
Supporting Selective Undo in a Code Editor

YoungSeok Yoon
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA, USA

youngseok@cs.cmu.edu

Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA, USA

bam@cs.cmu.edu

Abstract—Programmers often need to revert some code to an
earlier state, or restore a block of code that was deleted a while
ago. However, support for this backtracking in modern pro-
gramming environments is limited. Many of the backtracking
tasks can be accomplished by having a selective undo feature in
code editors, but this has major challenges: there can be conflicts
among edit operations, and it is difficult to provide usable inter-
faces for selective undo. In this paper, we present AZURITE, an
Eclipse plug-in that allows programmers to selectively undo fine-
grained code changes made in the code editor. With AZURITE,
programmers can easily perform backtracking tasks, even when
the desired code is not in the undo stack or a version control sys-
tem. AZURITE also provides novel user interfaces specifically de-
signed for selective undo, which were iteratively improved
through user feedback gathered from actual users in a prelimi-
nary field trial. A formal lab study showed that programmers can
successfully use AZURITE, and were twice as fast as when limited
to conventional features.

Index Terms—Selective undo, backtracking

I. INTRODUCTION

Since programmers are human, they often make mistakes
while writing program code. In other cases, programmers may
intentionally make temporary changes to the code, either as an
experiment or to help with debugging. As a consequence, pro-
grammers often need to backtrack while coding. We define
backtracking as “going back at least partially to an earlier state
either by removing inserted code or by restoring removed code”
[1]. Previously, we conducted a lab study, a survey of back-
tracking practices of programmers, and a longitudinal study of
1,460 hours of actual code editor use from 21 programmers.
The results confirmed that backtracking is in fact prevalent and
programmers often report having problems when they want to
backtrack [1]. The programmers in the longitudinal study back-
tracked 10.3 times per hour on average, and 34% of all the de-
tected backtracking instances were performed manually with-
out using the undo command or any other tool support [2].

Others have also shown that programmers frequently back-
track while coding. From a high level view, programmers often
do exploratory programming: they build quick prototypes, see
how they work, and then backtrack and refine the program and
the requirements [3, 4]. Also, backtracking becomes important
in a situation where alternative solutions need to be managed
for a given task. Several variation management tools have been
developed [5, 6], but these are limited in that users cannot easi-
ly backtrack and add a new alternative from there if they did
not plan ahead where they would need new alternatives.

However, backtracking support is limited in modern inter-
active development environments (IDEs). The restricted linear
undo model [7], which is used in most text and code editors, is
not suitable for all situations. The most significant problem is
that users can only undo the most recent edits. This can be very
inconvenient when users realize that they made a mistake after
making some other changes that they want to retain. In addition,
programmers may intentionally make changes to the code that
they later want to remove. Another option is to use a version
control system (VCS) such as Subversion or Git to revert some
code to a previous version. However, this approach relies on
the assumption that the desired code is already committed to
the VCS, which may not always be the case.

These problems can be resolved by having a selective undo
feature in code editors. Users could select specific edit opera-
tions performed in the past and invoke the selective undo
command to revert only the code affected by the those opera-
tions. Our study showed that 9.5% of all the backtrackings per-
formed by the participants were selective, meaning that they
could not have been handled by the conventional undo com-
mand [2]. Selective undo has been well researched in the area
of graphical editors [7, 8, 9]. However, this technique has not
been used with text or code editors due to the many text-
specific challenges which we address here.

First, as Berlage pointed out, existing selective undo mech-
anisms are designed to work best when the system has identifi-
able objects that are affected by operations, but text does not
have the notion of objects but rather has a stream of characters
[7]. Second, there can be many regional conflicts among the

Fig. 1. The interactive selective undo dialog of AZURITE. The user can mark
some code in the left panel, and ask to “Keep this code unchanged”. This can
be repeated until the preview in the right panel matches what is desired.

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.43

223

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.43

223

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.43

223

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.43

223 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

edit operations. A regional conflict can occur when the region
of a later edit overlaps the region of the earlier edit which the
user wants to selectively undo. When there is a regional con-
flict among the edit operations, the result of a selective undo
may not be well defined. To illustrate this point, consider the
following example. An edit operation changes the code from
“myFontSize = 12;” to “myRectangleSize = 12;” and some-
time later, another operation changes it to “myRegionArea =
12;”. This is an example of regional conflict because the af-
fected ranges of the two operations are overlapping and the
“Rectangle” text inserted by is only partially available in
the current code. In this case, it is not clear what the result of
selectively undoing operation alone should be. The system
should be able to detect such cases and provide an appropriate
approach to resolving them.

A final challenge of providing selective undo for code is
that it is difficult to provide intuitive user interfaces for the user
to find what to selective undo. Many existing selective undo
user interfaces for graphics present a list of edit operations per-
formed in the past along with human-readable descriptions of
individual operations [7, 8, 9]. However, text editing operations
are much more fine-grained than graphical editing, so it is hard
for the users to interpret the high level edit intent just by look-
ing at the individual text edits. In addition, graphical applica-
tions can use a thumbnail to represent a snapshot of the
graphics at a certain point of time, which makes it easier to
present the edit history to the user [6, 10, 11, 12, 13]. In con-
trast, a thumbnail of a piece of a large text file does not give
much information to the users.

To resolve these problems and complement the existing
tools, we devised a novel selective undo mechanism and ap-
plied it to the code editor. The system takes fine-grained code
edits as input and maintains the mapping between the different
segments of the current source file and the edit operations that
introduced those segments. The system also keeps track of re-
gional conflict relationships among edit operations (Section III).
The system then uses this information to provide selective undo
in code editors (Section IV).

Our tool is called AZURITE1, and is an Eclipse plug-in that
provides a new algorithm and new user interfaces for selective
undo. We previously published an overview of the initial user
interfaces of AZURITE [14], but the current paper is the first to
present the selective undo mechanism capable of handling re-
gional conflicts, and many new user interface features for se-
lective undo based on user feedback from a preliminary field
trial with the version described in the previous paper (Section
V). We also present here the performance feasibility analysis
(Section VI) and our new formal user study which shows that
AZURITE is effective and usable (Section VII). We discuss the
design space of selective undo tools and their trade-offs, and
future work directions (Section VIII). Then we discuss the re-
lated work (Section IX) and conclude the paper (Section X).

1 AZURITE is a blue mineral, and here stands for Adding Zest to Undoing and
Restoring Improves Textual Exploration. The plug-in is available open-
source for general use at: http://www.cs.cmu.edu/~azurite/.

II. MOTIVATING EXAMPLE

Imagine a scenario where a programmer working on a
graphical user interface (GUI) in Java Swing wants to imple-
ment a simple panel with three vertically arranged buttons, as
shown in Fig. 2. There should be a fixed amount of padding
inside the entire panel and between the buttons. First, she starts
out with having a stub method that returns an empty panel. She
then makes the following changes in order.

1. She creates three button objects and
adds them to the panel (see Fig. 3a).

2. Running the application shows hori-
zontally laid out buttons, so she
looks for some layout manager to
use. She tries GridBagLayout (Fig.
3b).

3. The intermediate code seems too
complicated for just a simple verti-
cal layout. She looks for a simpler
layout manager, and discovers Box-
Layout. She uses undo command multiple times to get rid
of all the GridBagLayout code (backtracking to Fig. 3a).

4. She writes some code with BoxLayout, resulting in much
simpler code and vertically laid out buttons (Fig. 3c).

5. She changes some properties of the buttons, such as the
background color and button text (Fig. 3d).

She now tries to polish the layout and add some spacing be-
tween the buttons before moving further. However, she realizes
that BoxLayout does not support spacing while GridBagLayout
does. Therefore, she wants to restore the GridBagLayout code
she wrote in step 2, while keeping the changes from step 5.

At this point, the undo command cannot be used because
she had previously used the undo command to remove the
GridBagLayout code and then she made some new changes
from there, so the needed operations have been eliminated from
the undo stack. Even if she had not used the undo command in
step 3, the undo command would still be inappropriate for this
situation, because it will necessarily revert the changes made in
step 5, which is not desired. Moreover, it would be very unlike-
ly that the GridBagLayout code had been committed to a ver-
sion control system, because the code was still an intermediate
state. The only option she now has is to reproduce the Grid-
BagLayout code from scratch, which is inefficient. It would be
much more convenient for her if there was at least a semi-
automatic way of restoring the desired code from Fig. 3b while
keeping the subsequent desired edits from Fig. 3d.

To address these problems, we developed a tool called AZ-
URITE, which allows programmers to selectively undo fine-
grained code changes made in the code editor. In this example,
the programmer with AZURITE can restore the deleted Grid-
BagLayout code without losing the changes related to button-
Orange, with the following steps:
1. Find the point in time in the past where the text “GridBag-

Layout” existed in the createButtons method using AZUR-
ITE’s history search.

Fig. 2. A sketch of the
desired UI

224224224224 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

2. Select all the edit operations within
the createButtons method performed
since the point found in step 1.

3. Launch the interactive selective undo
dialog (Fig. 1). Then, from the left
panel, indicate the parts of the current
code that should be kept unchanged.

4. After checking the preview of the
selective undo result shown in the
right panel, press the OK button to ac-
tually perform the selective undo.
AZURITE provides a rich set of user

interfaces designed to help users com-
plete various backtracking tasks. The list
of steps described above is just one ex-
ample, and there are several different
ways to achieve the same result using
AZURITE, as will be described below.
Users can use AZURITE in the way that
they feel the most comfortable.

III. EDIT HISTORY MANAGEMENT

In this section, we explain the technical details of the edit
history management algorithm used for selective undo.

A. Definitions
In text editing, there exist only a few types of primitive edit

operations. Here, the following three operations are considered
as primitive: insert, delete, and replace. By primitive operation,
we mean that these operations are the basic undoable units in
the system. A replace operation is a primitive operation even
though it can be considered as a delete followed by an insert
with the same offset, because a replace operation should be
undoable as an atomic unit. All of the higher-level editing
commands that change the text, such as find-and-replace and
cut-and-paste, result in one or more of these primitive opera-
tions. Note that the history records every operation that happens,
and new operations are always added to the end of the history.
In particular, regular undo commands and our selective undo
commands are also included in the history using these primi-
tives. For example, the undo of a delete operation is added to
the end of the history as an insert operation.

However, it is not enough to simply keep the edit history to
provide the selective undo feature. When performing undo on
some past operations, the system must be able to determine
which locations in the current state correspond to the locations
where the operations were originally performed. This is not
trivial because the offsets change whenever some text is insert-
ed or removed above the location in the file of the past edit.
This problem has been identified by others (e.g., [15]) and aris-
es from the requirement that code be stored as plaintext without
embedded meta-information like bookmarks. Thus, before a
selective undo can be performed, offsets of previous operations
in the file may need to be adjusted dynamically. We will refer
to these adjusted offsets as dynamic offsets.

The idea of dynamic offsets here is similar to the notion of
dynamic pointers introduced by Abowd and Dix in the collabo-
rative editing context [16]. Our approach differs in that we
keep track of dynamic segments instead of pointers. We intro-
duced our dynamic segment management technique at an ab-
stract level in our previous paper [14], but here we provide full
technical details.

A dynamic segment is defined as a 4-tuple ,
where the value of is either ins or del, is the dynamic
offset of this segment, is the deleted or inserted text, and is
a relative offset value (can be nil) which will be explained in
Section III.D. There are two types of dynamic segments: insert
segments (ins) and delete segments (del) – a replace
will use both.

Let be the set of all possible primitive edit operations. An
edit operation can then be defined as a 3-tuple ,
where is the time the operation was performed, is the delete
segment associated with the edit operation (can be nil), and
is the set of insert segments (can be nil). Each dynamic seg-
ment is always associated with an edit operation. The segment
information is updated whenever a new operation is added to
the history. is a set rather than a single insert segment, be-
cause an insert segment can be split by some later performed
operation, as will be explained below in Section III.C.

Finally, the edit history is then defined as a chronological
history list of edit operations, , where is the
number of all edit operations performed so far, and is the
last (newest) edit operation.

B. Regional Conflicts of Edit Operations
A selective undo operation may not be well defined when

there are regional conflicts among the edit operations. Recall
the example from Section I, where a replace operation
changes the code from “myFontSize = 12;” to “myRectan-
gleSize = 12;” and at some time later, another operation
changes it to “myRegionArea = 12;”. What should be the re-

pprivate JPanel createButtons() {
 JPanel p = nnew JPanel();

 JButton button1 = new JButton("Button 1");
 JButton button2 = new JButton("Button 2");
 JButton button3 = new JButton("Button 3");
 p.add(button1);
 p.add(button2);
 p.add(button3);

 return p;
}

 (a)

private JPanel createButtons() {
 JPanel p = new JPanel();
 p.setLayout(new GridBagLayout());
 GridBagConstraints c = new GridBagConstraints();
 ... (omitted) multiple lines of code
 ... (omitted) for configuring c.
 JButton button1 = new JButton("Button 1");
 JButton button2 = new JButton("Button 2");
 JButton button3 = new JButton("Button 3");
 p.add(button1, c);
 p.add(button2);
 p.add(button3);

 return p;
} (b)

private JPanel createButtons() {
 JPanel p = new JPanel();

p.setLayout(new BoxLayout(p,
 BoxLayout.Y_AXIS));

 JButton button1 = new JButton("Button 1");
 JButton button2 = new JButton("Button 2");
 JButton button3 = new JButton("Button 3");
 p.add(button1);
 p.add(button2);
 p.add(button3);

 return p;
} (c)

private JPanel createButtons() {
 JPanel p = new JPanel();
 p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));

 JButton buttonOrange = new JButton("Orange");
 buttonOrange.setBackground(Color.orange);
 JButton button2 = new JButton("Button 2");
 JButton button3 = new JButton("Button 3");
 p.add(buttonOrange);
 p.add(button2);
 p.add(button3);

 return p;
} (d)

Fig. 3. The code changes for the motivating example. The green highlight shows newly inserted lines, and
the blue highlight shows updates to the existing code. The omitted code is partially shown in Fig. 1.

225225225225 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

sult of selectively undoing operation alone? There are multi-
ple options:

A1: Selectively undo while leaving in the parts changed
by , resulting in “myFontgionArea = 12;”

A2: Also undo the conflicting operation and revert the
code to the way it was before operation was per-
formed, resulting in “myFontSize = 12;”

A3: Tell the user that there is a regional conflict and do not
allow the selective undo, so the code stays as “myRe-
gionArea = 12;”

Unfortunately, since it is not entirely clear what the user
wants, it would not be appropriate for the system to choose
arbitrarily without user intervention. Throughout the paper, we
will use the notation to represent a regional conflict
where the edit region of overlaps with the re-
gion of at least partially, and . For exam-
ple, holds in the example above. Note that these two
operations need not necessarily be consecutive in time, and
there may be arbitrarily many edit operations in between.

As the arrow between the two operations implies, a regional
conflict is always one-directional: the arrow starts from some
earlier performed operation and points to a later performed
operation. For convenience, when there is conflict, we
will call the conflictee, and the conflictor.

C. Types of Regional Conflicts
Regional conflict detection happens at the segment level.

Since there are only two types of dynamic segments, insert and
delete, we get a total of four combinations of possible regional
conflicts (Fig. 4a-d).

1) Conflict: This occurs when the second
insertion is performed somewhere in the middle of an existing
insert segment (Fig. 4a). When the user tries to selectively
undo the first insert operation, it is not clear whether the user
really wants to remove only the text inserted by the first opera-
tion, or to remove them both together. When an

 conflict is created (that is, when the user performs the
conflictor edit), our algorithm splits the conflictee’s insert
segment into two pieces.

2) Conflict: An conflict
occurs when the deletion range overlaps at least partially with

an existing insert segment, which can happen in four different
ways (Fig. 4b). Fortunately, there is no ambiguity when the
user wants to selectively undo the conflictee; all the remaining
text that came from that insert operation should be removed.

3) Conflict: A conflict
occurs when the second deletion range encloses the first dele-
tion range (Fig. 4c). Similar to the case,
when the user tries to selectively undo the first delete opera-
tion, it is not clear if the user really wants to restore only the
text deleted by the first deletion, or restore the whole text de-
leted by both operations.

4) Conflict: As shown in Fig. 4d, there
can never be a conflict because the range of
deletion becomes a single point, and insert operations also
only happen at a single point, and two points cannot conflict.

D. Segment Closing / Reopening
When managing the dynamic segment information, a naïve

implementation may lose some of the required information for
selective undo. Suppose that there was originally “xyz” in the
code at offset 10, and two delete operations and are per-
formed, whose delete segments are and

, respectively. First, deletes “y” in the
middle, resulting in 11. Next, deletes “xz”, which re-
sults in 10 and a conflict. In addition,

 is adjusted to 10, so that selectively undoing just would
put “y” at the correct offset. What would happen if we undo
both and at this point?

Since undo has to be performed backwards (to avoid mess-
ing up dynamic segments while performing the selective undo),

 would be undone first, and “xz” would be put back at offset
10. Next, would be undone and it would put back “y” at
offset 10, which is the current value of . The resulting code
would look like “yxz” instead of “xyz”, which is clearly not
what the user wanted.

This happens because the dynamic segment for the con-
flictee () loses the offset information relative to the conflictor
()’s offset when a conflict occurs. To
solve this problem, we need to (1) store this relative offset and
(2) restore the offset when the conflictor is undone. We call
these two processes segment closing and segment reopening,
which work as follows:

close: reopen:

In the previous example, closing will store = 11
– 10 = 1 into , right before is adjusted to 10. When undo-
ing will be reopened, which will restore the offset to

 = 10 + 1 = 11 and make be nil. Once a segment is
closed (), then its value is never updated unless the
segment is reopened. The same applies to
conflicts.

E. Time Complexity of Edit History Management
Each new operation can add at most 4 dynamic segments: 1

delete segment, 1 insert segment, and up to 2 more segments
(Fig. 4b3) if it happens to split an existing insert segment. Since
the system iterates through all the segments in the history and

Fig. 4. Types of regional conflicts illustrated

226226226226 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

performs constant time update work for each segment whenev-
er a new edit is performed, the worst-case time complexity of
updating the entire history is , where is the total num-
ber of edit operations in the current history (this potential
performance issue is discussed in Section VI.B).

IV. SELECTIVE UNDO MECHANISM

Provided that the system has all the dynamic segments in-
formation for the entire history, it can perform any selective
undo. The user selects some edit operations (see Section V),
and invokes the selective undo command. Our selective undo is
performed in two phases: determining code chunks, and per-
forming selective undo for each chunk.

A. Phase #1: Determining Code Chunks
Unlike the conventional undo, our selective undo allows the

user to select multiple operations to be undone together. Since
there is no guarantee that all the selected operations were per-
formed at the same place, the selective undo mechanism must
first find the different code chunks affected by the selected op-
erations. A code chunk consists of one or more operations and
their dynamic segments, which constitute a continuous area in
code. We use three rules to determine the code chunks: (1) all
the segments associated with a same operation must be added
to the same chunk, (2) all the segments located between two
segments in a same chunk must also be added to that chunk, (3)
all abutting chunks are merged into a single chunk.

B. Phase #2: Selective Undo for Each Chunk
Once the chunks are determined, selective undo is per-

formed for each chunk independently. For convenience, this is
done from the bottommost chunk within the file so as not to
affect the dynamic offsets of the segments of the other chunks
while performing selective undo. Selective undo is performed
in two different ways, depending on the existence of regional
conflicts outside of the chunk, which is defined as following:

where is the set of all edit operations, and is the set of
all the selected operations in the chunk. The point is that re-
gional conflicts can be automatically resolved if the conflictor
is also selected (), while user intervention is required
when the conflictor is not selected ().

1) If : In this case, selective undo can al-
ways be performed without user intervention by applying the
inverse changes of all the operations involved in this chunk,
working backwards from the most recent operation to the old-
est one. The inverse changes should be applied to each dynam-
ic segment when there are multiple segments associated with
an operation. When applying the inverse change of a delete
segment, all the segments closed by this segment should be
reopened (see Section III.D).

2) If : When there are conflicts, the users
should be provided with the different alternatives of possible
resulting code so that they can choose one of them or cancel
the selective undo. Using the font size example from Section
III.B, all three alternatives, A1, A2, and A3, should be provid-
ed to the user. A3 is simply the same code as it is, so the sys-
tem only needs to calculate A1 and A2.

A1 is obtained by selectively undoing the conflictees while
leaving in the parts changed by the conflictors. It turns out that
A1 can be obtained by applying the same algorithm for con-
flict-free chunks used when rcExists=false without extra work.

In order to get A2, the chunk needs to be expanded to in-
clude its conflicting operations. However, there might be other
operations conflicting with the ones just included in the chunk.
For instance, in our example, there could be another later oper-
ation which changes the code from “myRegionArea = 12;”
to “myRegionBreadth = 12;”, which conflicts with operation

 but not with . Currently, AZURITE includes all of these
transitive conflictors to get the expanded chunk2. Once the ex-
panded chunk is obtained, A2 is calculated by applying the
selective undo algorithm as for non-conflicting chunks.

V. USER INTERFACE DESIGN

The selective undo algorithm described in Sections III & IV
requires that the user select the correct set of edit operations to
be undone. However, from the user’s point of view, this can be
a difficult task when the history gets bigger. There needs to be
intuitive ways for users to express what they want to revert
and/or what they want to get as the result of the selective undo.

A. Initial Design
We first summarize the initial user interfaces of AZURITE

designed to work with our selective undo mechanism presented
earlier [14], to provide enough context to understand our new
user interfaces.

The timeline visualization lets users see and interact with
the edit history (Fig. 5a shows the updated version of the time-
line). The horizontal axis represents time, and the edit history
of each file is shown in a corresponding row. Each edit opera-

2 In edge cases such as if the user replaces an entire file with an older version,
AZURITE extracts the diffs between the two versions and logs the diffs as
separate operations to minimize the potential future regional conflicts.

Fig. 5. The updated timeline visualization (a) and the code history diff view
(b) of AZURITE. The code corresponding to the selected rectangles (yellow-
outlined) in the timeline are highlighted in the editor by the boxes (c), the
small icons on the left ruler (d), and the markers on the scrollbar on the right
side (e). The colors of the boxes match the rectangle colors in the timeline.

227227227227 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

tion is represented as a rectangle, which are color-coded ac-
cording to the type of edit: inserts are green, deletes are red,
and replacements are blue. The user can click or drag to select
one or more rectangles. Once some of the operations are select-
ed, the user can invoke a popup context menu containing vari-
ous commands including selective undo.

The code history “diff” view (Fig. 5b) is a code-compare
view with two panels. Users can select an arbitrary region of
code from the regular code editor, and launch this view to see
how the selected region has evolved over time, or to revert the
code to an earlier version. Users can drag the orange vertical
marker in the timeline back and forth to move between differ-
ent versions of the code snippet while this view is open.

To leverage the observation that programmers remember
some characteristics of the code that they want to backtrack [1],
AZURITE provides a history search feature where users can
search backwards through time (not through the current code),
meaning that even deleted code can be found. All of these
search results are also highlighted in the timeline, and the user
can further investigate the selection or invoke selective undo.

B. Field Trial with the Initial Design
After implementing the initial user interfaces (Section V.A),

we conducted a field trial by deploying AZURITE to the students
in Masters of Software Engineering program at Carnegie
Mellon. We asked them to try using AZURITE while working on
their studio projects in summer 2013. We then interviewed two
of the active users to get more detailed feedback.

They both described that it was difficult to determine what
the resulting code would look like, just by looking at the select-
ed rectangles. For this reason, one of them used the code histo-
ry diff view instead, because it worked as a “preview” of the
selective undo result for him. He mentioned that he used the
code history diff view instead of using the regular undo com-
mand, because it was convenient to see a preview before undo-
ing. He also mentioned that he often wanted to keep some
comments and selectively undo only the nearby code because
for him the comments were usually the high-level description
of a certain algorithm and only the code may be wrong. Both
users wanted a feature to “tag” a point in time in the timeline.

The following subsections present the new user interfaces
which address these concerns.

C. Regional Undo Shortcut
We have found that the most popular form of selective un-

do is reverting a specific region of code to an old version,
which has been referred to as “regional undo” [17]. In the cur-
rent version of AZURITE, users can select some region in the
regular code editor and use a keyboard shortcut (Ctrl+R by
default, on a Mac) one or more times to perform selective
undo on that region directly within the code editor.

D. Improvements to the Timeline View
We made some significant improvements to the timeline

visualization (see Fig. 5a). One of the common ways of back-
tracking is to go back to a certain point in the past when a spe-
cific event happened. As Beck says in his book, “it would be
great if the programming environment helped me with this,
working as a checkpoint for the code every time all of the tests
run” [18]. To support this, AZURITE detects significant coding
events and displays them in the timeline view. Currently, the
displayed events include running JUnit tests that pass () or
fail (), running the application under development (), sav-
ing files (), and version-control system related commands
such as commit (). An event is displayed on the timeline as a
vertical line with an icon representing that event at the bottom
(Fig. 5a). Further event types can be trivially added in the fu-
ture. Users can also “tag” the current or any previous point in
time, which was one of the most requested features from the
field trial. A tag also shows an icon (, Fig. 5 at 5:16), which
can be named (shown on mouse hover), or stay anonymous.
Users can left-click on any icon to move the orange marker to
that point to see how the code looked then. Right-clicking any
of the icons shows a context menu providing useful commands
such as “Undo All Files to This Point,” which can be viewed as
a lightweight, automatic versioning feature.

Another requested addition is that when one or more rec-
tangles are selected in the timeline, the corresponding areas of
code are highlighted in the code editor (Fig. 5c-e). This miti-
gates the users’ reported problem that it can be difficult to men-
tally associate the rectangles with the code.

E. Interactive Selective Undo
We created another new user interface called the interactive

selective undo dialog (Fig. 1) in response to feedback from the
field trial. The design was inspired by Eclipse’s refactoring
wizard, which shows a preview of all changes to be made be-
fore actually changing the code. Similar to a typical refactoring
wizard, our interactive selective undo dialog shows a side-by-
side “diff” view where the left panel shows the current code
and the right panel shows the preview of the selective undo
based on the currently selected rectangles in the timeline. On
the top panel is the list of all the affected files.

The interactive selective undo dialog is modeless, and the
rectangles can be added to and/or removed from the selection
while the dialog is open, which immediately updates the pre-
view result shown in the dialog. By allowing this, users need
not worry about selecting the exact set of rectangles on their

(

Fig. 6. The interactive selective undo dialog when there is a chunk with
regional conflicts. The user can choose one of the provided options to resolve
regional conflicts. Here, the second option (FontSize) is chosen by the user.

228228228228 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

first attempt. Users can manipulate the selection until the pre-
view shows the desired result. This dialog is also capable of
dealing with regional conflicts. When there is a chunk which
contains regional conflicts, the dialog shows a red X icon ()
beside the chunk, and the OK button is disabled temporarily.
Once the user selects the chunk from the top panel, the dialog
shows the three alternative options described in Section III.B so
that users can choose which one they want. Once an option is
chosen, the chunk is marked as resolved with a green check
icon (, Fig. 6), and the OK button becomes enabled when the
user resolves all existing regional conflicts. Note that in most
use cases of AZURITE, regional conflicts will not come up since
rectangles will be selected with the aid of AZURITE features
such as history search and the code history diff view. The con-
flict-resolution interface is provided for the sake of soundness.

Additionally, users can select an arbitrary region of the
code in the left panel, right-click to bring up the context menu,
and select “Keep this code unchanged” (Fig. 1). Doing this
searches for all operations affecting that selected region of code
and excludes those operations from what will be undone. This
feature provides a significant usability improvement compared
to requiring users to select the exact set of operations, because
users can easily get the desired results by roughly over-
specifying the selected operations, and then marking all the
code fragments desired to be in the resulting code.

VI. PERFORMANCE FEASIBILITY

A. Size of the Logs
AZURITE uses the fine-grained code change history generat-

ed by FLUORITE [19], which is a recording plug-in that captures
all of the low-level editor commands and edit operations.
FLUORITE keeps the history as log files, and AZURITE uses the
log files when the user wants to bring an old history back into
the timeline. The total size of FLUORITE log data from 21 pro-
grammers, containing 1,460 hours of active coding activities,
collected for our previous study [2] was 377MB, which gives a
log size growth rate of about 264.5KB/hr during active editing.
Given the spacious hard drives used nowadays, we believe this
will not be a critical issue for most users. Moreover, the same
study [2] discovered that 99% of the backtracking instances are
performed within 3 editing sessions, implying that purging old
editing histories would be safe enough in most cases.

B. Edit History Management Performance
As described in Section III.E, the edit history management

algorithm gets slower as the history gets bigger, because its
time complexity is , where is the number of all opera-
tions in the current history. We measured3 the actual time it
takes to add a new operation (which would usually contain one
or more tokens, not just a single character) to the history under
varying sizes of , and it took 3.93ms when = 10,000, and
39.58ms when = 100,000. According to the log data we col-
lected, 10,000 operations is approximate one week of coding
work (avg. # of edits: 251.9/hour). This shows that the edit
history management algorithm, even unoptimized, will work in

3 Measured on a PC running Windows 8 with a 2.60GHz CPU.

practice without causing significant delay. Future work in-
cludes optimizing the edit history’s scalability, for example by
using a tree-based data structure with relative offsets.

VII. USER STUDY

We conducted a small controlled study to evaluate the usa-
bility and usefulness of AZURITE, after implementing all the
new user interfaces described in Sections V.C-E. We used a
between-subjects design with two groups: AZURITE and Eclipse
only (as the control). All the tasks were performed using the
Eclipse 4.4 IDE on a 15” Macbook Pro machine running OS X
10.9. The study took about 1.5 to 2 hours for each participant.

A. Participants
We recruited 12 programmers at Carnegie Mellon, 8 males

and 4 females (median age=27), who were randomly assigned
to either group. All participants reported that they had at least 3
years of programming experience in general (median = 5 yrs),
and at least 2 years of Java experience (median = 4 yrs). No
one had previously seen or used AZURITE before the study.

B. Tasks
There were a total of 6 Java programming tasks, performed

in the same order for all participants (Table I). A separate code
base was provided for each task. For tasks 1 through 5, each
task was composed of a series of steps: a number of normal
(non-backtracking) programming steps described in Table I,
followed by a backtracking step (which is always the last step)
to revert the changes made in the underlined step while keeping
the changes from the other steps. This was because we wanted
to have the participants create the edit history themselves, and
wanted to use backtracking situations that are not trivial to per-
form using regular undo. For example, for T1, participants
were asked to revert the factorial method back to the for
loop version after finishing step (3). For task 6, the partici-
pants were provided with an existing code edit history and then
performed backtracking from there. This allowed us to test if
users can effectively perform selective backtracking when the
code changes are scattered in multiple files and locations, with-
out needing to require the users to spend time creating a long
and complex edit history.

Because it would be impossible to gather backtracking tim-
ing data if the participant becomes stuck in one of the non-
backtracking steps, we set up a 4-minute limit for each step,
and the experimenter helped the participant after the time limit.
No help was provided for the backtracking steps from which
the reported results are measured.

C. Study Procedure
After obtaining the informed consent and demographic in-

formation, for both groups we alternated between one tutorial
session and two programming tasks, resulting in a total of 3
tutorial sessions and 6 tasks. The tasks were designed in a way
that they can be effectively performed by using the feature they
learned from the previous tutorial session, but the participants
were told that they were free to use any strategies.

In the tutorial sessions, the AZURITE group learned how to
use the regional undo shortcut (Section V.C), the “Undo All

229229229229 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

Files to This Point” feature from the timeline view (Section
V.D), and the interactive selective undo dialog (Section V.E).
The control group learned about the local history feature of
Eclipse, which is a built-in feature that keeps a per-file local
history of every saved version of the source code [20], and is
the closest existing feature that can help with the tasks. In the
three tutorial sessions, this group learned how to manually per-
form selective undo using the local history, how to replace the
entire source code with one of the saved revisions, and how to
perform selective undo in multiple files. All participants in both
groups were familiar with and were able to use the regular line-
ar undo as well. After each tutorial, the participants were given
a written document explaining the feature they learned during
the tutorial with screenshots, so that they could refer to it later.

D. Results
All the participants in both groups successfully completed

all the backtracking steps, so we compared the completion time
of the backtracking step of each task. An independent-samples
t-test was conducted to compare the backtracking completion
time between the two groups. Over all tasks, the AZURITE
group took significantly less time (mean=386.3s) to perform all
the backtracking steps than the control group (mean=768.8s,
p < 0.01), which is roughly twice as fast. Fig. 7 shows the aver-
age backtracking completion time for the individual tasks for
the 6 participants in each group. For tasks 2, 4, and 6, the AZ-
URITE group was significantly faster compared to the control
group (p < 0.05). For T1, the AZURITE group was faster but this
was not statistically significant (p=0.25), mainly because one
participant in the AZURITE group mistyped the shortcut key
twice, so he started over and took much longer (173s).

T3 & T4 were non-selective backtracking tasks, meaning
that they could have been performed with multiple invocations
of the regular undo command. One participant in the control
group in fact used the regular undo command instead of using
the local history feature. Still, the AZURITE group was generally
faster because they could quickly skim through the timeline to
find the last successful unit test run and then undo all files to
that point with a single command. There was one participant in

the AZURITE group who did not use AZURITE for T3 and took
167s reproducing the code manually, which heavily affected
the mean value and made the average time difference statisti-
cally non-significant (p=0.16) for T3.

The AZURITE group did not perform better for T5 (p=0.65),
and the completion time varied much more (sd=108.4) than the
control group (sd=37.11). This task was meant to be completed
using the interactive selective undo dialog, but the participants
had to also manually edit the resulting code after using the dia-
log, due to the difference between the two layout managers
they were using. Two participants quickly realized this and
roughly performed selective undo with the dialog and manually
edited the resulting code. One participant used the regional
undo instead. The other 3 participants tried to complete the
backtracking using only the interactive selective undo dialog,
which resulted in much longer time because the current interac-
tive selective undo dialog does not support manual editing
within the dialog itself. On the other hand, the “compare view”
of the Eclipse local history supports manual editing, and result-
ing code can be manually edited within the compare view. So
this is a feature we will add to AZURITE in the future. T6 was
also meant to be completed with the interactive selective undo
dialog, but in this case everything could be done solely with the
dialog, and thus the AZURITE group dramatically outperformed
the control group (mean=128.5s v. 345.0s, p < 0.02).

After finishing all the tasks, we asked whether the tool they
used was useful for them with a 5-point Likert scale. A Wil-
coxon rank sum test showed that AZURITE was more useful
(median=5) than the Eclipse local history (median=3.5, p<0.05).

E. Limitations
In order to focus on whether the tool helps in various back-

tracking situations, we provided specific steps of tasks without
the surrounding exploratory programming context. To prevent
the tasks from being too artificial, we designed the tasks based
on actual backtracking situations observed from previous stud-
ies [1, 2]. In addition, at the end of the study, we gave a 5-point
Likert question asking if the given scenarios were plausible in
that similar situations come up when they are programming. 10
out of 12 participants agreed or strongly agreed, but the other
two participants did not (median=4). Another limitation is that
the control group was not trained to use any VCS such as Git.
This was primarily because the step-by-step nature of the task

TABLE I. SUMMARY OF TASKS

Task Individual Steps SEL MF
T1 (1) Implement factorial method with a loop

(2) Modify factorial method to use recursion
(3) Make a few more independent changes

√

T2 (1) Delete some existing sorting code
(2) Make a few more independent changes √

T3 (1) Implement a simple Number class (unit tests given)
(2) Modify Number to be an immutable class √

T4 (1) Implement a Stack with inheritance (unit tests given)
(2) Modify Stack to use composition instead

T5 (1) Layout GUI controls using GridLayout
(2) Change the layout manager to GridBagLayout
(3) Add another GUI control

√

T6 Remove all the debugging specific code (e.g., println in
multiple places) while keeping the actual bug fix code. An
edit history is provided to begin with.

√ √

SEL: selective backtracking (cannot be done with regular undo)
MF: multiple files are involved

Task T5 is similar to the motivating example of Section II.
Fig. 7. The average backtracking completion time for each task. The error
bars indicate the standard deviations. *differences are statistically significant.

230230230230 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

instructions could bias the behavior of the participants towards
commiting a version after each step, even when they do not
usually make such small, frequent commits in their real envi-
ronments. Carefully comparing AZURITE and VCSs on the
backtracking tasks remains as future work.

The participants were all recruited from the local university,
not from industry. However, given that our previous study
found that programmers backtrack frequently [2], and 10 out of
12 participants had previous industry experience, we believe
that AZURITE would be useful in real environments as well.

VIII. DISCUSSION AND FUTURE WORK

A. Linear vs. Tree/Graph Based History
We intentionally chose to use a linear history model instead

of a tree or graph model as used in US&R [21] or Git. In our
history model, all the code changes (including the undo com-
mands themselves) are added to the end of the timeline for two
reasons. First, although several text editors and plug-ins have
provided tree-structured visualizations that allow users to move
among different nodes [22, 23], it is difficult to understand the
tree as the history gets bigger. This is because the nodes do not
provide useful information for the user to navigate the tree,
which is why we believe these have not caught on in popularity.
In contrast, the linear history model and timeline visualization
of AZURITE would match programmers’ episodic memory [24]
and have been shown to be understandable in our studies.

Second, it is not trivial to represent a selective undo
operation in a tree-structured history. Unlike the regular undo,
selectively undoing some changes does not result in one of the
previously visited nodes in the history tree. Rather, it creates a
new node that has never existed before. Also, a graph-based
history as provided in Git would be inappropriate because a
selective undo operation is not used for merging.

B. Granularity of Edit Operations
Having different approaches for merging / dividing edit op-

erations might affect the usability of a selective undo tool. On
the one hand, if each character-level edit is logged individually,
the tool could be less usable because all of the individual op-
erations would have to be tediously identified and selected
character by character. To mitigate this problem, AZURITE
combines consecutive typing performed within 2 seconds (con-
figurable), similar to the way typical text/code editors do. On
the other hand, if the operations are too coarse-grained, then
there would be many more regional conflicts among the opera-
tions. This would also give less control to the users, which was
a real problem observed during the pilot for the user study.
Based on our observation that users wanted to control the undo
range at least at the line level, we decided to prevent a single
operation from spanning across multiple lines. For example,
when the user types multiple lines or pastes a large block, AZ-
URITE divides the operation into multiple insert operations,
each having one line of code. This approach worked very well
during the actual user study.

C. Using Textual vs. Structural Changes as Input
While there are development tools which use the abstract

syntax tree (AST) level changes of the code as input [25, 26,
27], AZURITE uses the textual code changes instead. There are
trade-offs between these two choices. On the one hand, by us-
ing textual changes as input, the mechanism becomes language
agnostic, as is the conventional undo command and most
commercially available merge tools [28]. Besides, there are
certain types of edits that cannot be captured at the AST-level,
such as reformatting code or changing a comment section. By
using the textual input, our system can capture and undo these
types of changes as well.

On the other hand, by using AST-level changes, the selec-
tive undo mechanism could use the additional information and
better handle semantic conflicts. A semantic conflict can occur
when a set of edit operations are semantically related to each
other in the code. For example, when a method is renamed, its
definition and all the call-sites must change together. Selective-
ly undoing only one of these rename operations would not
cause any regional conflicts because the changes were all made
in totally different locations. However, this would result in in-
consistent code containing compile errors and thus could be
considered to result in semantic conflicts.

Since these edits are likely to have been performed close
together in time, users may be able to easily select them togeth-
er in the timeline. However, if not, we believe the compile er-
rors would catch these kinds of problems and users would be
able to perform the remaining backtracking steps to complete
what they wanted to achieve. We observed this situation occur-
ring during the user study, especially in the backtracking step
of T5. In order to keep the added GUI control correctly, the
users had to keep both the member field declaration and the
code for creating the object and adding it to the panel. Some
participants only kept the creation code and forgot to keep the
declaration, resulting in a compilation error. All of them imme-
diately realized their mistake by reading the error message and
went to the field declaration location and performed selective
undo there to restore the code. Even though we found these
kinds of conflicts to be easy to detect and fix, we plan to inves-
tigate adding features to AZURITE to handle them directly by
augmenting the structural information of the changes. In fact,
as we showed in our previous study of backtracking [2], the
textual changes can easily be transformed into AST-level
changes with a parser, which means that we could use both the
textual and the structural changes as input.

D. Scalability of AZURITE

As it stands now, AZURITE has only been tested with visual-
izing less than a week of coding histories. We believe this is an
appropriate level of scalability for its purpose, given that we
found 97% of the programmers’ backtracking is performed
within the same editing session [2]. However, because there
was a general consensus from the users that the rectangles dis-
played in the timeline are too fine-grained, we will enhance the
timeline by applying semantic zooming and coalescing the ed-
its for the same task or those related to a working set.

231231231231 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

IX. RELATED WORK

A. Selective Undo in Other Contexts
Selective undo has been extensively studied for graphical,

interactive editors. Berlage introduced the selective undo model
implemented in GINA, which adds the reverse operation of the
selected command to the current context [7]. The Amulet [8]
and Topaz [9] systems had a similar selective undo feature, but
these allowed repeating a selected command even on a new
object. Selective undo was applied in spreadsheets [29] by al-
lowing users to select a region in the spreadsheet and perform
regional undo. Dwell-and-spring [30] is a recent selective undo
mechanism for direct manipulation. It provides an interface for
undoing any press-drag-release interaction. All of these ap-
proaches assume that there is an object on which the operations
can be performed: primitive graphical objects such as shapes in
graphical editors, and individual cells in spreadsheets. In con-
trast, there is no clear notion of objects in text editors, since
edit operations typically affect ranges of text, and the text itself
moves around and is changed.

There are other undo models that support selective undo by
providing additional commands beyond undo and redo. The
US&R model [21] allows users to skip redoing an operation,
using a complicated tree-based data structure. Users can selec-
tively undo an isolated operation, by undoing multiple steps
until the target operation gets undone, skipping the redo com-
mand once, and then redoing the rest of the operations. The
triadic model [31] uses a simpler structure composed of a linear
history list, and a circular redo list which can be rotated by
users. Undoing an operation puts the operation at the beginning
of the redo list, and rotating the redo list takes one operation at
the beginning of the list and puts it at the end. Since the rotate
command can be used to skip a redo command, users can selec-
tively undo a certain operation in a similar way. However, both
models require deep understanding of the underlying history
structure to correctly perform selective undo. In addition, selec-
tive undo cannot be done in one step, which can be cumber-
some for users.

B. Regional Undo in Text Editors
Some text editors such as Emacs and DistEdit [32] support

regional undo, where the user undoes the most recent operation
that affected a specific selected region of text. Regional undo is
useful and also relatively easy to implement compared to the
generic selective undo, because it always undoes the most re-
cent operation performed in the selected region, which guaran-
tees that there are no regional conflicts with the target operation
(see Section III.B). Regional undo is directly supported in AZ-
URITE using the keyboard shortcut, by searching for all edits for
the region of code and invoking selective undo on the last one,
or by using code history diff view and using the revert button.
In regional undo, however, there can be an ambiguity if the
user selects a region which partially overlaps with an opera-
tion’s effective region. Li and Li refer to this problem as region
overlapping, and introduce the idea of partial undo as a solu-
tion, which undoes only overlapped part of the operation when
an operation partly falls in the given undo region [17]. In this
situation, AZURITE would do the same when using the code

history diff view or the regional undo shortcut to revert a cer-
tain region of code to one of the previous versions.

C. Variation Management Tools
Version control systems (VCSs) can be seen as temporal

variation management systems. However, there are many cases
where a VCS cannot directly help with backtracking, as dis-
cussed in Section I. Git provides features related to selective
undo, such as reverting a whole commit, and selectively com-
mitting local code changes. However, selectively reverting
changes from an existing commit is a very involved process.
Moreover, these features cannot be used for restoring deleted
code that is neither in the commit history nor in the local code.
Most IDEs support automatic local history keeping features [33,
34, 35, 36], but they are limited in that (1) the history is shown
in a linear list without any human-readable descriptions or cues,
(2) history search is not supported, and (3) selective undo is not
directly supported, so users must compare the local and the
desired older versions to merge the wanted changes manually.
Similar to IDEs, cloud-based text editors such as Google Docs
[37] support linear revision history with the same limitations.

There are a few other systems such as Juxtapose [5] and
Parallel Pies [6], which facilitate design exploration by provid-
ing ways of adding alternatives at any time and moving among
the alternatives. However, users must know in advance when
they want to add variations in Juxtapose, and Parallel Pies
works only in the graphical editing context.

Other work has studied ways to manage source code varia-
tions. Choice calculus provides a generalized representation for
software variations at the source code level and provides theo-
retical foundations of variation management [38]. However, the
Choice calculus cannot handle regional conflicts. Barista [39]
had an alternative expressions tool which allows selecting an
alternative by clicking on one of the listed choices, but it was
restricted to the expression level.

X. CONCLUSION

Although selective undo can be a powerful way to back-
track, this idea has not previously been implemented in any
popular code editors, due to the challenges of selective undo
for text editing. AZURITE overcomes these challenges and pro-
vides a practical and usable system, which our formal user
study suggests can make programmers more effective and effi-
cient by allowing them to backtrack more easily. We expect
that the tool would give programmers more confidence while
exploring, because they can back out of incorrect edits at any
time. AZURITE is available for general use as an Eclipse plugin
for Java, and we invite your feedback: www.cs.cmu.edu/~azurite/.

ACKNOWLEDGMENTS

We thank Sebon Koo for helping us implement the early
version of the timeline, and the participants of our studies.
Funding for this research comes in part from the Korea Foun-
dation for Advanced Studies (KFAS) and in part from NSF
grants IIS-1116724 and IIS-1314356. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of
KFAS or the National Science Foundation.

232232232232 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Yoon and B. A. Myers, "An Exploratory Study of
Backtracking Strategies Used by Developers," Proc.
International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE 2012), 2012, pp. 138-144.

[2] Y. Yoon and B. A. Myers, "A Longitudinal Study of
Programmers' Backtracking," Proc. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC 2014),
2014, pp. 101-108.

[3] D. W. Sandberg, "Smalltalk and Exploratory Programming,"
SIGPLAN Notices, vol. 23, 1988, pp. 85-92.

[4] J. Sametinger and A. Stritzinger, "Exploratory Software
Development with Class Libraries," Proc. Joint Conference of
the Austrian Computer Society, 1992.

[5] B. Hartmann, L. Yu, A. Allison, Y. Yang, and S. R. Klemmer,
"Design as Exploration: Creating Interface Alternatives through
Parallel Authoring and Runtime Tuning," Proc. ACM
Symposium on User Interface Software and Technology (UIST
2008), 2008, pp. 91-100.

[6] M. Terry, E. D. Mynatt, K. Nakakoji, and Y. Yamamoto,
"Variation in Element and Action: Supporting Simultaneous
Development of Alternative Solutions," Proc. SIGCHI
Conference on Human Factors in Computing Systems (CHI
2004), 2004, pp. 711-718.

[7] T. Berlage, "A Selective Undo Mechanism for Graphical User
Interfaces Based on Command Objects," ACM Transactions on
Computer-Human Interaction, vol. 1, 1994, pp. 269-294.

[8] B. A. Myers and D. S. Kosbie, "Reusable Hierarchical
Command Objects," Proc. SIGCHI Conference on Human
Factors in Computing Systems (CHI 1996), 1996, pp. 260-267.

[9] B. A. Myers, "Scripting Graphical Applications by
Demonstration," Proc. SIGCHI Conference on Human Factors
in Computing Systems (CHI 1998), 1998, pp. 534-541.

[10] D. Kurlander and S. Feiner, "Editable Graphical Histories," Proc.
1988 IEEE Workshop on Visual Languages, 1988, pp. 127-134.

[11] S. R. Klemmer, M. Thomsen, E. Phelps-Goodman, R. Lee, and J.
A. Landay, "Where Do Web Sites Come From?: Capturing and
Interacting with Design History," Proc. Conference on Human
Factors in Computing Systems (CHI 2002), 2002, pp. 1-8.

[12] D. Kurlander and S. Feiner, "A Visual Language for Browsing,
Undoing, and Redoing Graphical Interface Commands," Visual
languages and visual programming, 1990, pp. 257-275.

[13] M. Chii, M. Yasue, A. Imamiya, and M. Xiaoyang, "Visualizing
Histories for Selective Undo and Redo," Proc. 3rd Asia Pacific
Computer Human Interaction, 1998, pp. 459-464.

[14] Y. Yoon, B. A. Myers, and S. Koo, "Visualization of Fine-
Grained Code Change History," Proc. IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC
2013), 2013, pp. 119-126.

[15] S. P. Reiss, "Tracking Source Locations," Proc. International
Conf. on Software Engineering (ICSE 2008), 2008, pp. 11-20.

[16] G. D. Abowd and A. J. Dix, "Giving Undo Attention,"
Interacting with Computers, vol. 4, 1992, pp. 317-342.

[17] R. Li and D. Li, "A Regional Undo Mechanism for Text
Editing," Proc. International Workshop on Collaborative
Editing Systems (IWCES 2003), 2003.

[18] K. Beck, Test-Driven Development: By Example, Addison-
Wesley Professional, 2002.

[19] Y. Yoon and B. A. Myers, "Capturing and Analyzing Low-
Level Events from the Code Editor," Proc. ACM SIGPLAN
Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU 2011), 2011, pp. 25-30.

[20] "Eclipse Local History,"
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platf
orm.doc.user%2FgettingStarted%2Fqs-55.htm.

[21] J. S. Vitter, "US&R: A New Framework for Redoing (Extended
Abstract)," SIGSOFT Software Engineering Notes, vol. 9, 1984,
pp. 168-176.

[22] S. Losh, "Gundo - Visualize your Vim Undo Tree," 2012;
http://sjl.bitbucket.org/gundo.vim/.

[23] T. Cubitt, "undo-tree.el version 0.3.1 --- Treat undo history as a
tree," 2010; http://www.dr-qubit.org/emacs.php.

[24] C. Parnin and S. Rugaber, "Programmer Information Needs after
Memory Failure," Proc. IEEE International Conference on
Program Comprehension (ICPC 2012), 2012, pp. 123-132.

[25] R. Robbes and M. Lanza, "A Change-based Approach to
Software Evolution," Electronic Notes in Theoretical Computer
Science, vol. 166, 2007, pp. 93-109.

[26] T. Omori and K. Maruyama, "A change-aware development
environment by recording editing operations of source code,"
Proc. international working conference on Mining software
repositories (MSR 2008), 2008, pp. 31-34.

[27] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, "Mining
fine-grained code changes to detect unknown change patterns,"
Proc. International Conference on Software Engineering (ICSE
2014), 2014, pp. 803-813.

[28] T. Mens, "A State-of-the-Art Survey on Software Merging,"
IEEE Transactions on Software Engineering, vol. 28, 2002, pp.
449-462.

[29] Y. Kawasaki and T. Igarashi, "Regional Undo for Spreadsheets,"
Proc. ACM Symposium on User Interface Software and
Technology (UIST 2004), 2004.

[30] C. Appert, O. Chapuis, and E. Pietriga, "Dwell-and-Spring:
Undo for Direct Manipulation," Proc. SIGCHI Conference on
Human Factors in Computing Systems (CHI 2012), 2012, pp.
1957-1966.

[31] Y. Yang, "Undo Support Models," International Journal of
Man-Machine Studies, vol. 28, 1988, pp. 457-481.

[32] A. Prakash and M. J. Knister, "A Framework for Undoing
Actions in Collaborative Systems," ACM Transactions on
Computer-Human Interaction, vol. 1, 1994, pp. 295-330.

[33] Eclipse Foundation, "Eclipse - The Eclipse Foundation open
source community website.," http://www.eclipse.org/.

[34] Oracle Corporation, "NetBeans IDE," http://netbeans.org/.
[35] M. Wilson-Thomas, "Auto History Extension in Visual Studio

2013," 2014; http://blogs.msdn.com/b/visualstudio/archive/2014
/01/23/auto-history-extension-in-visual-studio-2013.aspx.

[36] Apple Inc., "Comparing Versions of a File with the Timeline,"
2013; https://developer.apple.com/library/ios/recipes/xcode_help
-versioneditor/VersionTimeline.html.

[37] Google Inc., "Google Docs," https://docs.google.com/.
[38] M. Erwig and E. Walkingshaw, "The Choice Calculus: A

Representation for Software Variation," ACM Transactions on
Software Engineering and Methodology, vol. 21, 2011.

[39] A. J. Ko and B. A. Myers, "Barista: An Implementation
Framework for Enabling New Tools, Interaction Techniques and
Views in Code Editors," Proc. CHI 2006, pp. 387-396.

233233233233 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 04,2021 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

