Get/Set Methods

trust the inferred program to work correctly on other

examples. Although simultaneous editing also does inThe example is a common task in Java and C++ pro-

ference, and thus is also susceptible to mistrust, the adgramming: for each field of a class (member variable

ditional feedback provided by simultaneous selectionsn C++ terminology), create a pair of accessor methods

across all records makes the system’s operation morgetX andsetX that respectively get and set the value

visible, hopefully inspiring more confidence. of x. Figure 2a shows the original Java class. We want to
transform each field declaration so that the variable dec-

The inference “Se.d in simultaneous editing is Ej‘Ct'“'a”)ﬂaration is followed by its accessor methods, as shown in
lesspowerful than in some PBD systems. TELS, for eX'J:igure 29

ample, can infer programs containing conditionals an

loops. Simultaneous editing assumes just one implicifTo enter simultaneous editing mode, the user first se-
loop (over the records) and no conditionals (every editdects the records to be edited, using multiple selection. A
ing action must be applied to every record). These asmultiple selection can be made two ways in LAPIS: by
sumptions permit fast, predictable inference, and allowentering a pattern, which selects all regions that match

[Lap

File Edit Go Patterns Scripts Tools Help

[- O[]

@@’E@ I?T“| £ simulEdit

Command: C.java

View As; | Text

File Edit Go Patterns Scripts Tools Help

@@’E@| {7 Edit || £ simulEdit |

Command: Cjava

[=]view as:|Text |

[

class € { =¥ pattern: Go | Clear |
public int count; |Java_l?leld ‘
public String name; - —
public float[] values; O regions highlighted
*
Name...
Expression =
Field

FormalParametar
FormalParameterList
dentifier

Feedhack

class C { Pattern:

| clesr |

Go

public int counts

|po1nt Just after Java,Field |

public String name;I

public float[] values,'I £ 3 regions highlightex

Names:

@ Characters
@= Englizh
- HTML

@ Intarmet

D Java

D

Feedback

@)

File Edit Go Patterns Scripts Tools Help

@ru:ﬁ, !E!i ,m E: SimulEdit

Command: C.java

View As: | Text "

(b)

File Edit Go Patterns Scripts Tools Help

Sl le o] =

i |l bt

Commani: Cjava

E\ﬂewns: Text '|

Feadback

class C { :: Pattern: Go | Clear class € { :: Pattern: Go || clear |
joEblie e GammEs |pu1nt Just after Java.Field ‘ public fnf cowat; ‘Java.Ty‘pE |
public | - — public - —
e Gemiog morag Jregions highlighted public §txing p— 4| 3 regions highlighted
public | e public e
public float[] walues: Names: [Hame. | public Eloat[] values: MNames:
public | Expression = public Expression -
¥ Field L] Field L]
FormalParameter | FormalParameter
FormalParameterList | FormalParameterList |
[Z1 Identifier = Identifier nd

Feedback

File Edit Go Patterns Scripts Tools Help

[- O[]

@@’E@ I?T“| £ simulEdit

Command: C.java

View As: | Text V‘

(d)

File Edit Go Patterns Scripts Tools Help

<:m| i ‘ & ﬂ ¢ Edit ‘ £ SimulEdit
|EAER| FOrn ATt Retnad
Command: Gjava

E\flewns: Text v|

M=

class C { :: Pattern: Go | Clear | class C { Pattern: Go || clesr |
public int count; |somewhar:e in editl2 ‘ public int count; ‘3:& Tord |
public int] - - public int getCount - —
public String nawe; F regions highlighted public String name; 3 regions highlighted
public $trin =T public 3tring getName] o
public float[] walues; Names: [hame.. | public float[] walues: ;| Mames: [Mame.. |
public floar.[]I - public float[] getValuasI B Expressian -
} Field | ! Field
— FormalParametar (2 FormalParameter
A FormalParameterList | FormalParameterList I
B = ldentifer =

Feedback

(e)

[E

Fle Edit Go Patterns Scripts Tools Help

MSSEICES T

Command: C.java

[_[Ofx]

[~ viow as:| Text = |

class € { }| pattern: S0 [cear |
public int count; ‘somewhex:e in editg0
public int getfount [} { 3 regions highlighted
LETULN count; ks i
public void setfount [int _count) { Hames: [Crane |
count = _count; Expression
N . [El Fiet
p“b;c Strmy namt:lu 0 FormalParameter
B 1ct ring getName [FormalParameterList
return neme:
Identifier
} B 1mport
public void setName (String _name) (B intarmace
name = _name; Lacalvariable
) Wethod
public float[] walues; WethodBody
public float[] getValues () { [methadcal
return values; Methodiarme
}
public void setValues (£loat[] _values) B Type
values = _values; © Layout
i1 @ Pehbles
= [+] @ Style
— Feedback

)

Figure 2:Simultaneous editing used to transform Java field declarations into get/set methods.

the pattern; or by holding down the Shift key and select-from last Word , etc. Some of these generalizations
ing text regions with the mouse. In this case, the usecan be discarded immediately because of assumptions
chooseslava.Field from the pattern library, which of simultaneous editing. For example, “int” does not
runs a Java parser and highlights all field declarations irappear in every record, and so it cannot be selected in
the current file. If only some of these fields need accesevery record. Other generalizations are less preferable
sor methods, then the user can either specialize the pabecause they are more complicated tlama. Type

tern (e.g. Java.Field starting with "pub- In this case, the system’s best guess is the right one.

lic*) or manually deselect the undesired fields. The user then copies the selection to the clipboard,

Having selected the records, the user enters simultang!aces the insertion point back after “public “, and pastes
ous editing mode by pressing the SimulEdit button onthe clipboard. In response to the copy command, the sys-
the toolbar. The system then does some preprocessintgm copies dist of strings to its clipboard, one for each
which involves running all appropriate parsers (such agecord. When the paste occurs, the system pastes the
the Java parser) and searching for interesting features i@ppropriate string back to each record (Figure 2e).

the selected records. Preprocessing is described in Segimilarly the user copies and pastes the name of vari-

tion 5. The preprocessing delay depequ on the NUMable to create the method name. The lowercase vari-
ber and length of the records. In this simple example

able name is converted into capitalized by applying

@h editor command that capitalizes the current selection
r‘t'Figure 2f). Any editor command that applies to a se-
lection or cursor position can be used in simultaneous

The user now starts to edit. First, the user clicks at theediting mode.
end of one of the records. The system immediately genypq rest ofgetX andsetX are defined by more typ-

eralizes this click to the other records, displaying an in'ing and copy-and-paste commands, until the desired re-

sertion point at the end of each record (Figure 2b). Alg ¢ is achieved (Figure 2g). The user exits simultaneous

the same time, the Pattern box displays a description of jiting mode by clicking again on the SimulEdit toolbar
the generalization that was madeint just af- button, releasing it from the depressed state.
ter Java.Field . In this case, the description is ac-

tually a text constraint pattern, which could be evaluated

to select the same insertion points. The description i3.2 Correcting Generalizations

not always a valid pattern, because of some design deci-))))
sions made in our prototype, discussed later. Regardles&N€ example above raises an important issue: what if
the description provides an additional cue for the user t¢h€ System's generalization was incorrect at some point

check that the system is properly generalizing the seled! the simultaneous editing session? How can the user
tion. correct it? Several techniques are available in our sys-

tem: switching to a counterexample, giving multiple ex-
Having placed the insertion point, the user starts to typeamples, and naming landmarks. These techniques are
inthegetX method, first pressing Enter to insert a new- explained next.

line, then indenting a few spaces, then typing “public he fi . hni i ill din Fi 3
" to start the method declaration. The typed characterér e Irst .C.OI’I’eCtI.O n technique is illustrated in 'gure .
While editing a list of phone numbers, the user tries to

appear in every record (Figure 2c). If typos are made,

the user can back up and correct them, using all familiarOlace the cursor just before the 4-digit component of

editing operations. Maintaining the simultaneous inser—eaCh phone number. The first attempt (Figure 3a) is

tion points during text entry is trivial, since all records a click before *4843" in the first phone number. This

receive the same typed text. No generalization occur%“Ck is incorrectly generalized tpoint just be-
until the user makes a selection somewhere else. ore 2n_d I_Iumbe_r . An easy way to correct the gen-
eralization is to pick one of the records where the gen-
Now the user is ready to enter the return type of theeralization failed — for example, a phone number with
getX method. The type is different for each variable an area code such as “(724) 421-7359” — and make the
X, so the user can’t simply enter it at the keyboard. In-selection in that record instead. This selection results
stead, copy-and-paste is used. The user selects the typea satisfactory generalization (Figure 3b). This strat-
of one of the fields, in this case, the “int” of “public int egy, which we calbwitching to a counterexampleor-
xX". The system generalizes this selection into the derects the system by providing a more generic example
scriptionJava.Type , and selects the types of all the of the desired selection. The system is still generaliz-
other fields (Figure 2d). Note that other generalizationsng from only one example; the more generic example
of this selection are possiblént” ,2nd Word, 2nd replaces the earlier example. An expert user may even

cessing, the editor shows that simultaneous editing is e
abled by highlighting the records in yellow.

EgjLapis - phonenumbers.txt
File Edit Go Patterns Scripts Tools Help

o

Forward

o

Back

&

Reload

o ‘ {7 Edit H I simulEdit |
Stop

E\ﬁew As:| Text v|

Command: phonenumbers .t

421-ks43 :: Pattern: Go | Clear
6821163 - point just before 2Znd Number
265571 : S

{724) Bzl-7359 205 regions highlighted

421_ 026 AW e e e e e e
(724) pee-5576 i names: Name...
BELESES [Business ||
SRS | | @ Characters lie
a1z-p65-6851 =| || & Englich

T [P |5 e mrme =
-)

Feedhack

[B3

Eg_'gLapis - filenames.txt
File Edit Go Patterns Scripts Tools Help

el & @ | F Edit || T2 simulkar |

Back || Forward | Reload | Stoy
Commant: filenames.bd [=]view as: | Text v|
io/Eeadne. txt A pattern: Go || Clear

io/Filetedl, javg
io/‘fempFile. javg
io/Eipm: chive.javg

| i| |fron point just after 1st Punctuation
to point just before Linebreak

io/EWg

i0/E¥8/Roog i

in/EV3/Repositorg 2
in/EWE/Entries | | names: [tame. |

ner FarulBL_qama

4

@ Business o

| L@ "harartar
Feedback

@
E%Lapis - filenames.txt [_ O] =]
File Edit Go Patterns Scripts Tools Help
SNENEEIC

Back|Forward|Reload| Stop

| & Edit || £ simulEdit |

E\n‘iew As: | Text V|

| Clear

Command: filenames td

io/Eeadne. txg 21! pattern: Go
in/Filetitil, javg =

io/TempFile. javy 3
in;"EipAr chive.javs

from point just after last /"
to point just before Linebreak

ijg?;ﬁnn; 70 regions highlighted

- T ————— :
io/Cvs/Entries | Names: | tome.._|
et BERGTRT e = | [e- Business =

| L@ mharactar

@)
E%Lapis—phonenumhers.txt _|O) =
File Edit Go Patterns 3cripts Tools Help
oLy e
N & |© ‘ {§ Edit H I SimulEdit |
Back| Forward| Reload (Stop
Command: phonanumbers g [=]view as: | Text v|
421-B843 :: Pattern: Go || Clear
682'11163 A |point just before last Number
265-F571 : S
(724) 4211359 205 regions highlighted
421—14026 Ha v s,
(7z4) 268-5576 i Names: [hame.. |
341-ps6s i| [& Business |~ |
531-F8s1 | | @ Characters e
412-268-F651 =1 || e English
A [z [|| e 1 =
[| Feedback
(b)

Figure 3: Correcting generalization by switching to a coun-

terexample.

Feedhack

(b)

Figure 4:Correcting generalization by providing multiple ex-
amples.

avoid the incorrect generalization entirely by selecting
the most generic example first.

Sometimes an incorrect generalization cannot be fixed
by switching to a counterexample. For example, in Fig-
ure 4, the user is trying to select just the filenames,
without any directory prefix. Selecting “readme.txt” in
the first record generalizes to an incorrect description
referring to thepoint just after 1st Punc-

tuation (Figure 4a). Switching to a counterexam-
ple doesn't work either. For example, selecting “Root”
in the sixth record would generalize tast Word
which is also wrong, because it would select only “txt”
in the first record instead of “readme.txt”. To get the de-
sired selection, the user must provide at least two exam-
ples of the selection. This is done by holding down the
Shift key while selecting the additional example. Alter-
natively, the user can specify a negative example by de-
selecting an incorrect selection in another record. Dese-
lecting is done by right-clicking on a selection and pick-
ing Unselect from the popup menu that appears. Any
number of positive or negative examples can be given.

After receiving a new positive or negative example, theprogram and then running it in batch mode, simultane-

system searches for a generalization that selects exacttus editing allows the task to be performed interactively.

one region in every record and is consistent with all pos-

itive and negative examples. In this case, two positiveg 1 HTML

examples suffice to select the last filename component

correctly (Figure 4b). The following tasks take advantage of the HTML parser
) L . included in the pattern library. The HTML parser defines

The user can also assist generalization by making a S&iamed region sets for each kind of HTML object (e.g.

lection some other way, either by hand or by a pattemg|ement, Tag, Attribute) as well as specific HTML tags
and then assigning it a unique name. The named selec;, attributes (e.g. , href).

tion becomes part of the pattern library, where the sys-

tem can use it aslandmarkfor generalizing other selec- Change all elements into elementd.he
tions. For example, the user might specify a regular ex4S€r runs the patterBold to select all bold elements
pression for the product codes used in his company, an@vhich look like bold text), then enters simul-
name it ProductCode. Subsequent selections of produd@neous editing mode. The user selects the first b with
codes, or of regions adjacent to product codes, will béhe mouse (which the system generalizestid in
generalized much faster and more accurately. This strat-<0> "), deletes it, and types in “strong”. The user

egy adds more domain knowledge to the system. then selects the last b (which generalizes'it in
""), deletes it, and types in “strong” again.

Generalization may sometimes fail. There may be in- .
sufficient domain knowledge, or the selection may re-CONVert HTML to XHTML. ~One difference between

quire a more complicated description than the genertiTML and XHTML (an XML format) is the treatment

alizer is designed to generate. For example, our gen2f 1a0S with no content, such as ,
, or <hr>.
eralizer does not form disjunctions, such either In XHTML, elements with no end tag should be written

"gif" or "jpg". If no generalization can be found as so that an XML parser can parse them without
that is consistent with the user’s positive and negativeaccess to the XHTML document type definition. Making

examples, then the system gives up, beeps, and Ieavgyls conversion with simultaneous editing is straightfor-
only the positive examples selected. No further gener!Vard. To select the empty tags, the user runs the pattern

alization attempts are made until the user clears the se-39 = Eleme_r:jt : ‘,’]Y_h'gh mgtcnes all re%lons thf‘t thel
lection and starts a new selection. The user can finisl’f’TML parser iC entl_le as bot tag,s_ and complete el-
the desired selection by hand, either by selecting the apsMents- Entering simultaneous editing mode, the user

propriate regions in the other records, or by entering aPIaCEj‘S the cursor at th"e "end of the tag (which generalizes
pattern. to point just before ">) and inserts a slash to

finish the task.

L 4.2 Source Code

4 Applications o . N
Programming is full of tasks where simultaneous editing

This section describes some applications of simultanelS Useful, particularly when given knowledge of the lan-

ous editing. Two common themes run through these exguage syntax. The examples below are in Java because

amples. First is the power dbmain knowledgesuch as ~ LAPIS has a Java parser in its library. Other languages

HTML and Java syntax. Domain knowledge allows thecould be edited in similar fashion by adding an appro-

user to specify patterns more concisely and enables thefiate parser to the library.

generalizer to make more accurate generalizations witiChange access permissions.Suppose a class con-

fewer examples. Most text editors either eschew domainains a number of fields or methods that currently have

knowledge, understanding only low-level concepts likedefault access permission, and the programmer wants

words and characters, or else embed knowledge for onlyo change their permissions fwivate . The pro-

one domain, such as C++. LAPIS strives for a middlegrammer selects the relevant fields and methods (using,

ground by centralizing domain knowledge into a pat-for instance,(Field or Method) not start-

tern library that simply generates region sets. Otheling with "public" or "private"), enters si-

parts of LAPIS, such as the generalizer, are domainmultaneous editing mode, and typedvate at the

independent, and new domain knowledge is easy to adgeginning of a field, changing all the others simultane-
by installing new patterns and parsers in the library. ously.

The second important theme iisteractivity,. Whereas Change a method interface. If a method’s parame-
other solutions to these tasks would involve specifying a@ers change, then simultaneous editing can be used to

rewrite all the calls to that method at once. For ex-the opportunity to perform this massaging interactively,
ample, suppose a methadpy(src, dest) must which is particularly sensible for one-shot tasks. For
be changed tccopy(dest, src) for consistency example, suppose a user is testing network connectiv-
with similar interfaces in the program. The pro- ity with traceroute , and wants to pass the network
grammer selects all calls teopy (perhaps using latencies computed liyaceroute intognuplot to

the patterrMethodCall starting with lden- generate a graph. The user first rureceroute to
tifier equal to "copy"), enters simultaneous generate a trace. Using simultaneous editing, the user
editing mode, selects the first argument (which generaledits each line of the trace, leaving only the hop num-
izes tofirst ActualParameter), copies it to the ber (1, 2, ...) and the latency time. After exiting si-
clipboard, and then pastes it after the second argumenmultaneous editing mode, the user insergnaplot

A little more editing fixes the comma separators, and theplot instruction before the first linglot "-" with

change is done. This example demonstrates how simulines) and finally rungnuplot -persist to plot
taneous editing with domain knowledge can deliver thethe data.

power of syntax-directed editing inside a freeform text

editor.

Wrap every method with entry and exit code.While 5 |mplementation
debugging a class, the programmer wants to run some

code whenever any method of the class is entereghijs section describes the algorithm used to generalize
or exited. This code might do tracing (printing the the user’s selection to a description that can be applied to
method name to a log), performance timing, or valida-a|| records. The input to the generalizer is a set of pos-
tion (checking that the method preserves class invariijye examples, a set of negative examples, and the set
ants). To add this code, the programmer selects all thgf records. The output is a selection consistent with the
methods using the patteiMethod and starts simulta- positive and negative examples that selects exactly one

neous editing. Next, the programmer types in the enregion in every record, plus a human-readable descrip-
try code at the start of the method, wraps the rest otjgn of the selection.

the method body with &y-finally construct, and))
types the exit code inside ttimally clause. All the Like other PBD systems, the generalizer basically

methods change identically. This kind of modification is S€arches through a space of hypotheses for a hypothe-
an example ofispect-oriented programmirg], where SIS consistent with the examples. The details of the im-

code is “woven” into a program at program locations de-Plementation are novel, however. Our generalizer is ac-
scribed by a pattern. tually split into three parts: preprocessing, search, and

updating. Preprocessing takes the set of records as input
. and generates a list of useful features as output. Prepro-
4.3 Scripting cessing takes place only once, when the user first enters

To understand the next set of examples, the readermultaneous editing mode. The search phase takes the
should be aware that LAPIS is also a shell [10]. An ex-Positive and negative examples and the feature list gen-

ternal command can be executed in the LAPIS comman@'ated by preprocessing, and computes a selection con-

box, drawing its standard input from the current contents>iStent with the examples. Search happens whenever the
of the editor and sending its output back to the editor. US€r makes a selection with the mouse or keyboard, or
adds a new positive or negative example to the current

Disposable scripts. Suppose the user wants to make aselection. Finally, updating occurs when the user edits
group of GIF files transparent usigiftrans . Si- the records by inserting, deleting, or copying and past-
multaneous editing offers a solution based on the idea ofyg text. Updating takes the user’s edit action as input

creating a one-time script directly from data. The userand modifies the feature list appropriately. Each of these
firstrunsls *.gif to list the relevant filenames in the phases is described in more detail below.

editor. Using simultaneous editing, the user edits each

line into a command, such agftrans -T X.gif .

> X-transparent.gif . Then the user runs the re- 2-1 Region Sets
sulting script withsh. Disposable scripts are a more
interactive way to achieve the effect of the Unix com-
mandgforeach orxargs .

Before describing the generalizer, we first briefly de-
scribe the representations used for selections in a text
file. More detail can be found in an earlier paper about
Impedance matching. Data obtained from the output LAPIS [9]. A region s, e] is a substring of a text file,

of one program must often be massaged before it can beescribed by its start offsetand end offset relative to

fed into another program. Simultaneous editing offersthe start of the text file. Aegion sets a set of regions.

LAPIS has two novel representations for region setsin every record. This is justified by two assumptions
First, afuzzy regionis a four-tuple[sy, s2; e1,e2] that made by the generalizer: first, that a generalization must
represents the set of all regiosse] such thats; < s < have at least one match in every record; and second, that
sg ande; < e < eo. Note that any regiofs, ¢] can be a generalization can be represented without disjunction.
represented as the fuzzy regiens; e, e]. Fuzzy regions Given these two assumptions, only features that match
are particularly useful for representing relations betweersomewhere in every record will be useful for construct-
regions. For example, the set of all regions that are ining generalizations.

side [s, e] can be compactly represented by the fuzzy
region|s, e; s,e]. Similar fuzzy region representations
exist for other relations, includingontains, before, af-

t?r’ JtUSt b ?fore, J;St dgfter_,ritamr@.le .t_havmg c]?mcc:;dent efficiently using asuffix treg[4]. A suffix tree is a path-
tS ?r pomt S) _anthn tm% este r_eta |ontts arel undamen- compressed trie into which all suffixes of a string have
al operators in the text constraints patteérn language, anHeen inserted. With a suffix tree for a stringwe can

are also used in generalization. test whether a substring occurs ins in only O(|p|)

The second novel representation is tiegion treg a time. Naive suffix tree construction (inserting every suf-
union of fuzzy regions stored in an R-tree in lexico- fix explicitly) takesO(|s|?) time, which is sufficient for
graphic order [9]. A region tree can represent an ar-our prototype since records tend to be short. Several al-
bitrary set of regions, even if the regions nest or overgorithms exist for building a suffix tree in linear time,
lap each other. A region tree containig fuzzy re- however [4], and extending the algorithm below to ac-
gions take®)(N) space(N log N) time to build, and commodate them would be straightforward.

O(log N) time to test a region for membership in the set.

By the same reasoning, the only useful literal features
are common substrings, i.e. substrings that occur at least
once in every record. Common substrings can be found

The common substring algorithm works as follows. The
These two representations are used by the preprocessiaforithm starts by building a suffix tree from the short-
phase to construct a list of features that the search phasgt record, in order to minimize the size of the initial
can use to quickly test positive and negative examplessuffix tree. This suffix tree represents the set of com-
The selection returned by the search phase is also reprenon substrings of all records examined so far. For each

sented as a region set. of the remaining records, the suffixes of the record are
matched against the suffix tree one by one. Each tree
5.2 Feature Generation node keeps a count of the number of times it was visited

) during the processing of the current record. This count
Preprocessing takes the set of records and generatesdyresents the number of occurrences (possibly overlap-
!ISt of useful featurgs. Afeature is a region set, contgm-ping) of the substring represented by the node. After
ing at least one region in each record, where the regiong;qcessing each record, all unvisited nodes are pruned
are in some sense equivalefor example, the feature from the tree, since the corresponding substrings never
Java.Type represents the set of all regions that weregceyrred in the record. After processing every record
recognized by the Java parser as type names. The prey thjs fashion, the only substrings left in the suffix tree
processor generates two kinds of featuneattern fea- st he common to all the records. These common sub-
turesderived from the pattern library, afiiteral features gyrings are used as literal features. The operation of the
discovered by examining the text of the records. common substring algorithm is illustrated in Figure 5.
Pattern features are found by applying every parser and
every named pattern in the pattern library. LAPIS hasg 3 Feature Ordering
a considerable library of built-in parsers and patterns,
including Java, HTML, character classes (e.g. dig-After generating useful features from the set of records,
its, punctuation, letters), English structure (words, senthe preprocessor sorts them into a list in order of pref-
tences, paragraphs), and various codes (e.g., URLsrence. Placing the most-preferred features first makes
email addresses, hostnames, IP addresses, phone nutine search phase simpler. The search can just scan down
bers). The user can readily add new named patterns aritie list of features and stop as soon as it finds the first
new parsers. The result of applying a pattern is the set ofeature consistent with the examples, since this feature
all regions matching the pattern. The result of applyingis guaranteed to be the most preferred consistent feature.

a parser is a collection of named region sets. FOr exaMq 5y res are classified into three groups for the purpose
ple, the Qava parser generates region sets for Stat‘:"mem'preference orderingunique featureswvhich occur ex-
Expression, Type, Method, and so on. actly once in each recordegular featureswhich occur
After applying all library patterns, the preprocessor dis-exactly n times in each record, for some > 1; and
cards any patterns that do not have at least one mataolharying featureswhich occur a varying number of times

rem@cmu.edu$ o

@cmu.edu$ o

u.edu$ a
@cmu.edu$ o

@cmu.edu$ @cmu.edu$

(@ (b) (©

Figure 5: Finding common substrings using a suffix tree. (a) Suffix tree constructed from first recor@cmu.edu; $
represents a unique end-of-string character. (b) Suffix tree after matching against secondje@ardu.edu . Each node
is labeled by its visit count. (c) Suffix tree after pruning nodes which are not foufjd@cmu.edu . The remaining nodes
represent the common substrings of the two records.

in each record. A feature’s classification is not predeteriiterals are preferred to shorter ones.

mined. Instead, it is found by actually counting occur- . _
. To summarize, the preprocessor orders the feature list in
rences in the records being edited. For example, in Fig:

. ; !) the following order, with most preferred features listed
ure 2,Java.Type is a unique feature, since it occurs

. . . first: uni mn ni literals, regular n
exactly once in every variable declaration. Regular fea- st unique patterns, unique literals, regular patterns,

tures are commonly found as delimiters. For eXampleregularIlterals, varying patterns, varying literals. Within

if the records are IP addresses like 127.0.0.1, then “.” istaaCh group of patterns, the order is arbitrary. Within

a regular feature. Varying features are typically tokenseaCh group of literals, longer literals are preferred to
! . Shorter.

like words and numbers, which are general enough to

occur in every record but do not necessarily follow any

regular pattern. 5.4 Search

Unique features are preferred over the other two kindsThe search algorithm takes the user’s positive and neg-
A unique feature has the simplest description: the feaative examples and the feature list generated by prepro-

ture name itself, such amva.Type . By contrast, us- cessing, and attempts to generate a description consis-
ing a regular or varying feature in a generalization re-tent with the examples.

quires specifying the index of a particular occurrence,_rh basi h K foll Th "
such ath Word . Regular features are preferred over € basic search process works as 1ollows. 1he system

varying features, because regularity of occurrence is é:lhooseds the f|rstthp05|t|;]/e:[k(]ax?mpt)le, Cl‘f’l”te?g;bfd e?ham- d
strong indication that the feature is relevant to the interP'€: and scans througn the teature list, testing the see
nal structure of a record. example for membership in each feature. Since each fea-

ture is represented by a region tree, this membership test
Within each group, pattern features are preferred oveis very fast. When a matching feature is found, the sys-
literal features. We also plan to let the user specify preftem constructs one or more candidate descriptions repre-
erences between pattern features, so that, for instancsenting the particular occurrence that matched. For ex-
Java features can be preferred over character-class feample, if the seed example matches the (varying) fea-
tures. We are still designing the user interface for this tureWord, the system might construct the candidate de-
however, so the prototype currently leaves pattern feascriptions5th Word and 2nd from last Word
tures in an arbitrary order. Among literal features, longerby counting words in the seed example’s record. These

candidate descriptions are tested against the other pc gfer;ve{isle
tive and negative examples, if any. The first consistel

description found is returned as the generalization. 4
The output of the search process depends on whett e3
the user is selecting an insertion point (e.g. by clickin m
the mouse) or selecting a region (e.g. by dragging). 2
all the positive examples are zero-length regions, the @
the system assumes that the user is placing an insert [1
point, and searches for a point description. Otherwis 0 old file
the system searches for a region description. O ¢ty 24 3 m4 p % 8 7 offsets

To search for a point description, the system transforn
the seed example, which is just a character offsitto
two fuzzy regionsib, b; b, +oc], which represents all re-
gions that start ab, and[—oo, b; b, b], which represents
all regions that end &i. The search tests these fuzzy
regions for intersection with each feature in the featur
list, which is just as fast as a simple region membersh changes the file content, so the precomputed features
test. Candidate descriptions generated by the search may become incomplete or wrong. For example, if the
transformed into point descriptions by prefixipgint user types some new words, then the precompiviesd

just before or point just after , depending feature becomes incomplete, since it doesn’t include the
on which fuzzy region matched the feature, and themew words the user typed. The updating algorithm ad-
the descriptions are tested for consistency with the othetiresses these two problems.

positive and negative examples.

Figure 6:Coordinate map translating offsets between two ver-
sions of a file. The old version is the wotthmple . Two
regions are deleted to get the new verstame .

From the locations and length of text inserted or deleted,
To search for a region description, the system firstthe updating algorithm computescaordinate map a
searches for the seed example using the basic search prelation that translates a file offset prior to the change
cess described above. If no matching feature is found #nto the equivalent file offset after the change. The coor-
because the seed example does not correspond preciselynate map can translate coordinates in either direction.
to a feature on the feature list — then the system splits th&or example, Figure 6 shows the coordinate map for a
seed example into its start point and end point, and resimple edit. Offset 3 inrample corresponds to offset
cursively searches for point descriptions for each point2 in tame, and vice versa. Offsets with more than one
Candidate descriptions for the start point and end poinpossible mapping in the other version, such as offset 1 in
are transformed into a description of the entire regiontame, are resolved arbitrarily. Our prototype picks the
by wrapping withfrom...to... , and then tested for largest value.

consistency with the other examples. Since the coordinate map for a group of insertions or

This search algorithm is capable of generalizing a selecdeletions is always piecewise linear, it can be repre-
tion only if it starts and ends on a feature boundary. Forsented as a sorted list of the (x,y) endpoints of each line
literal features, this is not constraining at all. Since asegment. If a single edit consistsiefinsertions or dele-
literal feature is a string that occurs in all records, evenytions (one for each record), then this representation takes
substring of a literal feature @soa literal feature. Thus O(m) space. Evaluating the coordinate map function for
every position in a literal feature lies on a feature bound-a single offset take®(log mm) time using binary search.
ary. To save space, the preprocessor only stores maxima| syraightforward way to use the coordinate map is to
literal features in the feature list, and the search phasgcan gown the feature list and update the start and end
tests whether the seed example falls anywhere inside goints of every feature to reflect the change. If the fea-
maximal literal feature. ture list is long, however, and some feature sets are large
(such as Word or Whitespace), the cost of updating ev-
5.5 Updating ery feature after every edit may be prohibitive. Our gen-
eralizer takes the opposite strategy: instead of translat-
In simultaneous editing, the user is not only making se-4ng all features up to the present, we translate the user’s
lections, but also editing the file. Editing has two effectspositive and negative examplésck to the past The
on generalization. First, every edit changes the start andystem maintains a global coordinate map representing
end offsets of regions. As a result, the region sets usethe translation between original file coordinates (when
to represent features become invalid. Second, editingimultaneous editing mode was entered and the feature

list generated) and the current file coordinates. When ataneous editing session, not the hours that are typical of
edit occurs, the updating algorithm computes a coordi-general text editing. After leaving simultaneous editing
nate map for the edit and composes it with this globalmode, the global coordinate map and the feature list can
coordinate map. When the user provides positive ande discarded.

negative examples to generalize into a selection, the ex-

amples are translated back to the original file coordinates

using the inverse of the global coqrdmate map. The6 Evaluation

search algorithm generates a consistent description for

the translated examples. The generated description i§jmultaneous editing was evaluated by a small user
then translated forward to current file coordinates beforgyy, gy, Eight users were found by soliciting campus

being displayed as a selection. newsgroups. All were college undergraduates with sub-

An important design decision in a simultaneous editingStantial text-editing experience and varying levels of pro-
system that uses domain knowledge, such as Java syBramming experience (5 described their programming
tax, is whether the system should attempt to reparse thexperience as “little” or “none,” and 3 as “some” or
file while the user is editing it. On one hand, reparsing’1ots”). Users were paid for participation. Users first
allows the generalizer to track all the user’s changes antgarned about simultaneous editing by reading a tutorial
reflect those changes in its descriptions. On the othe®nd trying the examples. The tutorial took less than 10
hand, reparsing is expensive and may fail if the file is inminutes for all but one user (who spent 30 minutes ex-
an intermediate, syntactically incorrect state. Our generPloring the system). After the tutorial, each user per-
alizer never reparses automatically in simultaneous edittormed the following three tasks:

ing mode. The user can explicitly request reparsing with 1 Putth h d publicati in §

a menu command, which effectively restarts simultane- ** ofuetaECﬁ g,tj;ﬂg; name and publication year in iront
ous editing using the same set of records. Otherwise, the geore: '

feature list remains frozen in the original version of the 1. Aha, D.W. and Kibler, D. Noise-tolerant instance-based learning algo-
. . . . rithms. In Proceedings of the Eleventh International Joint Conference on
file. One consequence of this decision is that the gener- Atrtificial Intelligence. Morgan Kaufmann, 1989, pp. 794-799

alizer's human-readable descriptions may be misleading 2. Hayes-Roth, B. Pfleger, K. Morignot, P. and Lalanda, P. Plans and

. . Behavior in Intelligent Agents, Technical Report KSL-95-35, Stanford
because they refer to an earlier version. University, 1995.
. (7T more) ...
This design decision raises an important question. If the after:
feature list is frozen. how can the user make selections in [Aha 89] Aha, D.W. and Kibler, D. Noise-tolerant instance-based learning
i ! X i, R algorithms. In Proceedings of the Eleventh International Joint Conference
newly-inserted text, which didn’t exist when the feature on Artificial Intelligence. Morgan Kaufmann, 1989, pp. 794-799.
P i+ ; ; [Hayes-Roth 95] Hayes-Roth, B. Pfleger, K. Morignot, P. and Lalanda, P.
list W?.S built? This prob_lem IS_ handled by the up_d_ate Plans and Behavior in Intelligent Agents, Technical Report KSL-95-35,
algorithm. Every typed insert in simultaneous editing Stanford University, 1995.
mode adds a new literal feature to the feature list, since - (7 more) ...
the typed characters are guaranteed to be identical in all 2. Reformat a list of mail aliases from HTML to text.
HE H H Before:
the records. S_lmllarly, pasting text from the (?Ilpboard <DT>
creates a special feature that translates coordinates back conceptual Graphs '
to the source of the paste and tries to find a description ~ <>7>
there. When the generalizer uses one of these features .. 5Gmore) ...

created by editing, the feature is described as “some- N}f“
. - . . . ;» Conceptual Graphs
where in edifv”, which can be seen in Figures 2e and congra: mailto:cg@cs.umn.edu
3 KIF
29' kif: mailto:kif@cs.stanford.edu
... (5 more) ...

A disadvantage of this scheme is that the housekeep- _ _
ing structures — the global coordinate map and the new 3. Reformat a list of baseball scores into a tagged for-
features added for edits — grow steadily as the user ed- gne%EeC records).
its. This growth can be slowed significantly by coalesc- Cardinals 5, Pirates 2.
ing adjacent insertions and deletions, although we have ﬁ_egig’gr;)zj”o”‘"es 4.
not yet implemented this. Another solution might be to After:
reparse when the number of edits reaches some thresh- GameScore[winner 'Cardinals’; loser 'Pirates’; scores[5, 2]].
) . X GameScore[winner 'Red Sox’; loser 'Orioles’; scores[12,4]].
old, doing the reparsing in the background on a copy of .. (5more) ...
the file in order to avoid interfering with the user’s edit-
ing. In practice, however, we don’t expect space growthAll tasks were obtained from other authors (tasks 1 and
to be a serious problem. In all the applications we have2 from Fujishima [3] and task 3 from Nix[12]). Af-

imagined, the user spends only a few minutes in a simulter performing a task with simultaneous editing, users

repeated the task with manual editing, but only on thediately, requiring no further examples. The remaining
first three records to avoid unnecessary tedium. Userselections needed either 1 or 2 extra examples to general-
were instructed to work carefully and accurately at theirize correctly. On average, only 0.26 additional examples
own pace. All users were satisfied that they had comwere needed per selection. Unfortunately, users tended
pleted all tasks, although the finished product sometimeso overlook slightly-incorrect generalizations, particu-
contained undetected errors, a problem discussed furthéarly generalizations that selected only half of the hy-
below. No performance differences were seen betweephenated author “Hayes-Roth” or the two-word baseball
programmers and nonprogrammers. Aggregate times faleam “Red Sox”. As a result, the overall error rate for
each task are shown in Table 1. simultaneous editing was slightly worse than for manual
editing: 8 of the 24 simultaneous editing sessions ended
with at least one uncorrected error, whereas 5 of 24 man-
Yal editing sessions ended with uncorrected errors. If the
two most common selection errors had been noticed by
users, the error rate for simultaneous editing would have
dropped to only 2 of 24. We are currently studying ways
Yo call the user’s attention to possible selection errors [8].

Following the analysis used by Fujishima [3], we es-
timate the leverage obtained with simultaneous editin
by dividing the time to edit all records with simultane-
ous editing by the time to edit just one record manu-
ally. This ratio, which we calequivalent task sizegp-
resents the number of records for which simultaneou
editing time would be equal to manual editing time for
a given user. Since manual editing time increases linAfter doing the tasks, users were asked to evaluate the
early with record number and simultaneous editing timesystem’s ease-of-use, trustworthiness, and usefulness on
is roughly constant (or only slowly increasing), simul- a 5-point Likert scale. These questions were also bor-
taneous editing will be faster whenever the number ofrowed from Fujishima [3]. The results, shown in Fig-
records is greater than the equivalent task size. (Notere 7, are generally positive.

that the average equivalent task size is not necessarily

equal to the ratio of the average editing times, since

E[S/M]| # E|[S|/E[M].

[S/M) # EIS]/BIM). 7 Status and Future Work
As Table 1 shows, the average equivalent task sizes are
small. In other words, the average novice user workssimultaneous editing has been implemented in LAPIS,
faster with simultaneous editing if there are more thang prowser/editor designed for processing structured text.
8.4 records in the first task, more than 3.6 records in thg Ap|s is written in Java 1.1, extending the JFC text ed-

second task, or more than 4 records in the third task.jior component JEditorPane. Directions for obtaining
Thus simultaneous editing is an improvement over mant Ap|S are found at the end of this paper.

ual editing even for very small repetitive editing tasks,

and even for users with as little as 10 minutes of expeVVe have many ideas for future work. First and perhaps
rience. Some users were so slow at manual editing thah'0st challenging is the problem of scaling up to large
their equivalent task size is smaller than the expert's, séasks. Although our prototype is far from a toy, since it
simultaneous editing benefits them even more. Simulta¢@n handle 100KB files with relative ease, many interest-
neous editing also compares favorably to another PBDNG tasks involve megabytes of data spread across mul-
system, DEED [3]. When DEED was evaluated with tiple files. Large data sets pose several problems for si-
novice users on tasks 1 and 2, the reported equivaleffultaneous editing. The first problem is system respon-
task sizes averaged 42 and ranged from 5 to 200, whicfiveness. Making a million edits with every keystroke

is worse on average and considerably more variable thafi@y slow the system down to a crawl, particularly if the
simultaneous editing. text editor uses @ap bufferto store the text [2]. Gap

)) buffers are used by many editors, among them Emacs
Another important part of system performance is generand JEditorPane, the Java class on which our prototype
alization accuracy. Each incorrect generalization forcess pased. With a gap buffer and a record set that spans
the user to make at least one additional action, such age entire file, typing a single character forces the editor
selecting a counterexample or providing an additionako move nearly every byte in the buffer. One way to ad-

positive or negative example. In the user study, usergjress this problem is to delay edits to the rest of the file
made a total of 188 selections that were used for edityntj| the user scrolls. Another solution would be to have

ing. Of these, 158 selections (84%) were correctimmemytiple gaps in the buffer, one for each record.

1These estimates are actually conservative. Simultaneous editing\nother problem with large files is checking for incor-

always preceded manual editing for each task, so the measured tim[eect eneralizations. When editing a small file. the user
for simultaneous editing includes time spent thinking about and un- g) . g '
derstanding the task. For the manual editing part, users had already@n just scan through the entire file to ensure that a se-

learned the task, and were able to edit at full speed. lection has been generalized properly. With a large file,

Records Equivalent task size
Task | intask | Simultaneous editing Manual editing novices expert
1 9 142.9s[63-236 s] | 21.6 s/rec[7.7-65 s/red] 8.4 recs [2.1-12.2 recq] 4.5 recs
2 7 119.1s[64-209s] | 32.3 s/rec [19-40 s/red] 3.6 recs[1.9-5.8recs] 1.6 recs
3 7 159.6 s [84-370s] | 41.3 s/rec [16-77 s/red] 4.0 recs[1.9-6.2recs] 2.4 recs

Table 1: Time taken by users to perform each task (mean [min-m&kultaneous editing the time to do the
entire task with simultaneous editinijlanual editingis the time to edit 3 records of the task by hand, divided by 3
to get a per-record estimatBquivalent task sizes the ratio between simultaneous editing time and manual editing
time for each usemovicesare users in the user study, agxpertis one of the authors, provided for comparison. A
task with more records thasguivalent task sizevould be faster with simultaneous editing than manual editing.

How much did you trust it to do the right thing?

How easy was it to use? - Would you use it for your own tasks?
- | very :l 1 | |
very easy trustworthy | very likely
B | somewhat B
somewhat trustworth somewhat
easy ustwortny | likely
neutral neutral neutral
somewhat | somewhat somewhat |
hard untrustworthy | unlikely
N very .
very hard untrustworthy very unlikely
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Figure 7:User responses to questions about simultaneous editing.

scanning becomes infeasible. We have several ideas f@ Conclusions
secondary visualizations that might help with this prob- o)
lem. One is a “bird’s-eye view” showing the entire file Simultaneous editing is an effective way for users to per-
(in greeked text), so that deviations in an otherwise reguf0rm repetitive text editing tasks interactively, using fa-
lar highlight can be noticed at a glance. Another is an apMiliar editing commands. Its combination of interactiv-
breviated context view, showing only the selected linedty @hd domain specificity makes simultaneous editing a
from each record. A third view is an “unusual matches” Useful addition to our basket of tools for text process-
view, showing only the most unusual examples of theing, which is practical for inclusion in a wide variety of
generalization, found by clustering the matches [8]. €ditors.
The LAPIS browser/editor, which includes an imple-
mentation of simultaneous editing with Java source
code, may be downloaded from

A third problem with large data sets is where the data re- http://www.cs.cmu.edu/~rcm/lapis/

sides. For interactive simultaneous editing, the data must

fit in RAM, with some additional overhead for parsing Acknowledgements

and storing feature lists. For large data sets, this is im-

practical. However, it is easy to imagine interactively The authors are indebted to Yuzo Fujishima for provid-

editing a small sample of the data to record a macrdnd the materials to reproduce the DEED user study. We
which is applied in batch mode to the rest of the datawould also like to thank Laura Cassenti, Sarit Sotangkur,

The batch mode could minimize its memory require- Dorothy ZabOI’OWSki, Brice Cassenti, and Jean Cassenti

ments by reading and processing one record at a timéor enduring early versions of simultaneous editing, and
(or one translation unit at a time, if it depends on a JavaSheila Harnett and the anonymous referees for their
or HTML parser). Macros recorded from simultaneoushelpful comments. This research was funded in part by
editing would most likely be more reliable than key- USENIX Student Research Grants.

board macros recorded from single-cursor editing, since

simultaneous editing finds general patterns representing

each selection. The larger and more representative thReferences

sample used to demonstrate the macro, the more Corregtl] A. Cypher. Eager: Programming repetitive tasks by demonstra-
the patterns would be. The macro could also be saved " ijon " n A. Cypher, editorwatch What | Do: Programming by
for later reuse. Demonstrationpages 205-218. MIT Press, 1993.

(2]

(3]

(4

(5]

6]

(7]

(8]

El

(10]

[11]

[12]

(23]

C. A. Finseth. Theory and practice of text editors, or, a cookbook
for an EMACS. Technical Memo 165, MIT Lab for Computer
Science, May 1980.

Y. Fujishima. Demonstrational automation of text editing tasks
involving multiple focus points and conversions. Pmnoceed-
ings of the International Conference on Intelligent User Inter-
faces (Ul '98) pages 101-108, 1998.

D. Gusfield.Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biolog€ambridge Univer-
sity Press, 1997.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. IBuropean Confer-
ence on Object-Oriented Programming (ECOQE)01.

J. Landauer and M. Hirakawa. Visual AWK: a model for text
processing by demonstration. Rroceedings of the 11th Inter-
national IEEE Symposium on Visual Languages {®&ges 267—
274, 1995.

D. Maulsbhy. Instructible Agents PhD thesis, Univ. of Calgary,
1994.

R. C. Miller. Lightweight Structured Text ProcessirighD thesis,
Carnegie Mellon University, 2001. In preparation.

R. C. Miller and B. A. Myers. Lightweight structured text pro-
cessing. InProceedings of the 1999 USENIX Annual Technical
Conferencepages 131-144, June 1999.

R. C. Miller and B. A. Myers. Integrating a command shell into
a web browser. IRJSENIX 2000 Annual Technical Conference
pages 171-182, June 2000.

B. A. Myers. Tourmaline: Text formatting by demonstration. In
A. Cypher, editorWatch What | Do: Programming by Demon-
stration, pages 309-322. MIT Press, 1993.

R. Nix. Editing by exampleACM Transactions on Programming
Languages and Systen¥®4):600-621, October 1985.

I. H. Witten and D. Mo.TELS: Learning text eiting tasks from
examples. In A. Cypher, editowatch What | Do: Programming
by Demonstrationpages 183-204. MIT Press, 1993.

