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Abstract. We consider the problem of assigning prices to goods of fixed
marginal cost in order to maximize revenue in the presence of single-
minded customers. We focus in particular on the question of how pricing
certain items below their marginal costs can lead to an improvement in
overall profit, even when customers behave in a fully rational manner. We
develop two frameworks for analyzing this issue that we call the discount
and the coupon models, and examine both fundamental “profitability
gaps” (to what extent can pricing below cost help to improve profit) as
well as algorithms for pricing in these models in a number of settings
considered previously in the literature.

1 Introduction

The notion of loss-leaders, namely pricing certain items below cost in a way
that increases profit overall from the sales of other items, is a common technique
in marketing. For example, a hamburger chain might price its burgers below
production cost but then have a large profit margin on sodas. Grocery stores
often give discounts that reduce the cost of certain items even to zero, making
money from other items the customers will buy while in the store.

Such “loss leaders” are often viewed as motivated by psychology: producing
extra profit from the emotional behavior of customers who are attracted by the
good deals and then do not fully account for their total spending. Alternatively,
they are also often discussed in the context of selling goods of decreasing marginal
cost (so the loss-leader of today will be a profit center tomorrow once sales
have risen). However, even for items of fixed marginal cost, with fully rational
customers who have valuations on different bundles of items and act to maximize
utility, pricing certain items below cost can produce an increase in profit. For
example, DeGraba [5] analyzes equilibria in a 2-firm, 2-good Hotelling market,
and argues that the power of loss leaders is that they provide a method for
focusing on high-profit customers: “a product could be priced as a loss leader if,
in a market in which some customers purchase bundles of products that are more
profitable than bundles purchased by others, the product is purchased primarily
by customers that purchase more profitable bundles.” Balcan and Blum [1] give
an example, in the context of pricing n items of fixed marginal cost to a set
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of single-minded customers, where allowing items to be priced below cost can
produce an Ω(log n) factor more than the maximum possible profit obtained
by pricing all items above cost. However, the problem of developing algorithms
taking advantage of this idea was left as an open question.

In this paper we consider this problem more formally, introducing two theoret-
ical models which we call the coupon model and the discount model for analyzing
the profit that can be obtained by pricing below cost. These models are motivated
by two different types of settings in which such pricing schemes can naturally
arise. We then develop algorithms for several problems studied in the literature,
including the “highway problem” [8] and problems of pricing vertices in graphs,
as well as analyze fundamental gaps between the profit obtainable under the
different models. It is worth noting that the algorithmic problem becomes much
more difficult in these settings than in the setting where pricing below cost is
not allowed.

The two models we introduce are motivated by two types of scenarios. In the
discount model, we imagine a retailer (say a supermarket or a hamburger chain)
selling n different types of items, where each item i has some fixed marginal
(production) cost ci to the retailer. The retailer needs to assign a sales price si

to each item, which could potentially be less than ci. That is, the profit margin
pi = si − ci for item i could be positive or negative. The goal of the retailer is
to assign these prices so as make as much profit as possible from the customers.
We will be considering the case of single-minded customers, meaning that each
customer j has some set Sj of items he is interested in and will purchase the
entire set (one unit of each item i ∈ Sj) if its total cost is at most his valuation
vj , else nothing. As an example, suppose we have two items {1, 2}, each with
production cost ci = 10 and two customers, one interested in item 1 only and
willing to pay 20, and the other interested in both and willing to pay 25. In
this case, by setting s1 = 20 and s2 = 5 (which correspond to profit margins
p1 = 10 and p2 = −5, and hence the second item is priced below cost) the
retailer can make a total profit of 15. This is greater than the maximum profit
(10) obtainable from these customers if pricing below cost were not allowed.

One thing that makes the discount model especially challenging is that profit
is not necessarily monotone in the customers’ valuations. For instance, in the
above example, if we add a new customer with Sj = {2} and vj = 3 then the
solution above still yields profit 15 (because the new customer does not buy),
but if we increase vj to 10, then any solution will make profit at most 10.

The second model we introduce, the coupon model, is designed to at least
satisfy monotonicity. This model is motivated by the case of goods with zero
marginal cost (such as airport taxes or highway tolls). However, rather than
setting actual negative prices, we instead will allow the retailer to give credit
that can be used towards other purchases. Formally, each item i has marginal
cost ci = 0 and is assigned a sales price pi which can be positive or negative, and
the price of a bundle S is max(

∑
i∈S pi, 0), which is also the profit for selling this

bundle. We again consider single-minded customers. A customer j will purchase
his desired bundle Sj iff its price is at most his valuation vj . Note that in this
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model we are assuming no free disposal: the customer is only interested in a
particular set of items and will not purchase a superset even if cheaper (e.g.,
in the case of highway tolls, we assume a driver would either use the highway
to go from his source to his destination or not, but would not travel additional
stretches of highway just to save on tolls). As an example of the coupon model,
consider a highway with three toll portions (items) 1, 2, and 3. Assume there
are four drivers (customers) A, B, C, and D as follows: A, B, and C each only
use portions 1, 2, and 3 respectively, but D uses all three portions. Assume that
A, C, and D each are willing to pay 10 while B is wiling to pay only 1. In this
case, by setting p1 = p3 = 10 and p2 = −10, we have a solution with profit of 30
(driver B gets to travel for free, but is not actually paid for using the highway).
This is larger than the maximum profit possible (21) in the discount model or
if we are not allowed to assign negative prices. Note that unlike the discount
model, the coupon model does satisfy monotonicity.

We can make the discount model look syntactically more like the coupon
model by subtracting production costs from the valuations. In this view, wj :=
vj −

∑
i∈Sj

ci represents the amount above production cost that customer j is
willing to pay for Sj , and our goal is to assign positive or negative profit mar-
gins pi to each item i to maximize the total profit

∑
j:wj≥p(Sj) p(Sj) where

p(Sj) =
∑

i∈Sj
pi. It is interesting in this context to consider two versions: in the

unbounded discount model we allow the pi to be as large or as small as desired,
ignoring the implicit constraint that pi ≥ −ci, whereas in the bounded discount
model we impose those constraints. Note that in this view, the only difference
between the unbounded discount model and the coupon model is that in the
coupon model we redefine p(Sj) as max(

∑
i∈Sj

pi, 0).
We primarily focus on two well-studied problems first introduced formally by

Guruswami et al. [8]: the highway tollbooth problem and the graph vertex pricing
problem. In the highway tollbooth problem, we have n items (highway segments)
1, . . . , n, and each customer (driver) has a desired bundle that consists of some
interval [i, i′] of items (consecutive segments of the highway). The seller is the
owner of the highway system, and would like to choose tolls on the segments (and
possibly also coupons in the coupon model) so as to maximize profits. Even if all
customers have the same valuation for their desired bundles, we show that there
are log(n)-sized gaps between the profit obtainable in the different models. In
the graph vertex pricing problem, we instead have the constraint that all desired
bundles Sj have size at most 2. Thus, we can consider the input as a multi-
graph whose vertex set represent the set of items and whose edges represent
the costumers who want end-points of the edges. We show that if this graph is
planar then one can in fact achieve a PTAS for profit in each model.

It is worth mentioning we do not focus on incentive-compatibility aspects
in this paper since one can use the generic reductions in [3] to convert our
approximations algorithms into good truthful mechanisms. In this version, we
only state the results and the reader is referred to the full version [2] for the
proofs.
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2 Notation, Definitions, and Gaps Between the Models

We assume we have m customers and n items (or “products”). We are in an
unlimited supply setting, meaning that the seller is able to sell any number of
units of each item. We consider single-minded customers, which means that each
customer is interested in only a single bundle of items and has valuation 0 on all
other bundles. Therefore, valuations can be summarized by a set of pairs (e, ve)
indicating that a customer is interested in bundle (hyperedge) e and values it
at ve. Given the hyperedges e and valuations ve, we wish to compute a pricing
of the items that maximizes the seller’s profit. We assume that if the total price
of the items in e is at most ve, then the customer (e, ve) will purchase all of
the items in e, and otherwise the customer will purchase nothing. Given a price
vector p over the n items, it will be convenient to define p(e) =

∑
i∈e pi.

Let us denote by E the set of customers, and V the set of items, and let
h be maxe∈E ve. Let G = (V, E, v) be the induced hypergraph, whose vertices
represent the set of items, and whose hyperedges represent the customers. Notice
that G might contain self-loops (since a customer might be interested in only
a single item) and multi-edges (several customers might want the same subset
of items). The special case that all customers want at most two items, so G is
a graph, is known as the graph vertex pricing problem [1]. Another interesting
case considered in previous work [1,8] is the highway problem. In this problem
we think of the items as segments of a highway, and each desired subset e is
required to be an interval [i, j] of the highway.
Reduced Instance: In many of our algorithms, it is convenient to think about
the reduced instance G̃ = (V, E, w) of the problem which is defined as follows.
Let bi denote the marginal cost of item i. Suppose customer e has valuation ve.
Then, in the reduced instance, its valuation becomes we := ve −

∑
i∈e bi. Now,

if we give item i a price pi in the reduced instance, then its real selling price
would be si := pi + bi. In previous work [1,8,4], the focus was on pricing above
cost, which in our notation, corresponds to the case where pi ≥ 0, for every
item i. However, as mentioned in the introduction, in many natural cases, we
can potentially extract more profit by pricing certain items below cost (which
corresponds to the case where pi < 0).

From now on, we always think in terms of the reduced instance. We formally
define all the pricing models we consider as follows:
Positive Price Model: In this model, we require the selling price of an item to
be at or above its production cost. Hence, in the reduced instance, we want the
price vector p with positive components pi ≥ 0 that maximizes Profitpos(p) =∑

e:we≥p(e) p(e). Let p∗
pos be the price vector with the maximum profit under

positive prices and let OPTpos = Profitpos(p∗
pos).

Discount Model: In this model, the selling price of an item can be arbitrary.
In particular, the price can be below the cost, or even below zero. We want the
price vector p that maximizes Profitdisc(p) =

∑
e:we≥p(e) p(e). Let p∗

disc be the
price vector with the maximum profit and let OPTdisc = Profitdisc(p∗

disc).
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B-Bounded Discount Model: In this model, the selling price of an item i
can be below its production cost bi, but cannot be below zero. This corresponds
to a negative price in the reduced instance, but it is bounded below by −bi.
For simplicity, we assume that the production costs of all items are each B. We
want the price vector p with components pi ≥ −B that maximizes ProfitB(p) =∑

e:we≥p(e) p(e). Let p∗
B be the price vector with the maximum profit and let

OPTB = ProfitB(p∗
B). Observe that OPTpos ≤ OPTB ≤ OPTdisc.

Coupon Model: This model makes most sense in which the items have zero
marginal cost, such as airport taxes or highway tolls. In this model, the selling
price of an item can actually be negative. However, we impose the condition
that the seller not make a loss in any transaction with any customer. We want
the price vector p that maximizes Profitcoup(p) =

∑
e:we≥p(e) max(p(e), 0). Let

p∗
coup be the price vector with the maximum coupon profit and let OPTcoup =

Profitcoup(p∗
coup). From the definition, it is immediate that OPTpos ≤ OPTcoup.

Gaps between the Models. We state below a few fundamental gaps between
the profits obtainable in these models.

Theorem 1. For the highway problem, there exists an Ω(log n) gap between
the positive price model and the (B-bounded) discount model, even for B = 1.
Moreover, there exists an Ω(log n) gap between the coupon model and the (B-
bounded) discount model.

Theorem 2. For the graph vertex pricing problem1, there exists an Ω(log B)
gap between the positive price model and the B-bounded discount model, even for
a bipartite graph.

3 Main Tools and Main Results

We describe now the main tools used in the paper. These tools allow us to give
bounds on the prices of items in an optimal solution in each of the pricing models.
DAG Representation of the Highway Problem: We describe here an
alternative representation of the Highway Problem. This representation proves
to be extremely convenient both for the analysis and for the design of algorithms.

Suppose the n items are in the order l1, l2, . . . , ln, with corresponding prices
p1, p2, . . . , pn. Then, for each 0 ≤ i ≤ n, we have a node vi labelled with the
partial sum si :=

∑i
j=1 pi, where s0 = 0. A customer corresponds to a subset of

the form {li, . . . , lj}, which is represented by a directed arc from vi−1 to vj .

Lemma 1. Under all pricing models (positive price model, (bounded) discount
model, coupon model), there is always an optimal solution such that smax −
smin ≤ nh, where sM := max{si : 0 ≤ i ≤ n} and sm := min{si : 0 ≤ i ≤ n},
and h is the maximum valuation.
1 The graph vertex pricing problem is APX-hard under all our models. One can easily

extend the result in [8] to our setting too.
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Existence of Bounded Solution for Graph Vertex Pricing: Recall that
in the graph setting, we denote the set of items by V , and each customer is
interested in at most two items. We represent the set of customers interested
in exactly two items by the set of (multi) edges E, and the set of customers
interested in exactly one item by the (multi) set N , where for each e ∈ E ∪ N ,
we ∈ Z is customer e’s valuation.

Lemma 2. Under all the pricing models (the coupon model and (bounded) dis-
count model), there is an optimal price vector p∗ ∈ R

V that is half-integral if all
customers’ valuations are integral. Moreover, if all valuations are at most h, then
p∗ can be chosen to be bounded in the sense that for all v ∈ V , |p∗(v)| ≤ 2nh.

3.1 Coupon Model

The main feature of the coupon model is that even when the sum of the prices
for the items that a customer wants is negative, the net profit obtained from
that customer is zero.

A Constant Factor Approximation for the Highway Problem: We show
here a constant factor approximation algorithm for the highway problem under
the coupon model, in the case where all the customers’ valuations are identical.

Theorem 3. There is a 2.33-approximation algorithm under the coupon model
for the highway problem in the case when all all customers’ valuations are all 1.

Proof. First, we represent the problem as a DAG as described above: each node
corresponds to a partial sum and each customer is represented as a directed edge
from its left node to its right node. We then use the approximation algorithm
presented in [7] for the MAX DICUT problem to get a 1

0.859 -approximation for
OPT that uses no more than two levels, i.e., the partial sums are either 0 or 1.
Hence, in order to show the result, it suffices2 to show that there exists a solution
in which the partial sums are either 0 or 1 and has profit at least 1

2OPTcoup.
Consider the partial sums in an optimal solution. Observe that for each customer
from which we get a profit (of 1), we still obtain a profit for that customer after
modifying the solution in exactly one of the following ways: If a partial sum
is even, set it to 0, otherwise set it to 1. If a partial sum is even, set it to 1,
otherwise set it to 0. Hence, by choosing the modification that yields higher
profit, the claim follows. ��
Theorem 4. Under the coupon model we have a fully polynomial time approx-
imation scheme for the case that the desired subsets of different customers form
a hierarchy.

Planar and Minor-free Graph Vertex Pricing Problem: We give a PTAS
that uses negative prices to obtain (1 + ε)-approximation, using decomposition
techniques for H-minor-free graphs by Demaine et al. [6]
2 If all the valuations are integral, then there exists an optimal solution with all prices

integral, under all our models (positive, coupon, and (B-bounded) discount models).
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Theorem 5. There exists a PTAS for minor-free instances of the graph vertex
pricing problem under the coupon model.

3.2 B-Bounded Discount Model

The main feature is that the net profit we obtain from a customer is exactly the
sum of the prices of the items in the bundle of that customer, and hence can be
negative. As explained in the introduction, the extra condition that the price of
an item must be at least −B corresponds to the real life situation in which the
selling price of an item can be below its cost, but not negative.

Theorem 6. There exists an O(B) approximation algorithm for the vertex pric-
ing problem under the B-bounded discount model.

There exists an PTAS for minor-free instances of the graph vertex pricing
problem under the B-bounded discount model for fixed B under either one of
the following assumptions: (1) All customers have valuations at least 1, or (2)
There is no multi-edge in the graph.

Theorem 7. There exists an FPTAS for the case that the desired subsets of
different customers form a hierarchy under both the discount and the B-bounded
discount models.
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