
1

Improving
Software Development

through
Human-Centered Approaches

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

Natural Programming Project
• Researching better tools for programmers since 1978
• Natural Programming project started in 1995
• Make programming easier and more correct by making it

more natural
– Closer to the way that people think about algorithms and

solving their tasks (not “Natural UIs”)

• Methodology – human-centered approach
– Perform studies to inform design

• Provide new knowledge about what people do and think, & barriers

– Guide the designs from the data
• Design of programming languages and environments

– Iteratively evaluate and improve the tools

• Target novice, expert and end-user programmers

 2 © 2012 – Brad A. Myers

3 © 2012 – Brad A. Myers

End User Programming
• People whose primary job is not programming
• In 2012, in USA at work: — Scaffidi, Shaw and Myers 2005

– 3 million professional programmers
– 6 million scientists & engineers
– 13 million will describe themselves as programmers
– 55 million will use spreadsheets or databases at work (and therefore

may potentially program)
– 90 million computer users at work in US

• We should make better tools for all of these people!
90,000,000

55,000,000

13,000,000
6,000,000 3,000,000

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

Users Spreadsheets and
DBs

Self-Described
Programmers

Scientists &
Engineers

Professional
Programmers

Debugging

• Study commissioned by NIST USA (2002) of
14 software vendors
– Software errors cost ~$60 billion annually
– Software engineers spend 70-80% of time testing

and debugging
– Time for 1 developer to fix 1 bug was ~17.4 hours

• Current debugging techniques same as for
last 70 years
– Same for end-user and professional environments

4 © 2012 – Brad A. Myers

Program Complexity and Sophistication

Goal: Gentle Slope Systems

Difficulty
of

Use

Goal

Flash

ActionScript

C Programming

Visual Basic

Basic

C or C# Programming
Swing

Java

Low
Threshold

High
Ceiling

5 © 2012 – Brad A. Myers

Web Development

CSS & HTML

JavaScript

editor

Server-side

Improve Developer Experience

• Use human centered approaches to:
 Make developers more effective
 Reduce errors in resulting code
 Insure that developer tools are useful
 Understand developers’ barriers that cause

wasted time
 Direct efforts at most important issues
 Address: programming languages, APIs,

tools, documentation & resources

 6 © 2012 – Brad A. Myers

Why Would Being Natural be Good?
• Programmers are People Too

– Take the human into account

• Language should be close to user’s plan
– “Programming is the process of transforming a mental plan into one

that is compatible with the computer.”
— Jean-Michel Hoc

• Closeness of mapping
– “The closer the programming world is to the problem world, the

easier the problem-solving ought to be.… Conventional textual
languages are a long way from that goal.” — Green and Petre

• Depends on target population

– Need studies

7 © 2012 – Brad A. Myers

class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Not so Natural!

• 3 kinds of parentheses and 9 special words!
• Compared to click and type: “Hello World!”

Let Shape1.FillColor
= &H00FF00FF&

 8 © 2012 – Brad A. Myers

First Natural Programming Studies
• John Pane, PhD 2002
• Studies:

– How people naturally express programming
concepts and algorithms
1) Nine scenes from PacMan
2) Transforming and calculating

data in a spreadsheet

– Specific issue of language design
3) Selecting specific objects from a group (“and”, “or”,

“not”)

– Lots of interesting results
9 © 2012 – Brad A. Myers

Examples of Results
• Rule-based style

 “If PacMan loses all his lives, its game over.”

• “And”, “Or”, “Not” don’t match computer
interpretation
– … men and women, … not an apple or pear

• Operations suggest data as lists, not arrays
– People don’t make space before inserting

• Objects normally moving
 “If PacMan hits a wall, he stops.”
– so objects remember their own state

()

10 © 2012 – Brad A. Myers

New Language and System: HANDS

• John Pane, PhD 2002
• Properties:

– Metaphor of agent (Handy
the dog) operating on cards

– All operations can operate
on single items or sets
of items

– Integrated queries with language
– Sets can be dynamically constructed and used

• “Set the speed of all bees to 0”

• See the video: http://web.cs.cmu.edu/~pane/HANDS/HANDS.MPG

11 © 2012 – Brad A. Myers

Supporting “Natural” Data Types
• Chris Scaffidi, PhD 2009
• Ask users about types of data, say “Person name”, “age”,

“date”, “Project code”, …
• User-centered type system called “topes”

– Structured
– Constraints on the values and parts

• May be “always” or “usually” true
– “USA phone area code never ends in 11”
– “USA Last names usually start with a capital letter”

• Library for verifying & transforming values
– Can be used from JavaScript

for web and from VB for Excel

• Editor for specifying

12 © 2012 – Brad A. Myers

Study of Errors

• Study of novice errors and debugging
– Created a new model of barriers & kinds of errors
– All of the observed debugging problems could be

addressed by “Why” questions
• 32% were “Why did”; 68% were “Why didn’t”

• Current debugging techniques require user to
guess where bug is or where to look
– Most of initial guesses are wrong, even for

experts

13 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Whyline

• Andy Ko, PhD 2008
• Allow users to directly ask “Why” and

“Why not”

1:27
14

Whyline User Studies

• Initial study:
– Whyline with novices outperformed experts with Eclipse
– Factor of 2.5 times faster

• (p < .05, Wilcoxon rank sums test)

• Formal study:
– Experts attempting 2 difficult tasks
– Whyline over 3 times as successful, in ½ of the time

15 © 2012 – Brad A. Myers

16 © 2012 – Brad A. Myers

Crystal
• Crystal: Clarifications Regarding Your Software

using a Toolkit, Architecture and Language
• Apply WhyLine idea to regular desktop applications (Word 2003)

• Lots of complexity in powerful features that people generally
like

• Ask “Why” about what
recently happened

• Architecture: supports
adding to application
with small overhead

WebCrystal
• Investigate CSS and
HTML responsible for
example behaviors

• Navigate around HTML
hierarchy

• Ask “how-do-I”
questions about look,
position and behavior

• Generates code in user-selected
format

• Combine code for multiple elements
• CHI’2012

17 © 2012 – Brad A. Myers

Study of Design Requirements for
Maintenance-Oriented IDEs

• Studied expert use of Java Eclipse IDE in a
lab setting (2004-2006)

• Focus on day-to-day maintenance tasks
such as bug repairs and feature
enhancements

• Lab study with detailed analysis
• Rich dataset  multiple papers

18 © 2012 – Brad A. Myers

A Programmer’s Working Set

• A collection of
task-relevant
code fragments

• In modern
software
development,
dependencies
are distributed
and non-local

19 © 2012 – Brad A. Myers

Times for Bottlenecks

• Each instance of an interactive bottleneck
cost only a few seconds, but . . .

 = 35% of uninterrupted work time!

20 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Jasper: Working Set Tool
• Jasper = Java Aid with Sets of Pertinent Elements for

Recall

• Allow programmers to grab arbitrary fragments of code to
represent working sets
– Allow programmers to view in one place, one screen

21

Study of APIs
• Started as PhD work of Jeff Stylos, 2009

– Inspired by Steven Clarke, Microsoft Visual Studio
group

• Application Programming Interface
– Libraries, frameworks, SDKs, …

• Which programming patterns are most usable?
• Barriers to use of APIs
• Measures: learnability, errors, preferences
• Expert and novice programmers
• Studied:

– Default parameters in constructors
– Factory pattern
– Object design
– SAP’s Web Services APIs

22 © 2012 – Brad A. Myers

“Factory” Pattern
• Instead of “normal” creation: Widget w = new Widget();

• Objects must be created by another class:
AbstractFactory f = AbstractFactory.getDefault();
Widget w = f.createWidget();

• Used frequently in Java (>61) and .Net (>13) and
SAP

• Results:
– When asked to design on “blank paper”, no one designed

a factory
– Time to develop using factories took 2.1 to 5.3 times

longer compared to regular constructors (20:05 v 9:31,
7:10 v 1:20)

– All subjects had difficulties getting using factories in APIs

23 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Object Method Placement
• Where to put functions when doing object-oriented design

of APIs when multiple classes work together
– mail_Server.send(mail_Message)

vs.
mail_Message.send(mail_Server)

• When desired method is on the class that they start with,
users were between 2.4 and 11.2 times faster (p < 0.05)

• Starting class can be predicted based on user’s tasks

Time to Find a Method

0

5

10

15

20

Email Task Web Task Thingies Task

Ti
m

e
(m

in
)

Methods on
Expected Objects
Methods on
Helper Objects

24

25 © 2012 – Brad A. Myers

Study of APIs for SAP
• Study APIs for Enterprise

Service-Oriented Architectures (“Web Services”)
• Naming problems:

– Too long
– Not understandable
– Differences in middle are frequently missed

CustomerAddressBasicDataByNameAndAddressRequestMessageCustomerSelectionCommonName
CustomerAddressBasicDataByNameAndAddressResponseMessageCustomerSelectionCommonName

26 © 2012 – Brad A. Myers

eSOA Documentation Results
• Multiple paths: unclear which one to use
• Some paths were dead ends
• Inconsistent look and feel caused immediate

abandonment of paths
• Hard to find required

information
• Business background

helped

SAP’s NetWeaver® Gateway
Developer Tools

• Plug-in to Visual Studio 2010 for
developing SAP applications

• We used heuristic evaluation and
cognitive walkthroughs to evaluate early
prototypes

• Our recommendations were quickly
incorporated due to agile software
development process

27 © 2012 – Brad A. Myers

Our Tools to Help with APIs

• Mica

• Jadeite

• Calcite

• Euklas

• Graphite

• Apatite

28 © 2012 – Brad A. Myers

http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N

Mica Tool to Help Find Examples

• Makes Interfaces Clear and Accessible
• Use Google to find relevant

pages
• Match pages with Java

keywords
• Also notes which pages

contain example code
or definitions

29 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Jadeite: Improved JavaDoc
• Jadeite: Java API Documentation with Extra

Information Tacked-on for Emphasis
http://www.cs.cmu.edu/~jadeite

• Fix JavaDoc to help address problems
– Focus attention on most popular packages and

classes using font size
– “Placeholders” for methods that users want to exist
– Automatically extracted

code examples for how
to create classes

30

http://www.cs.cmu.edu/~jadeite
http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N

31 © 2012 – Brad A. Myers

Calcite: Eclipse Plugin for Java
• Calcite: Construction And Language Completion

Integrated Throughout
http://www.cs.cmu.edu/~calcite

• Code completion in Eclipse augmented with
Jadeite’s information
– How to create objects of specific classes
SSLSocket s = ???

http://www.cs.cmu.edu/~calcite

© 2012 – Brad A. Myers

Euklas: Eclipse Plugin for JavaScript

• Euklas: Eclipse Users’ Keystrokes Lessened
by Attaching from Samples
http://www.cs.cmu.edu/~euklas

• Brings Java-like analysis to JavaScript
• Auto-correct uses

copy source context
for errors due to
copy & paste

32

http://www.cs.cmu.edu/~euklas

33 © 2012 – Brad A. Myers

Graphite: Eclipse Plugin for Literals

• Graphite: GRAphical Palettes Help Instantiate
Types in the Editor.

• Pop up a custom palette for specialized constants
(literals) in Eclipse
– Color palettes
– Regular expression

strings

• Customizable (ICSE’2012)

Apatite Documentation Tool
• Apatite: Associative Perusing of APIs That

Identifies Targets Easily
http://www.cs.cmu.edu/~apatite

• Start with verbs (actions)
and properties and find what
classes implement them

• Find associated items
– E.g., classes that are often

used together
– Classes that implement or

are used by a method

34 © 2012 – Brad A. Myers

http://www.cs.cmu.edu/~apatite

Studies of Code Understanding
• Thomas LaToza, PhD 2012
• Studies about how experts learn unfamiliar code
• Programmers investigate reachability questions

– How can this code be reached, either upstream or downstream
– E.g., control flow from user scrolling  update status line

• Identified over 100 hard-to-answer questions that
developers asked
– E.g., “What method implements this trigger?”
– “Why was this designed this way?”

• Survey shows such control flow questions are difficult
and important

• No easy way to discover with current tools
– Call graphs are too general
35 © 2012 – Brad A. Myers

36 © 2012 – Brad A. Myers

REACHER
• Visualize exactly the paths of interest
• Search along the paths
• Focused questions and answers enable effective analysis of

complex codebases
• Developers with Reacher 5.6 times more successful than

those working with Eclipse only 0:53

Fluorite Logger
• PhD work of YoungSeok Yoon (in progress)
• Fluorite: Full of Low-level User Operations Recorded In The

Editor http://www.cs.cmu.edu/~fluorite
• Logger for all keystrokes & events in Eclipse
• Analyzes frequencies and

patterns
• Deleting is a high percent

of all the keystrokes
• Also surveyed >100

developers

37 © 2012 – Brad A. Myers

http://www.cs.cmu.edu/~fluorite

Backtracking Results

• All developers backtrack for many reasons
– Explorations, investigations, iterative design

• People use comments to remove code, so they
can restore it if necessary
– But difficult to comment & uncomment correctly
– Often non-local changes

• Undo not used for exploration, just typo fixing
• Future work: new tool to help developers

backtrack

38 © 2012 – Brad A. Myers

Summary
• 30 studies; 17 systems in 16 years

• Doing studies first provides new insights that
can inspire significantly new designs for
programming languages and environments

• Need to understand software engineers’ real
issues

• New designs shown to be better

39 © 2012 – Brad A. Myers

40 © 2012 – Brad A. Myers

Thanks to:
• Funding:

– NSF under IIS-1116724, IIS-0329090, CCF-0811610, IIS-0757511 (Creative-
IT), NSF ITR CCR-0324770 as part of the EUSES Consortium

– SAP
– Adobe
– IBM
– Microsoft Research RISE

• >30 students:
 Htet Htet Aung
 Jack Beaton
 Ruben Carbonell
 John R. Chang
 Kerry S. Chang
 Polo Chau
 Luis J. Cota
 Michael Coblenz
 Dan Eisenberg
 Brian Ellis

 Andrew Faulring
 Aristiwidya B. (Ika) Hardjanto
 Erik Harpstead
 Sae Young (Sophie) Jeong
 Andy Ko
 Thomas LaToza
 Joonhwan Lee
 Leah Miller
 Mathew Mooty
 Gregory Mueller
 Yoko Nakano

 Stephen Oney
 John Pane
 Sunyoung Park
 Chotirat (Ann)

Ratanamahatana
 Christopher Scaffidi
 Jeff Stylos
 David A. Weitzman
 Yingyu (Clare) Xie
 Zizhuang (Zizzy) Yang
 YoungSeok Yoon

http://www.nsf.gov/

41

Improving
Software Development through
Human-Centered Approaches

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

Better Tools for Authoring
Interactive Behaviors:

ConstraintJS
Brad Myers & Stephen Oney

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

1 © Carnegie Mellon - 2012

Interactive Software
• Today: programmed with callbacks & side effects
• Result: interdependent, complex code

2 © Carnegie Mellon - 2012

Constraints
• Relationships declared once and maintained

automatically
• Can help reduce the complexity of interactive code
• In GUI programming, constraints have caught on for:

– Data bindings (example: WPF, Silverlight)
– Layout controllers (example: CSS)

3 © Carnegie Mellon - 2012

ConstraintJS
• Constraints for building interactive software
• Integrates constraints with Finite-State Machines

(FSMs)
– Makes it easy to create constraints that sometimes hold
– Result: Cleaner, clearer code

• Works with Web languages (JavaScript, HTML, & CSS)
• (paper to appear at UIST’2012)

4 © Carnegie Mellon - 2012

Motivating Example

5 © Carnegie Mellon - 2012

JavaScript implementation

• Requires:
– Four nested callback functions using side-effects to

handle asynchronous communication
• Ensuring correct scoping for nested callbacks is difficult

– Significant code to ensure view is in sync with model
– Significant error handling code

6 © Carnegie Mellon - 2012

© Carnegie Mellon - 2012

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

ConstraintJS implementation
• Requires fewer callbacks and no side-effect code
• Clearer and less interdependent code
• Enhances HTML syntax to add flexibility while maintaining clarity

7

Video 4:14

Current Work
• Many interactive behaviors can be specified using

only a combination of FSMs and constraints
• Interactive tool for specifying FSMs & constraints

– Spreadsheet-like for constraints, with columns for FSM
states

9 © Carnegie Mellon - 2012

Acknowledgements
• Microsoft SEIF Award, 2011
• Joel Brandt & Adobe
• Ford Foundation
• National Science Foundation

Website: www.constraintjs.com

10 © Carnegie Mellon - 2012

	Improving�Software Development through�Human-Centered Approaches
	Natural Programming Project
	End User Programming
	Debugging
	Goal: Gentle Slope Systems
	Improve Developer Experience
	Why Would Being Natural be Good?
	Not so Natural!
	First Natural Programming Studies
	Examples of Results
	New Language and System: HANDS
	Supporting “Natural” Data Types
	Study of Errors
	Whyline
	Whyline User Studies
	Crystal
	WebCrystal
	Study of Design Requirements for�Maintenance-Oriented IDEs
	A Programmer’s Working Set
	Times for Bottlenecks
	Jasper: Working Set Tool
	Study of APIs
	“Factory” Pattern
	Object Method Placement
	Study of APIs for SAP
	eSOA Documentation Results
	SAP’s NetWeaver® Gateway Developer Tools
	Our Tools to Help with APIs
	Mica Tool to Help Find Examples
	Jadeite: Improved JavaDoc
	Calcite: Eclipse Plugin for Java
	Euklas: Eclipse Plugin for JavaScript
	Graphite: Eclipse Plugin for Literals
	Apatite Documentation Tool
	Studies of Code Understanding
	REACHER
	Fluorite Logger
	Backtracking Results
	Summary
	Thanks to:
	Improving�Software Development through�Human-Centered Approaches

