
Interactive Simultaneous Editing of Multiple Text Regions

Robert C. Miller and Brad A. Myers
Carnegie Mellon University

http://www.cs.cmu.edu/~rcm/lapis/

{rcm,bam}@cs.cmu.edu

Abstract

Simultaneous editing is a new method for automating
repetitive text editing. After describing a set of regions
to edit (therecords), the user can edit any one record and
see equivalent edits applied simultaneously to all other
records. The essence of simultaneous editing is gener-
alizing the user’s selection in one record to equivalent
selections in the other records. We describe a general-
ization method that is fast (suitable for interactive use),
domain-specific (capable of using high-level knowledge
such as Java and HTML syntax), and under user control
(generalizations can be corrected or overridden). Simul-
taneous editing is useful for source code editing, HTML
editing, and scripting, as well as many other applica-
tions.

1 Introduction

Text editing is full of small repetitive tasks. Examples
include:

• Replace the string “Hashtable” with “Map”
throughout a program.

• Reformat a list of phone numbers from “(xxx) yyy-
zzzz” to “+1 xxx yyy zzzz”.

• Insert print statements to trace entry and exit from
each of a set of functions.

• Generate get/set methods for the instance variables
of a class.

• Generate a mailing list from the From headers of a
large file of email messages.

Appeared inProceedings of USENIX 2001 Annual Technical
Conference, Boston, MA, June 2001, pp 161-174.

Users have a rich basket of tools for automating tasks
like these.Search-and-replace, in which the user spec-
ifies a pattern to search for and replacement text to be
substituted, is good enough for simple tasks.Keyboard
macrosare another technique, in which the user records
a sequence of keystrokes (or editing commands) and
binds the sequence to a single command for easy re-
execution. Most keyboard macro systems also support
simple loops using tail recursion, where the last step in
the macro reinvokes the macro. For more complicated
tasks, however, users may resort to acustom program,
often written in a text-processing language such as Perl,
awk, or Emacs Lisp.

This paper proposes a new technique to add to this bas-
ket of repetitive text editing tools:simultaneous editing.
In simultaneous editing, the user first describes a set of
regions to edit, called therecords. This record set can
be defined by a pattern, direct selection, or some com-
bination of the two. After defining the records, the user
makes a selection in one record using the mouse or key-
board. In response, the system makes an equivalent se-
lection in all other records. Subsequent editing opera-
tions – such as typed text, deletions, or cut-and-paste –
affect all records simultaneously, as if the user had ap-
plied the operations to each record individually. Figure 1
shows simultaneous editing in action.

Simultaneous editing has several advantages over other
techniques for repetitive text editing. First, simultane-
ous editing is interactive. No programming is required.
Second, simultaneous editing uses familiar editing com-
mands, including mouse selection. Macro recorders
generally ignore or disable mouse selection. Third, the
effect of a simultaneous editing operation on any record
is readily apparent from the selection. If there is a tricky
step in a transformation, the user can check it before-
hand by scanning through all records and verifying the
location of the selection. Finally, mistakes made in the
middle of a simultaneous editing transformation can be
immediately detected and corrected with undo. Other
techniques may require undoing, debugging, and reexe-
cuting the entire transformation.

(a)

(b)

Figure 1: Simultaneous editing on Java code. The records
(highlighted lightly) are calls to thepaint() function, which
is being transformed into an object-oriented method. (a) User
selects “rectangle”, and the system generalizes the selection
across all records. (b) User cuts the selection, pastes it before
paint , and inserts a dot. The same operation affects every
record.

The greatest challenge to an implementation of simul-
taneous editing is determining the equivalent selection
where editing should occur in other records. Given a
cursor position or selection in one record, the system
must generalize it to a description which can be applied
to all other records. Simultaneous editing puts several
demands on the generalization algorithm:

• Generalization should be fast, so that the system is
responsive enough for interactive editing. We solve
this problem by preprocessing the records to dis-
cover useful features in advance, so that the gen-
eralization search for each selection is relatively
cheap.

• Generalization should be domain-specific. For ex-
ample, a user’s selection might best be described in
terms of Java syntax. Our solution to this problem
is a knowledge base, represented by a library of pat-
terns and parsers that detect structure in text. Users
can extend the library on the fly by specifying new
patterns, which can be either regular expressions or
high-level patterns calledtext constraints[9].

• Generalization should be able to guess accurately
from only one example. When multiple general-
izations are consistent with the user’s selection, the
generalizer must make its best guess, which hope-
fully will often be the description the user intended.

• Generalization should be correctable. If the gener-
alizer’s best guess is wrong, the user must have a
way to correct it. In our system, the user can se-
lect or deselect regions in other records, providing
additional positive and negative examples that the
generalizer uses to improve its guess. The user can
also override the generalizer completely, making a
selection by hand or by a pattern.

The rest of this paper is organized as follows. Section 2
surveys related work. Section 3 describes the user in-
terface to simultaneous editing, in the context of an ex-
tended example. Section 4 describes some more exam-
ples of simultaneous editing. Section 5 delves into the
details of our implementation, and Section 6 evaluates
its performance. Section 7 outlines some future direc-
tions, and Section 8 makes some conclusions.

2 Related Work

Simultaneous editing is similar in concept to Visual Awk
[6], a system for developing awk-like file transformers
interactively. Like awk, Visual Awk’s default structure

consists only of lines and words. When the user selects
one or more words in a line, the system highlights the
words at the same position in all other lines. For other
kinds of selections, the user must select the appropriate
tool. For example, Visual Awk’s Cutter tool makes se-
lections by character offset, and its Matcher tool uses
regular expressions provided by the user. In contrast,
simultaneous editing is built into a conventional text ed-
itor, operates on arbitrary records (not just lines), uses
standard text editing operations, and automatically in-
fers general, domain-specific descriptions from a user’s
selections.

Another closely-related approach to the problem of
repetitive text editing isprogramming by example,also
calledprogramming by demonstration(PBD). In PBD,
the user demonstrates one or more examples of the trans-
formation in a text editor, and the system generalizes this
demonstration into a program that can be applied to the
rest of the examples. PBD systems for text editing have
included EBE [12], Tourmaline [11], TELS [13], Eager
[1], Cima [7], and DEED [3].

Simultaneous editing is similar to PBD in many ways.
Both approaches allow the user to edit with familiar op-
erations, including mouse selection. Both approaches
generalize the user’s actions on one example into a de-
scription that can be applied to other examples. Both
approaches must be able to incorporate multiple exam-
ples into the generalization.

However, simultaneous editing has a dramatically dif-
ferent user interface from PBD. In simultaneous edit-
ing, the user’s demonstration affects all records simul-
taneously. After demonstrating part of a transforma-
tion, the user can scan through the file and see how
the other records were affected by the partial transfor-
mation. In PBD, on the other hand, each demonstra-
tion affects only a single example. In order to see what
the inferred program will do to other examples, the user
must run the program on other examples. One conse-
quence of this is a lack of trust [1][3]. Users do not
trust the inferred program to work correctly on other
examples. Although simultaneous editing also does in-
ference, and thus is also susceptible to mistrust, the ad-
ditional feedback provided by simultaneous selections
across all records makes the system’s operation more
visible, hopefully inspiring more confidence.

The inference used in simultaneous editing is actually
lesspowerful than in some PBD systems. TELS, for ex-
ample, can infer programs containing conditionals and
loops. Simultaneous editing assumes just one implicit
loop (over the records) and no conditionals (every edit-
ing action must be applied to every record). These as-
sumptions permit fast, predictable inference, and allow

inference to be applied only toselectionsand not to the
sequence ofactionsperformed.

Simultaneous editing also requires the user to describe
the set of records. The record description is often sim-
ple (e.g. lines, or paragraphs, or functions), but some
record sets may be hard to describe. By contrast, in most
PBD systems, and keyboard macros too, the record set
is implicit in the user’s demonstration. For example, the
demonstration may end with the cursor at the start of the
next record.

3 User Interface

This section describes the user interface of simultaneous
editing implemented in our prototype system. Features
of the user interface will be introduced by presenting an
example of the system in operation.

Our implementation of simultaneous editing is built into
LAPIS, a text processing system which has been de-
scribed previously [9][10]. LAPIS has several unusual
features that make it well-suited to this effort. First,
LAPIS supports multiple simultaneous text selections;
most text editors allow only one contiguous selection.
Multiple selections make it easy to display the corre-
sponding selection in every record. Second, LAPIS
includes an integrated text pattern language,text con-
straints. Text constraint patterns are convenient not only
for the user to describe the record set, but also for the
system to describe how it has generalized the user’s se-
lection. Finally, LAPIS has a library of built-in parsers
and patterns for various kinds of text structure, including
HTML and Java source code. The domain knowledge
represented by this pattern library enables the system
to make its generalizations more accurate and domain-
specific, as we will see in the example to follow.

3.1 Example: Get/Set Methods

The example is a common task in Java and C++ pro-
gramming: for each fieldx of a class (member variable
in C++ terminology), create a pair of accessor methods
getX andsetX that respectively get and set the value
of x . Figure 2a shows the original Java class. We want to
transform each field declaration so that the variable dec-
laration is followed by its accessor methods, as shown in
Figure 2g.

To enter simultaneous editing mode, the user first se-
lects the records to be edited, using multiple selection. A
multiple selection can be made two ways in LAPIS: by
entering a pattern, which selects all regions that match

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2:Simultaneous editing used to transform Java field declarations into get/set methods.

the pattern; or by holding down the Shift key and select-
ing text regions with the mouse. In this case, the user
choosesJava.Field from the pattern library, which
runs a Java parser and highlights all field declarations in
the current file. If only some of these fields need acces-
sor methods, then the user can either specialize the pat-
tern (e.g. Java.Field starting with "pub-
lic") or manually deselect the undesired fields.

Having selected the records, the user enters simultane-
ous editing mode by pressing the SimulEdit button on
the toolbar. The system then does some preprocessing,
which involves running all appropriate parsers (such as
the Java parser) and searching for interesting features in
the selected records. Preprocessing is described in Sec-
tion 5. The preprocessing delay depends on the num-
ber and length of the records. In this simple example,
preprocessing takes less than one second. After prepro-
cessing, the editor shows that simultaneous editing is en-
abled by highlighting the records in yellow.

The user now starts to edit. First, the user clicks at the
end of one of the records. The system immediately gen-
eralizes this click to the other records, displaying an in-
sertion point at the end of each record (Figure 2b). At
the same time, the Pattern box displays a description of
the generalization that was made:point just af-
ter Java.Field . In this case, the description is ac-
tually a text constraint pattern, which could be evaluated
to select the same insertion points. The description is
not always a valid pattern, because of some design deci-
sions made in our prototype, discussed later. Regardless,
the description provides an additional cue for the user to
check that the system is properly generalizing the selec-
tion.

Having placed the insertion point, the user starts to type
in thegetX method, first pressing Enter to insert a new-
line, then indenting a few spaces, then typing “public
” to start the method declaration. The typed characters
appear in every record (Figure 2c). If typos are made,
the user can back up and correct them, using all familiar
editing operations. Maintaining the simultaneous inser-
tion points during text entry is trivial, since all records
receive the same typed text. No generalization occurs
until the user makes a selection somewhere else.

Now the user is ready to enter the return type of the
getX method. The type is different for each variable
x , so the user can’t simply enter it at the keyboard. In-
stead, copy-and-paste is used. The user selects the type
of one of the fields, in this case, the “int” of “public int
x”. The system generalizes this selection into the de-
scriptionJava.Type , and selects the types of all the
other fields (Figure 2d). Note that other generalizations
of this selection are possible:"int" , 2nd Word , 2nd

from last Word , etc. Some of these generalizations
can be discarded immediately because of assumptions
of simultaneous editing. For example, “int” does not
appear in every record, and so it cannot be selected in
every record. Other generalizations are less preferable
because they are more complicated thanJava.Type .
In this case, the system’s best guess is the right one.

The user then copies the selection to the clipboard,
places the insertion point back after “public “, and pastes
the clipboard. In response to the copy command, the sys-
tem copies alist of strings to its clipboard, one for each
record. When the paste occurs, the system pastes the
appropriate string back to each record (Figure 2e).

Similarly, the user copies and pastes the name of vari-
able to create the method name. The lowercase vari-
able namex is converted into capitalizedX by applying
an editor command that capitalizes the current selection
(Figure 2f). Any editor command that applies to a se-
lection or cursor position can be used in simultaneous
editing mode.

The rest ofgetX andsetX are defined by more typ-
ing and copy-and-paste commands, until the desired re-
sult is achieved (Figure 2g). The user exits simultaneous
editing mode by clicking again on the SimulEdit toolbar
button, releasing it from the depressed state.

3.2 Correcting Generalizations

The example above raises an important issue: what if
the system’s generalization was incorrect at some point
in the simultaneous editing session? How can the user
correct it? Several techniques are available in our sys-
tem: switching to a counterexample, giving multiple ex-
amples, and naming landmarks. These techniques are
explained next.

The first correction technique is illustrated in Figure 3.
While editing a list of phone numbers, the user tries to
place the cursor just before the 4-digit component of
each phone number. The first attempt (Figure 3a) is
a click before “4843” in the first phone number. This
click is incorrectly generalized topoint just be-
fore 2nd Number . An easy way to correct the gen-
eralization is to pick one of the records where the gen-
eralization failed – for example, a phone number with
an area code such as “(724) 421-7359” – and make the
selection in that record instead. This selection results
in a satisfactory generalization (Figure 3b). This strat-
egy, which we callswitching to a counterexample, cor-
rects the system by providing a more generic example
of the desired selection. The system is still generaliz-
ing from only one example; the more generic example
replaces the earlier example. An expert user may even

(a)

(b)

Figure 3: Correcting generalization by switching to a coun-
terexample.

(a)

(b)

Figure 4:Correcting generalization by providing multiple ex-
amples.

avoid the incorrect generalization entirely by selecting
the most generic example first.

Sometimes an incorrect generalization cannot be fixed
by switching to a counterexample. For example, in Fig-
ure 4, the user is trying to select just the filenames,
without any directory prefix. Selecting “readme.txt” in
the first record generalizes to an incorrect description
referring to thepoint just after 1st Punc-
tuation (Figure 4a). Switching to a counterexam-
ple doesn’t work either. For example, selecting “Root”
in the sixth record would generalize tolast Word ,
which is also wrong, because it would select only “txt”
in the first record instead of “readme.txt”. To get the de-
sired selection, the user must provide at least two exam-
ples of the selection. This is done by holding down the
Shift key while selecting the additional example. Alter-
natively, the user can specify a negative example by de-
selecting an incorrect selection in another record. Dese-
lecting is done by right-clicking on a selection and pick-
ing Unselect from the popup menu that appears. Any
number of positive or negative examples can be given.

After receiving a new positive or negative example, the
system searches for a generalization that selects exactly
one region in every record and is consistent with all pos-
itive and negative examples. In this case, two positive
examples suffice to select the last filename component
correctly (Figure 4b).

The user can also assist generalization by making a se-
lection some other way, either by hand or by a pattern,
and then assigning it a unique name. The named selec-
tion becomes part of the pattern library, where the sys-
tem can use it as alandmarkfor generalizing other selec-
tions. For example, the user might specify a regular ex-
pression for the product codes used in his company, and
name it ProductCode. Subsequent selections of product
codes, or of regions adjacent to product codes, will be
generalized much faster and more accurately. This strat-
egy adds more domain knowledge to the system.

Generalization may sometimes fail. There may be in-
sufficient domain knowledge, or the selection may re-
quire a more complicated description than the gener-
alizer is designed to generate. For example, our gen-
eralizer does not form disjunctions, such aseither
"gif" or "jpg". If no generalization can be found
that is consistent with the user’s positive and negative
examples, then the system gives up, beeps, and leaves
only the positive examples selected. No further gener-
alization attempts are made until the user clears the se-
lection and starts a new selection. The user can finish
the desired selection by hand, either by selecting the ap-
propriate regions in the other records, or by entering a
pattern.

4 Applications

This section describes some applications of simultane-
ous editing. Two common themes run through these ex-
amples. First is the power ofdomain knowledge, such as
HTML and Java syntax. Domain knowledge allows the
user to specify patterns more concisely and enables the
generalizer to make more accurate generalizations with
fewer examples. Most text editors either eschew domain
knowledge, understanding only low-level concepts like
words and characters, or else embed knowledge for only
one domain, such as C++. LAPIS strives for a middle
ground by centralizing domain knowledge into a pat-
tern library that simply generates region sets. Other
parts of LAPIS, such as the generalizer, are domain-
independent, and new domain knowledge is easy to add
by installing new patterns and parsers in the library.

The second important theme isinteractivity. Whereas
other solutions to these tasks would involve specifying a

program and then running it in batch mode, simultane-
ous editing allows the task to be performed interactively.

4.1 HTML

The following tasks take advantage of the HTML parser
included in the pattern library. The HTML parser defines
named region sets for each kind of HTML object (e.g.
Element, Tag, Attribute) as well as specific HTML tags
and attributes (e.g. , href).

Change all elements into elements.The
user runs the patternBold to select all bold elements
(which look like bold text), then enters simul-
taneous editing mode. The user selects the first b with
the mouse (which the system generalizes to"b" in
" "), deletes it, and types in “strong”. The user
then selects the last b (which generalizes to"b" in
""), deletes it, and types in “strong” again.

Convert HTML to XHTML. One difference between
HTML and XHTML (an XML format) is the treatment
of tags with no content, such as ,
, or <hr>.
In XHTML, elements with no end tag should be written
as so that an XML parser can parse them without
access to the XHTML document type definition. Making
this conversion with simultaneous editing is straightfor-
ward. To select the empty tags, the user runs the pattern
Tag = Element , which matches all regions that the
HTML parser identified as both tags and complete el-
ements. Entering simultaneous editing mode, the user
places the cursor at the end of the tag (which generalizes
to point just before ">") and inserts a slash to
finish the task.

4.2 Source Code

Programming is full of tasks where simultaneous editing
is useful, particularly when given knowledge of the lan-
guage syntax. The examples below are in Java because
LAPIS has a Java parser in its library. Other languages
could be edited in similar fashion by adding an appro-
priate parser to the library.

Change access permissions.Suppose a class con-
tains a number of fields or methods that currently have
default access permission, and the programmer wants
to change their permissions toprivate . The pro-
grammer selects the relevant fields and methods (using,
for instance,(Field or Method) not start-
ing with "public" or "private"), enters si-
multaneous editing mode, and typesprivate at the
beginning of a field, changing all the others simultane-
ously.

Change a method interface. If a method’s parame-
ters change, then simultaneous editing can be used to

rewrite all the calls to that method at once. For ex-
ample, suppose a methodcopy(src, dest) must
be changed tocopy(dest, src) for consistency
with similar interfaces in the program. The pro-
grammer selects all calls tocopy (perhaps using
the patternMethodCall starting with Iden-
tifier equal to "copy"), enters simultaneous
editing mode, selects the first argument (which general-
izes tofirst ActualParameter), copies it to the
clipboard, and then pastes it after the second argument.
A little more editing fixes the comma separators, and the
change is done. This example demonstrates how simul-
taneous editing with domain knowledge can deliver the
power of syntax-directed editing inside a freeform text
editor.

Wrap every method with entry and exit code.While
debugging a class, the programmer wants to run some
code whenever any method of the class is entered
or exited. This code might do tracing (printing the
method name to a log), performance timing, or valida-
tion (checking that the method preserves class invari-
ants). To add this code, the programmer selects all the
methods using the patternMethod and starts simulta-
neous editing. Next, the programmer types in the en-
try code at the start of the method, wraps the rest of
the method body with atry-finally construct, and
types the exit code inside thefinally clause. All the
methods change identically. This kind of modification is
an example ofaspect-oriented programming[5], where
code is “woven” into a program at program locations de-
scribed by a pattern.

4.3 Scripting

To understand the next set of examples, the reader
should be aware that LAPIS is also a shell [10]. An ex-
ternal command can be executed in the LAPIS command
box, drawing its standard input from the current contents
of the editor and sending its output back to the editor.

Disposable scripts.Suppose the user wants to make a
group of GIF files transparent usinggiftrans . Si-
multaneous editing offers a solution based on the idea of
creating a one-time script directly from data. The user
first runsls *.gif to list the relevant filenames in the
editor. Using simultaneous editing, the user edits each
line into a command, such asgiftrans -T X.gif
> X-transparent.gif . Then the user runs the re-
sulting script withsh . Disposable scripts are a more
interactive way to achieve the effect of the Unix com-
mandsforeach or xargs .

Impedance matching. Data obtained from the output
of one program must often be massaged before it can be
fed into another program. Simultaneous editing offers

the opportunity to perform this massaging interactively,
which is particularly sensible for one-shot tasks. For
example, suppose a user is testing network connectiv-
ity with traceroute , and wants to pass the network
latencies computed bytraceroute into gnuplot to
generate a graph. The user first runstraceroute to
generate a trace. Using simultaneous editing, the user
edits each line of the trace, leaving only the hop num-
ber (1, 2, ...) and the latency time. After exiting si-
multaneous editing mode, the user inserts agnuplot
plot instruction before the first line (plot "-" with
lines) and finally runsgnuplot -persist to plot
the data.

5 Implementation

This section describes the algorithm used to generalize
the user’s selection to a description that can be applied to
all records. The input to the generalizer is a set of pos-
itive examples, a set of negative examples, and the set
of records. The output is a selection consistent with the
positive and negative examples that selects exactly one
region in every record, plus a human-readable descrip-
tion of the selection.

Like other PBD systems, the generalizer basically
searches through a space of hypotheses for a hypothe-
sis consistent with the examples. The details of the im-
plementation are novel, however. Our generalizer is ac-
tually split into three parts: preprocessing, search, and
updating. Preprocessing takes the set of records as input
and generates a list of useful features as output. Prepro-
cessing takes place only once, when the user first enters
simultaneous editing mode. The search phase takes the
positive and negative examples and the feature list gen-
erated by preprocessing, and computes a selection con-
sistent with the examples. Search happens whenever the
user makes a selection with the mouse or keyboard, or
adds a new positive or negative example to the current
selection. Finally, updating occurs when the user edits
the records by inserting, deleting, or copying and past-
ing text. Updating takes the user’s edit action as input
and modifies the feature list appropriately. Each of these
phases is described in more detail below.

5.1 Region Sets

Before describing the generalizer, we first briefly de-
scribe the representations used for selections in a text
file. More detail can be found in an earlier paper about
LAPIS [9]. A region [s, e] is a substring of a text file,
described by its start offsets and end offsete relative to
the start of the text file. Aregion setis a set of regions.

LAPIS has two novel representations for region sets.
First, a fuzzy regionis a four-tuple[s1, s2; e1, e2] that
represents the set of all regions[s, e] such thats1 ≤ s ≤
s2 ande1 ≤ e ≤ e2. Note that any region[s, e] can be
represented as the fuzzy region[s, s; e, e]. Fuzzy regions
are particularly useful for representing relations between
regions. For example, the set of all regions that are in-
side [s, e] can be compactly represented by the fuzzy
region [s, e; s, e]. Similar fuzzy region representations
exist for other relations, includingcontains, before, af-
ter, just before, just after, starting(i.e. having coincident
start points), andending. These relations are fundamen-
tal operators in the text constraints pattern language, and
are also used in generalization.

The second novel representation is theregion tree, a
union of fuzzy regions stored in an R-tree in lexico-
graphic order [9]. A region tree can represent an ar-
bitrary set of regions, even if the regions nest or over-
lap each other. A region tree containingN fuzzy re-
gions takesO(N) space,O(N log N) time to build, and
O(log N) time to test a region for membership in the set.

These two representations are used by the preprocessing
phase to construct a list of features that the search phase
can use to quickly test positive and negative examples.
The selection returned by the search phase is also repre-
sented as a region set.

5.2 Feature Generation

Preprocessing takes the set of records and generates a
list of useful features. A feature is a region set, contain-
ing at least one region in each record, where the regions
are in some sense equivalent. For example, the feature
Java.Type represents the set of all regions that were
recognized by the Java parser as type names. The pre-
processor generates two kinds of features:pattern fea-
turesderived from the pattern library, andliteral features
discovered by examining the text of the records.

Pattern features are found by applying every parser and
every named pattern in the pattern library. LAPIS has
a considerable library of built-in parsers and patterns,
including Java, HTML, character classes (e.g. dig-
its, punctuation, letters), English structure (words, sen-
tences, paragraphs), and various codes (e.g., URLs,
email addresses, hostnames, IP addresses, phone num-
bers). The user can readily add new named patterns and
new parsers. The result of applying a pattern is the set of
all regions matching the pattern. The result of applying
a parser is a collection of named region sets. For exam-
ple, the Java parser generates region sets for Statement,
Expression, Type, Method, and so on.

After applying all library patterns, the preprocessor dis-
cards any patterns that do not have at least one match

in every record. This is justified by two assumptions
made by the generalizer: first, that a generalization must
have at least one match in every record; and second, that
a generalization can be represented without disjunction.
Given these two assumptions, only features that match
somewhere in every record will be useful for construct-
ing generalizations.

By the same reasoning, the only useful literal features
are common substrings, i.e. substrings that occur at least
once in every record. Common substrings can be found
efficiently using asuffix tree[4]. A suffix tree is a path-
compressed trie into which all suffixes of a string have
been inserted. With a suffix tree for a strings, we can
test whether a substringp occurs ins in only O(|p|)
time. Naive suffix tree construction (inserting every suf-
fix explicitly) takesO(|s|2) time, which is sufficient for
our prototype since records tend to be short. Several al-
gorithms exist for building a suffix tree in linear time,
however [4], and extending the algorithm below to ac-
commodate them would be straightforward.

The common substring algorithm works as follows. The
algorithm starts by building a suffix tree from the short-
est record, in order to minimize the size of the initial
suffix tree. This suffix tree represents the set of com-
mon substrings of all records examined so far. For each
of the remaining records, the suffixes of the record are
matched against the suffix tree one by one. Each tree
node keeps a count of the number of times it was visited
during the processing of the current record. This count
represents the number of occurrences (possibly overlap-
ping) of the substring represented by the node. After
processing each record, all unvisited nodes are pruned
from the tree, since the corresponding substrings never
occurred in the record. After processing every record
in this fashion, the only substrings left in the suffix tree
must be common to all the records. These common sub-
strings are used as literal features. The operation of the
common substring algorithm is illustrated in Figure 5.

5.3 Feature Ordering

After generating useful features from the set of records,
the preprocessor sorts them into a list in order of pref-
erence. Placing the most-preferred features first makes
the search phase simpler. The search can just scan down
the list of features and stop as soon as it finds the first
feature consistent with the examples, since this feature
is guaranteed to be the most preferred consistent feature.

Features are classified into three groups for the purpose
of preference ordering:unique features, which occur ex-
actly once in each record;regular features, which occur
exactlyn times in each record, for somen > 1; and
varying features, which occur a varying number of times

rcm@cmu.edu$

cm
@cmu.edu$

u.edu$

m
@cmu.edu$

u.edu$

@cmu.edu$

u
.edu$

$

.edu$

edu$

du$

0

1

1

1

1

1

rcm@cmu.edu$

c 0

1

@cmu.edu$

u.edu$

1
m 0

1

@cmu.edu$

u.edu$

@cmu.edu$

1u 1

1

.edu$

$

.edu$

edu$

du$

2
m

c
u.edu$

m
u.edu$

@cmu.edu$

u

$

.edu$

edu$

du$

m

(a) (b) (c)

.edu$

Figure 5: Finding common substrings using a suffix tree. (a) Suffix tree constructed from first record,rcm@cmu.edu ; $
represents a unique end-of-string character. (b) Suffix tree after matching against second record,ljc@cmu.edu . Each node
is labeled by its visit count. (c) Suffix tree after pruning nodes which are not found inljc@cmu.edu . The remaining nodes
represent the common substrings of the two records.

in each record. A feature’s classification is not predeter-
mined. Instead, it is found by actually counting occur-
rences in the records being edited. For example, in Fig-
ure 2,Java.Type is a unique feature, since it occurs
exactly once in every variable declaration. Regular fea-
tures are commonly found as delimiters. For example,
if the records are IP addresses like 127.0.0.1, then “.” is
a regular feature. Varying features are typically tokens,
like words and numbers, which are general enough to
occur in every record but do not necessarily follow any
regular pattern.

Unique features are preferred over the other two kinds.
A unique feature has the simplest description: the fea-
ture name itself, such asJava.Type . By contrast, us-
ing a regular or varying feature in a generalization re-
quires specifying the index of a particular occurrence,
such as5th Word . Regular features are preferred over
varying features, because regularity of occurrence is a
strong indication that the feature is relevant to the inter-
nal structure of a record.

Within each group, pattern features are preferred over
literal features. We also plan to let the user specify pref-
erences between pattern features, so that, for instance,
Java features can be preferred over character-class fea-
tures. We are still designing the user interface for this,
however, so the prototype currently leaves pattern fea-
tures in an arbitrary order. Among literal features, longer

literals are preferred to shorter ones.

To summarize, the preprocessor orders the feature list in
the following order, with most preferred features listed
first: unique patterns, unique literals, regular patterns,
regular literals, varying patterns, varying literals. Within
each group of patterns, the order is arbitrary. Within
each group of literals, longer literals are preferred to
shorter.

5.4 Search

The search algorithm takes the user’s positive and neg-
ative examples and the feature list generated by prepro-
cessing, and attempts to generate a description consis-
tent with the examples.

The basic search process works as follows. The system
chooses the first positive example, called theseed exam-
ple, and scans through the feature list, testing the seed
example for membership in each feature. Since each fea-
ture is represented by a region tree, this membership test
is very fast. When a matching feature is found, the sys-
tem constructs one or more candidate descriptions repre-
senting the particular occurrence that matched. For ex-
ample, if the seed example matches the (varying) fea-
tureWord, the system might construct the candidate de-
scriptions 5th Word and 2nd from last Word
by counting words in the seed example’s record. These

candidate descriptions are tested against the other posi-
tive and negative examples, if any. The first consistent
description found is returned as the generalization.

The output of the search process depends on whether
the user is selecting an insertion point (e.g. by clicking
the mouse) or selecting a region (e.g. by dragging). If
all the positive examples are zero-length regions, then
the system assumes that the user is placing an insertion
point, and searches for a point description. Otherwise,
the system searches for a region description.

To search for a point description, the system transforms
the seed example, which is just a character offsetb, into
two fuzzy regions:[b, b; b, +∞], which represents all re-
gions that start atb, and[−∞, b; b, b], which represents
all regions that end atb. The search tests these fuzzy
regions for intersection with each feature in the feature
list, which is just as fast as a simple region membership
test. Candidate descriptions generated by the search are
transformed into point descriptions by prefixingpoint
just before or point just after , depending
on which fuzzy region matched the feature, and then
the descriptions are tested for consistency with the other
positive and negative examples.

To search for a region description, the system first
searches for the seed example using the basic search pro-
cess described above. If no matching feature is found –
because the seed example does not correspond precisely
to a feature on the feature list – then the system splits the
seed example into its start point and end point, and re-
cursively searches for point descriptions for each point.
Candidate descriptions for the start point and end point
are transformed into a description of the entire region
by wrapping withfrom...to... , and then tested for
consistency with the other examples.

This search algorithm is capable of generalizing a selec-
tion only if it starts and ends on a feature boundary. For
literal features, this is not constraining at all. Since a
literal feature is a string that occurs in all records, every
substring of a literal feature isalsoa literal feature. Thus
every position in a literal feature lies on a feature bound-
ary. To save space, the preprocessor only stores maximal
literal features in the feature list, and the search phase
tests whether the seed example falls anywhere inside a
maximal literal feature.

5.5 Updating

In simultaneous editing, the user is not only making se-
lections, but also editing the file. Editing has two effects
on generalization. First, every edit changes the start and
end offsets of regions. As a result, the region sets used
to represent features become invalid. Second, editing

0 1 2 3 4 5 6 7

0

1

2

3

4

t r a m p l e

t

a

m

e

old file
offsets

new file
offsets

Figure 6:Coordinate map translating offsets between two ver-
sions of a file. The old version is the wordtrample . Two
regions are deleted to get the new version,tame .

changes the file content, so the precomputed features
may become incomplete or wrong. For example, if the
user types some new words, then the precomputedWord
feature becomes incomplete, since it doesn’t include the
new words the user typed. The updating algorithm ad-
dresses these two problems.

From the locations and length of text inserted or deleted,
the updating algorithm computes acoordinate map, a
relation that translates a file offset prior to the change
into the equivalent file offset after the change. The coor-
dinate map can translate coordinates in either direction.
For example, Figure 6 shows the coordinate map for a
simple edit. Offset 3 intrample corresponds to offset
2 in tame , and vice versa. Offsets with more than one
possible mapping in the other version, such as offset 1 in
tame , are resolved arbitrarily. Our prototype picks the
largest value.

Since the coordinate map for a group of insertions or
deletions is always piecewise linear, it can be repre-
sented as a sorted list of the (x,y) endpoints of each line
segment. If a single edit consists ofm insertions or dele-
tions (one for each record), then this representation takes
O(m) space. Evaluating the coordinate map function for
a single offset takesO(log m) time using binary search.

A straightforward way to use the coordinate map is to
scan down the feature list and update the start and end
points of every feature to reflect the change. If the fea-
ture list is long, however, and some feature sets are large
(such as Word or Whitespace), the cost of updating ev-
ery feature after every edit may be prohibitive. Our gen-
eralizer takes the opposite strategy: instead of translat-
ing all features up to the present, we translate the user’s
positive and negative examplesback to the past. The
system maintains a global coordinate map representing
the translation between original file coordinates (when
simultaneous editing mode was entered and the feature

list generated) and the current file coordinates. When an
edit occurs, the updating algorithm computes a coordi-
nate map for the edit and composes it with this global
coordinate map. When the user provides positive and
negative examples to generalize into a selection, the ex-
amples are translated back to the original file coordinates
using the inverse of the global coordinate map. The
search algorithm generates a consistent description for
the translated examples. The generated description is
then translated forward to current file coordinates before
being displayed as a selection.

An important design decision in a simultaneous editing
system that uses domain knowledge, such as Java syn-
tax, is whether the system should attempt to reparse the
file while the user is editing it. On one hand, reparsing
allows the generalizer to track all the user’s changes and
reflect those changes in its descriptions. On the other
hand, reparsing is expensive and may fail if the file is in
an intermediate, syntactically incorrect state. Our gener-
alizer never reparses automatically in simultaneous edit-
ing mode. The user can explicitly request reparsing with
a menu command, which effectively restarts simultane-
ous editing using the same set of records. Otherwise, the
feature list remains frozen in the original version of the
file. One consequence of this decision is that the gener-
alizer’s human-readable descriptions may be misleading
because they refer to an earlier version.

This design decision raises an important question. If the
feature list is frozen, how can the user make selections in
newly-inserted text, which didn’t exist when the feature
list was built? This problem is handled by the update
algorithm. Every typed insert in simultaneous editing
mode adds a new literal feature to the feature list, since
the typed characters are guaranteed to be identical in all
the records. Similarly, pasting text from the clipboard
creates a special feature that translates coordinates back
to the source of the paste and tries to find a description
there. When the generalizer uses one of these features
created by editing, the feature is described as “some-
where in editN ”, which can be seen in Figures 2e and
2g.

A disadvantage of this scheme is that the housekeep-
ing structures – the global coordinate map and the new
features added for edits – grow steadily as the user ed-
its. This growth can be slowed significantly by coalesc-
ing adjacent insertions and deletions, although we have
not yet implemented this. Another solution might be to
reparse when the number of edits reaches some thresh-
old, doing the reparsing in the background on a copy of
the file in order to avoid interfering with the user’s edit-
ing. In practice, however, we don’t expect space growth
to be a serious problem. In all the applications we have
imagined, the user spends only a few minutes in a simul-

taneous editing session, not the hours that are typical of
general text editing. After leaving simultaneous editing
mode, the global coordinate map and the feature list can
be discarded.

6 Evaluation

Simultaneous editing was evaluated by a small user
study. Eight users were found by soliciting campus
newsgroups. All were college undergraduates with sub-
stantial text-editing experience and varying levels of pro-
gramming experience (5 described their programming
experience as “little” or “none,” and 3 as “some” or
“lots”). Users were paid for participation. Users first
learned about simultaneous editing by reading a tutorial
and trying the examples. The tutorial took less than 10
minutes for all but one user (who spent 30 minutes ex-
ploring the system). After the tutorial, each user per-
formed the following three tasks:

1. Put the author name and publication year in front
of each citation.
Before:
1. Aha, D.W. and Kibler, D. Noise-tolerant instance-based learning algo-
rithms. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, 1989, pp. 794-799
2. Hayes-Roth, B. Pfleger, K. Morignot, P. and Lalanda, P. Plans and
Behavior in Intelligent Agents, Technical Report KSL-95-35, Stanford
University, 1995.
... (7 more) ...
After:
[Aha 89] Aha, D.W. and Kibler, D. Noise-tolerant instance-based learning
algorithms. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, 1989, pp. 794-799.
[Hayes-Roth 95] Hayes-Roth, B. Pfleger, K. Morignot, P. and Lalanda, P.
Plans and Behavior in Intelligent Agents, Technical Report KSL-95-35,
Stanford University, 1995.
... (7 more) ...

2. Reformat a list of mail aliases from HTML to text.
Before:
<DT>
Conceptual Graphs
<DT>
KIF
... (5 more) ...
After:
;; Conceptual Graphs
congra: mailto:cg@cs.umn.edu
;; KIF
kif: mailto:kif@cs.stanford.edu
... (5 more) ...

3. Reformat a list of baseball scores into a tagged for-
mat (7 records).
Before:
Cardinals 5, Pirates 2.
Red Sox 12, Orioles 4.
... (5 more) ...
After:
GameScore[winner ’Cardinals’; loser ’Pirates’; scores[5, 2]].
GameScore[winner ’Red Sox’; loser ’Orioles’; scores[12,4]].
... (5 more) ...

All tasks were obtained from other authors (tasks 1 and
2 from Fujishima [3] and task 3 from Nix[12]). Af-
ter performing a task with simultaneous editing, users

repeated the task with manual editing, but only on the
first three records to avoid unnecessary tedium. Users
were instructed to work carefully and accurately at their
own pace. All users were satisfied that they had com-
pleted all tasks, although the finished product sometimes
contained undetected errors, a problem discussed further
below. No performance differences were seen between
programmers and nonprogrammers. Aggregate times for
each task are shown in Table 1.

Following the analysis used by Fujishima [3], we es-
timate the leverage obtained with simultaneous editing
by dividing the time to edit all records with simultane-
ous editing by the time to edit just one record manu-
ally. This ratio, which we callequivalent task size,rep-
resents the number of records for which simultaneous
editing time would be equal to manual editing time for
a given user. Since manual editing time increases lin-
early with record number and simultaneous editing time
is roughly constant (or only slowly increasing), simul-
taneous editing will be faster whenever the number of
records is greater than the equivalent task size. (Note
that the average equivalent task size is not necessarily
equal to the ratio of the average editing times, since
E[S/M] 6= E[S]/E[M].)

As Table 1 shows, the average equivalent task sizes are
small. In other words, the average novice user works
faster with simultaneous editing if there are more than
8.4 records in the first task, more than 3.6 records in the
second task, or more than 4 records in the third task.1

Thus simultaneous editing is an improvement over man-
ual editing even for very small repetitive editing tasks,
and even for users with as little as 10 minutes of expe-
rience. Some users were so slow at manual editing that
their equivalent task size is smaller than the expert’s, so
simultaneous editing benefits them even more. Simulta-
neous editing also compares favorably to another PBD
system, DEED [3]. When DEED was evaluated with
novice users on tasks 1 and 2, the reported equivalent
task sizes averaged 42 and ranged from 5 to 200, which
is worse on average and considerably more variable than
simultaneous editing.

Another important part of system performance is gener-
alization accuracy. Each incorrect generalization forces
the user to make at least one additional action, such as
selecting a counterexample or providing an additional
positive or negative example. In the user study, users
made a total of 188 selections that were used for edit-
ing. Of these, 158 selections (84%) were correct imme-

1These estimates are actually conservative. Simultaneous editing
always preceded manual editing for each task, so the measured time
for simultaneous editing includes time spent thinking about and un-
derstanding the task. For the manual editing part, users had already
learned the task, and were able to edit at full speed.

diately, requiring no further examples. The remaining
selections needed either 1 or 2 extra examples to general-
ize correctly. On average, only 0.26 additional examples
were needed per selection. Unfortunately, users tended
to overlook slightly-incorrect generalizations, particu-
larly generalizations that selected only half of the hy-
phenated author “Hayes-Roth” or the two-word baseball
team “Red Sox”. As a result, the overall error rate for
simultaneous editing was slightly worse than for manual
editing: 8 of the 24 simultaneous editing sessions ended
with at least one uncorrected error, whereas 5 of 24 man-
ual editing sessions ended with uncorrected errors. If the
two most common selection errors had been noticed by
users, the error rate for simultaneous editing would have
dropped to only 2 of 24. We are currently studying ways
to call the user’s attention to possible selection errors [8].

After doing the tasks, users were asked to evaluate the
system’s ease-of-use, trustworthiness, and usefulness on
a 5-point Likert scale. These questions were also bor-
rowed from Fujishima [3]. The results, shown in Fig-
ure 7, are generally positive.

7 Status and Future Work

Simultaneous editing has been implemented in LAPIS,
a browser/editor designed for processing structured text.
LAPIS is written in Java 1.1, extending the JFC text ed-
itor component JEditorPane. Directions for obtaining
LAPIS are found at the end of this paper.

We have many ideas for future work. First and perhaps
most challenging is the problem of scaling up to large
tasks. Although our prototype is far from a toy, since it
can handle 100KB files with relative ease, many interest-
ing tasks involve megabytes of data spread across mul-
tiple files. Large data sets pose several problems for si-
multaneous editing. The first problem is system respon-
siveness. Making a million edits with every keystroke
may slow the system down to a crawl, particularly if the
text editor uses agap bufferto store the text [2]. Gap
buffers are used by many editors, among them Emacs
and JEditorPane, the Java class on which our prototype
is based. With a gap buffer and a record set that spans
the entire file, typing a single character forces the editor
to move nearly every byte in the buffer. One way to ad-
dress this problem is to delay edits to the rest of the file
until the user scrolls. Another solution would be to have
multiple gaps in the buffer, one for each record.

Another problem with large files is checking for incor-
rect generalizations. When editing a small file, the user
can just scan through the entire file to ensure that a se-
lection has been generalized properly. With a large file,

Records Equivalent task size
Task in task Simultaneous editing Manual editing novices expert

1 9 142.9 s [63-236 s] 21.6 s/rec[7.7-65 s/rec] 8.4 recs [2.1-12.2 recs] 4.5 recs
2 7 119.1 s [64-209 s] 32.3 s/rec [19-40 s/rec] 3.6 recs [1.9-5.8 recs] 1.6 recs
3 7 159.6 s [84-370 s] 41.3 s/rec [16-77 s/rec] 4.0 recs [1.9-6.2 recs] 2.4 recs

Table 1: Time taken by users to perform each task (mean [min-max]).Simultaneous editingis the time to do the
entire task with simultaneous editing.Manual editingis the time to edit 3 records of the task by hand, divided by 3
to get a per-record estimate.Equivalent task sizeis the ratio between simultaneous editing time and manual editing
time for each user;novicesare users in the user study, andexpertis one of the authors, provided for comparison. A
task with more records thanequivalent task sizewould be faster with simultaneous editing than manual editing.

very hard

somewhat
hard

neutral

somewhat
easy

very easy

0 2 4 6 8

How easy was it to use?

very
untrustworthy

somewhat
untrustworthy

neutral

somewhat
trustworthy

very
trustworthy

0 2 4 6 8

How much did you trust it to do the right thing?

very unlikely

somewhat
unlikely

neutral

somewhat
likely

very likely

0 2 4 6 8

Would you use it for your own tasks?

Figure 7:User responses to questions about simultaneous editing.

scanning becomes infeasible. We have several ideas for
secondary visualizations that might help with this prob-
lem. One is a “bird’s-eye view” showing the entire file
(in greeked text), so that deviations in an otherwise regu-
lar highlight can be noticed at a glance. Another is an ab-
breviated context view, showing only the selected lines
from each record. A third view is an “unusual matches”
view, showing only the most unusual examples of the
generalization, found by clustering the matches [8].

A third problem with large data sets is where the data re-
sides. For interactive simultaneous editing, the data must
fit in RAM, with some additional overhead for parsing
and storing feature lists. For large data sets, this is im-
practical. However, it is easy to imagine interactively
editing a small sample of the data to record a macro
which is applied in batch mode to the rest of the data.
The batch mode could minimize its memory require-
ments by reading and processing one record at a time
(or one translation unit at a time, if it depends on a Java
or HTML parser). Macros recorded from simultaneous
editing would most likely be more reliable than key-
board macros recorded from single-cursor editing, since
simultaneous editing finds general patterns representing
each selection. The larger and more representative the
sample used to demonstrate the macro, the more correct
the patterns would be. The macro could also be saved
for later reuse.

8 Conclusions

Simultaneous editing is an effective way for users to per-
form repetitive text editing tasks interactively, using fa-
miliar editing commands. Its combination of interactiv-
ity and domain specificity makes simultaneous editing a
useful addition to our basket of tools for text process-
ing, which is practical for inclusion in a wide variety of
editors.

The LAPIS browser/editor, which includes an imple-
mentation of simultaneous editing with Java source
code, may be downloaded from

http://www.cs.cmu.edu/~rcm/lapis/

Acknowledgements

The authors are indebted to Yuzo Fujishima for provid-
ing the materials to reproduce the DEED user study. We
would also like to thank Laura Cassenti, Sarit Sotangkur,
Dorothy Zaborowski, Brice Cassenti, and Jean Cassenti
for enduring early versions of simultaneous editing, and
Sheila Harnett and the anonymous referees for their
helpful comments. This research was funded in part by
USENIX Student Research Grants.

References
[1] A. Cypher. Eager: Programming repetitive tasks by demonstra-

tion. In A. Cypher, editor,Watch What I Do: Programming by
Demonstration, pages 205–218. MIT Press, 1993.

[2] C. A. Finseth. Theory and practice of text editors, or, a cookbook
for an EMACS. Technical Memo 165, MIT Lab for Computer
Science, May 1980.

[3] Y. Fujishima. Demonstrational automation of text editing tasks
involving multiple focus points and conversions. InProceed-
ings of the International Conference on Intelligent User Inter-
faces (IUI ’98), pages 101–108, 1998.

[4] D. Gusfield.Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology. Cambridge Univer-
sity Press, 1997.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. InEuropean Confer-
ence on Object-Oriented Programming (ECOOP), 2001.

[6] J. Landauer and M. Hirakawa. Visual AWK: a model for text
processing by demonstration. InProceedings of the 11th Inter-
national IEEE Symposium on Visual Languages ’95, pages 267–
274, 1995.

[7] D. Maulsby. Instructible Agents. PhD thesis, Univ. of Calgary,
1994.

[8] R. C. Miller. Lightweight Structured Text Processing. PhD thesis,
Carnegie Mellon University, 2001. In preparation.

[9] R. C. Miller and B. A. Myers. Lightweight structured text pro-
cessing. InProceedings of the 1999 USENIX Annual Technical
Conference, pages 131–144, June 1999.

[10] R. C. Miller and B. A. Myers. Integrating a command shell into
a web browser. InUSENIX 2000 Annual Technical Conference,
pages 171–182, June 2000.

[11] B. A. Myers. Tourmaline: Text formatting by demonstration. In
A. Cypher, editor,Watch What I Do: Programming by Demon-
stration, pages 309–322. MIT Press, 1993.

[12] R. Nix. Editing by example.ACM Transactions on Programming
Languages and Systems, 7(4):600–621, October 1985.

[13] I. H. Witten and D. Mo.TELS: Learning text editing tasks from
examples. In A. Cypher, editor,Watch What I Do: Programming
by Demonstration, pages 183–204. MIT Press, 1993.

