

The Past, Present and Future of Programming in HCI
Brad A. Myers

Human-Computer Interaction Institute, Carnegie Mellon University
Pittsburgh, PA 15213 USA

bam@cs.cmu.edu

Andrew J. Ko
The Information School, University of Washington

Seattle, WA
ajko@u.washington.edu

ABSTRACT
The first computer users were all programmers, and the field of
Human-Computer Interaction started, in part, with a focus on
improving how programming was done. There was a signifi-
cant amount of work in the 1980’s on this topic, but it mostly
died out in the 1990s. Now, there is a resurgence of work on
what used to be called the Psychology of Programming, Soft-
ware Psychology, and the Empirical Studies of Programming.
Now, research that combines HCI and software engineering
concerns regularly wins awards at both the software engineer-
ing and HCI conferences, and although there is no longer a
conference devoted solely to this topic, it is a major focus of
the popular VL/HCC conference series. In this paper, we argue
that new HCI and software engineering methods and tools,
along with a new acceptance of the programming community,
makes it a propitious time for a renewed focus on this topic.

EXTENDED ABSTRACT
One way to define “programming” is as the process of trans-
forming a mental plan of desired actions for a computer into a
representation that can be understood by the computer [10]
Expressed this way, it seems obvious that the study of humans
and programming should be a topic of HCI. Indeed, this area of
study has a long history, and has many names, including the
Psychology of Programming [30, 5, 10], Software Psychology
[24], and Empirical Studies of Programming, which is also the
name of a series of workshops from 1986-1999.

Most of the early work focused on studying professional pro-
grammers or novice programmers. A “professional” program-
mer might be defined as someone whose primary job function
is to write or maintain software. A “novice” programmer might
be defined as someone who is learning how to program. Re-
cently, there has also been a focus on the category we are call-
ing end-user programmers (EUP) [23] (also called end-user
developers), who are people who write programs, but not as
their primary job function. Instead, they write programs in
support of achieving their main goal, which may be accounting,
web design, office work, research, entertainment, etc. End-user
programmers generally use special-purpose languages such as
spreadsheet languages or web authoring scripts, but some
EUPs, such as chemists or other scientists, may need to learn to
use programming languages such as C or Java to achieve their
programming goals.

In this talk, we briefly review the themes and results of the
early work, and show how the current approaches are signifi-
cantly different. We also discuss how many themes in HCI are
converging on problems of customization and end-user pro-
gramming, requiring new thinking about how to support indi-
viduals’ unique programming requirements.

EARLY THEMES
Early research focused on how to make programming easier to
learn for novices (see [21] for a survey). For example, many
studies highlighted the problems that novices had, including
syntax issues [6] , differences between programming languages
and English [15], and theories on how to teach programming
better (e.g., by teaching via “schemas” [27]).

Another theme of the early work was using graphical or visual
programming (see e.g., [18, 25] for surveys). There was a
widespread tendency to expect visual languages to be superior
to text for novice programming, since two-dimensional visual
perception might be more natural and efficient than reading,
and visual programming environments reduce the need to rely
on syntax. However, research showed that visual languages are
not more natural than text and use screen space inefficiently
[20]. Visual languages also have a high “viscosity,” requiring
effort in layout rearrangement when making changes [7].

Visualization was widely viewed as useful for helping people
understand their programs and algorithms. Early systems visu-
alized data structures [17], algorithms [2, 28], and executions
[1]. However, subsequent research showed that visualizations
often did not help with learning or understanding programs
(this does not apply to scientific and information visualizations,
which have a long history of making vast amounts of informa-
tion understandable [3]), and was most useful when the student
constructed their own visualizations [11].

Tools were created to specifically help with learning to
program, including special-purpose languages for novices like
Logo and Pascal. Syntax-directed editors (such as MacGnome
[15], that help with the construction of textual languages by
helping avoid the problems of syntax, were shown to help
novices construct programs from a blank screen more quickly.
However, like visual programs, they have high viscosity and
make it more difficult to edit programs.

CURRENT THEMES
While similar work continued in the nineties, it occurred at a
slower pace. Teachers for elementary-school children found
little carry-over from programming to other topics, and other
techniques failed to make programming much easier (as
described above). Professional developers seemed to have an
aversion to using tools that researchers developed.

Perhaps the biggest shift was driven by the introduction of new
methodologies into software engineering conferences, in
particular, the idea of directly observing the work of software
engineers. One of the earliest papers marking this shift include
Perry et al.’s study of communication among software
developers [22], which was one of the first to find that software
development work, despite stereotypes, actually involved
considerable communication and cooperation. This thread of
studies continued at conferences such as CSCW and GROUP
through the early 2000’s and continues today.

Many of the early work on software development tools was not
useful (or at least not used) by professional developers, but in
early 2000’s, software engineering researchers started to take a
more human-centered approach to the design and evaluation of
these tools. For example, several tools designed by Murphy and
students [16, 4] were explicitly motivated by studies of soft-
ware developers’ work difficulties. The same was true of our
recent work on debugging [13]. The common themes among
these and similar examples is that studies of software develop-
ment inform design, and evaluations of designs inform further
study. Furthermore, rather than focusing on technological

Brad A. Myers and Andrew J. Ko, "The Past, Present and Future of Programming in HCI". Human-Computer Interaction
Consortium (HCIC'09) <http://www.hcic.org/hcic2009/>, Winter Park, CO. February 4th - 8th, 2009.
http://www.cs.cmu.edu/~natprog/papers/MyersKoHCIC09.pdf

novelties, the most respected of software development tool
contributions focus on the questions [26] and information needs
[12] fundamental to software development work.

A number of technological shifts have made many of these
contributions feasible. For example, the Eclipse environment,
developed by IBM, has been a catalyst in reinvigorating re-
search on software development tools, since Eclipse allows
researchers to focus on what they want to innovate, while
providing the rest of the features that programmers require. The
significant, long-term industrial backing of languages like Java
and C# have also been instrumental, especially with these
languages themselves having features useful for tools such as
reflection, Java’s instrumentation and recording framework, the
Java Platform Debugger Architecture (JPDA), etc.

 Furthermore, today’s developers are much more likely to use
an integrated development environment, rather than command
line tools. This is due in part to the sophistication of these tools,
along with an increased focus on programmer productivity,
due, in part, to the outsourcing of programming jobs. Another
factor is the explosion of open source development projects,
which has furthered the development of development tools for
collaborating asynchronously and remotely.

As these changes have occurred, work on understanding and
supporting end-user programming has matured considerably.
Beyond just research on new languages, this work has explored
dozens of distinct populations of people who program to sup-
port their work, it has analyzed gender differences in software
development tool use and adoption in end-user programming
environments, and it has also developed a number of unique
tools for increasing the correctness of end users’ programs
[19]. Many of these have been transitioned into more general
software tools that professionals use.

FUTURE THEMES
While programming used to be at the center of HCI and is now
splintered among a number of other disciplines, it is making its
return to the forefront of HCI and HCI research. The rapid
growth of blogs and social networking sites has led to an im-
mense demand for customization, exposing millions of Internet
users to snippets of HTML and Javascript. The proliferation of
wikis has exposed the broader public to syntax issues. A major
theme of intelligent interfaces is how to reveal the underlying
program learned by a machine based on user feedback, without
requiring that the users learn to program [29]. The growth of
research on assistive technologies is demanding a closer look at
how to support customization of more than just parameters.
Ubiquitous computing is beginning to struggle with how to
make sensor-based applications relevant to users without users
having to learn some programming [8]. All of these trends are
converging on the need for a better understanding of how to
design and support programming (or at least programming-like
functionality) that does not use conventional software engineer-
ing methodologies or failed approaches of the past.

REFERENCES
[1] Baecker R., DiGiano C. & Marcus A. Software Visualization for

Debugging. CACM, 40(4). 44-54, 1997.
[2] Brown M. & Sedgewick R. A System for Algorithm Animation,

Computer Graphics, SIGGRAPH'84. 1984. 177-186.
[3] Card S.K., Mackinlay JD & Shneiderman B. Readings in Informa-

tion Visualization: Using Vision to Think. Morgan Kaufmann, 1999.
[4] Cubranic & Murphy G. Hipikat: Recommending Pertinent Software

Development Artifacts, ICSE, 2003.

[5] Curtis B. Fifteen Years of Psychology in Software Engineering:
Individual Differences & Cognitive Science. ICSE 1984, 97-106.

[6] M.J. Fitter & T.R.G. Green. When Do Diagrams Make Good Com-
puter Languages? IJMMS. 1979. 11 235-261.

[7] Green TRG & Petre M. Usability Analysis of Visual Programming
Environments: A 'Cognitive Dimensions' Framework, JVLC 1996.
7(2). 131-174.

[8] Hartmann B, Abdulla L, Mittal M & Klemmer SR. Authoring
Sensor Based Interactions Through Direct Manipulation and Pattern
Matching, CHI, 2007.

[9] Hoc JM, Green TRG, Samurçay R & Gilmore DJ, Eds. Psychology
of Programming. London, Academic Press. 1990a.

[10] Hoc JM & Nguyen-Xuan A. Language Semantics, Mental Models
and Analogy. Psychology of Programming. J.-M. Hoc, T. R. G.
Green, R. Samurçay & D. J. Gilmore, Eds. 1990b: London, Aca-
demic Press. 139-156.

[11] C. Kehoe, J. Stasko & A. Taylor. Rethinking the evaluation of
algorithm animations as learning aids: An observational study,
IJHCS, 54(2). 265-284, 2001.

[12] A. J. Ko, R. DeLine & G. Venolia. Information Needs in Collo-
cated Software Development Teams, ICSE, 2007. 344-353.

[13] Ko AJ & Myers BA. Debugging, Reinvented: Asking and Answer-
ing Why and Why Not Questions about Program Behavior, ICSE,
2008, 301-310, 2008.

[14] L. A. Miller. Natural Language Programming: Styles, Strategies,
and Contrasts, IBM Systems Journal. 1981. 20(2). 184-215.

[15] Miller P, Pane J, Meter G & Vorthmann S. Evolution of novice
programming environments: The structure editors of Carnegie Mel-
lon University. Interactive Learning Environments. 1994 4(2) 140-
158.

[16] Murphy G, Lai, Walker R. & Robillard M. Separating Features in
Source Code: An Exploratory Study, ICSE, 2001.

[17] Myers BA. Incense: A System for Displaying Data Structures,
Computer Graphics, SIGGRAPH'83, 1983, 115-125.

[18] Myers BA. Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy, CHI 1986, 59-66.

[19] Myers BA, Burnett MM, Wiedenbeck S & Ko AJ. End User
Software Engineering. CHI'2007 Extended Abstracts, 2125-2128.

[20] Nardi BA. A Small Matter of Programming: Perspectives on End
User Computing. The MIT Press. 1993.

[21] Pane JF & Myers BA. Usability Issues in the Design of Novice
Programming Systems. Pittsburgh, PA, Carnegie Mellon University.
CMU-CS-96-132. August, 1996.

[22] D.E. Perry, N.A. Staudenmayer & L.G. Votta. People, Organiza-
tions and Process Improvement, IEEE Software. 1994. 36-45.

[23] Scaffidi C, Shaw M & Myers B. Estimating the Numbers of End
Users and End User Programmers, VL/HCC'05, 2005. 207-214.

[24] Shneiderman B. Software Psychology: Human Factors in Com-
puter and Information Systems. Winthrop Publishers, 1980.

[25] Shu NC. Visual Programming. New York, Van Nostrand Reinhold
Company. 1988.

[26] Sillito J, Murphy GC & De Volder K. Questions programmers ask
during software evolution tasks, FSE, 2006, 23 - 34.

[27] Soloway E. & Ehrlich K. Empirical Studies of Programming
Knowledge, TSE SE-10 595-609, 1984.

[28] Stasko JT. Using Direct Manipulation to Build Algorithm Anima-
tions by Demonstration, CHI, 1991, 307-314.

[29] Tullio J, Dey AK, Chalecki J & Fogarty J. How IT works: a field
study of non-technical users interacting with an intelligent system,
CHI, 2007. 31-40.

[30] Weinberg GM. The Psychology of Computer Programming. New
York, NY, von Nostrand Reinhold, 1971.

