Depth Camera based Localization and
Navigation for Indoor Mobile Robots

Joydeep Biswas
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

joydeepb@ri.cmu.edu

Abstract—We present here the Fast Sampling Plane Filtering
(FSPF) algorithm, which reduces the volume of the 3D point
cloud by sampling points from the depth image, and classifying
local grouped sets of points as belonging to planes in 3D (called
the “plane filtered” points) or points that do not correspond to
planes (the “outlier” points). We present a localization algorithm
based on an observation model that down-projects the plane
filtered points on to 2D, and assigns correspondences for each
point to lines on the 2D map. The full sampled point cloud
(consisting of both plane filtered as well as outlier points) is
processed for obstacle avoidance for autonomous navigation. We
provide experimental results demonstrating the effectiveness of
our approach for indoor mobile robot autonomy. We further
compare the accuracy in localization using 2D laser rangefinders
vs. using 3D depth cameras.

I. INTRODUCTION AND RELATED WORK

Given that indoor mobile robots have limited onboard
computational power, there are two immediate hurdles to using
depth cameras for mobile robot autonomy:

1) Depth cameras typically generate voluminous data that
cannot be processed in its entirety in real time for
localization

2) Techniques for localization and mapping (e.g. occupancy
grids) in 2D do not scale well in terms of memory and
computational complexity for use in 3D. Conversely,
the problem of mapping 3D observations to existing 2D
maps is not straightforward.

We tackle both these problems using the Fast Sampling
Plane Filtering (FSPF) algorithm that samples the depth image
to produce a set of points corresponding to planes, along with
the plane parameters (normals and offsets). The filtered point
cloud is then used to localize the robot on an existing 2D
vector map. The sampled points are also used to perform
obstacle avoidance for navigation of the robot. To illustrate the
key processed results, Fig. 1 shows a snapshot using a single
depth image after plane filtering, localization, and computing
the obstacle avoidance margins.

Map building using raw point clouds [7, 4] in general scale
poorly in terms of memory requirements with the density of
point clouds and the size of maps. Approaches to map building
using planar features extracted from 3D point clouds [8, 3]
have been explored in the past. 3D Plane SLAM [5] is a
6D SLAM algorithm that uses observed 3D point clouds to
construct maps with 3D planes. The plane detection in their
work relies on region growing [6] for plane extraction, whereas

Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

mmv@cs.cmu.edu

Fig. 1.
point cloud is shown in white, the plane filtered 3D points in color along with
plane normals, and the obstacle avoidance margins denoted by red boxes. On
the right, the robot’s pose is shown on the vector map (blue lines), with the
3D point correspondences shown as red points.

Snapshot of depth image processing: On the left, the complete 3D

our approach uses sampling of the depth image. In addition,
our observation model projects the observed planes onto the
existing 2D vector map used for 2D laser rangefinder sensors.

II. FAST SAMPLING PLANE FILTERING

The Fast Sampling Plane Filtering (FSPF) algorithm sam-
ples random neighborhoods in the depth image, and in each
neighborhood, it performs a RANSAC based plane fitting on
the 3D points. Thus, it reduces the volume of the 3D point
cloud by extracting geometric features in the form of planes
in 3D while being robust to outliers.

FSPF takes the depth image I as its input, and creates a list
P of n 3D points, a list R of corresponding plane normals, and
a list O of outlier points that do not correspond to any planes.
FSPF proceeds by first sampling three locations dy,d;,ds from
the depth image. The first location dj is selected randomly
from anywhere in the image, and d; and d; are selected
randomly within a neighborhood of size 7 around dy. The
3D coordinates for the corresponding points py, pi, ps are
then computed. A search window of width w’ and height A’
is computed based on the mean depth (z-coordinate) of the
points pg, p1, p2, and the minimum expected size S of the
planes in the world. Additional I — 3 local samples d; are
then sampled from the search window to obtain a total of [

local samples. The plane fit error for the reconstructed 3D
point p; from the plane defined by the points pi, pa, p3 is
computed to determine if it as an “inlier.” If more than ol
points in the search window are classified as inliers, then all
the inlier points are added to the list P, and the associated
normals to the list R. This algorithm is run a maximum of
My times to generate a list of at most n,,,, 3D points and
their corresponding plane normals.

III. LOCALIZATION AND NAVIGATION
A. Localization

Localization using the Plane filtered point cloud is per-
formed using Monte Carlo Localization (MCL) [2] and Cor-
rective Gradient Refinement (CGR) [1].

Since the map on which the robot is localizing is in 2D, the
3D filtered point cloud P and the corresponding plane normals
R are first projected onto 2D to generate a 2D point cloud P’
along with the corresponding normalized normals R'. Points
that correspond to ground plane detections are rejected at this
step. Let the pose of the robot be given by x = {x1,z2}
where 1 is the 2D location of the robot, and x5 its orientation
angle. The observable scene lines list L is computed using an
analytic ray cast. The observation likelihood p(y|z) (where the
observation y is the 2D projected point cloud P’) is computed
as follows:

1) For every point p; in P’, line I; (I; € L) is found such
that the ray in the direction of p; — z; and originating
from x intersects ;.

2) Points for which no such line [; can be found are
discarded.

3) Points p; for which the corresponding normal estimates
r; differ from the normal to the line /; by a value greater
than a threshold 6,,,,, are discarded.

4) The perpendicular distance d; of p; from the (extended)
line I; is computed.

5) The total (non-normalized) observation likelihood
p(y|z) is then given by:

p(ylr) = | | exp [— : } (1)
Zl;[l 2fc2

Here, o is the standard deviation of a single distance
measurement, and f : f > 1 is a discounting factor to discount
for the correlation between observed points. The observation
likelihoods and their gradients thus computed are used to
update the localization using CGR.

B. Navigation

For the robot to navigate autonomously, it needs to be able
to successfully avoid obstacles in its environment. This is done
by computing open path lengths available to the robot for
different angular directions. Obstacle checks are performed
using the 3D points from the sets P and O. Given the robot
radius r and the desired direction of travel 4, the open path
length d(#) as a function of the direction of travel , and hence
the chosen obstacle avoidance direction §* are calculated as:

(a) (b)

Fig. 2. Obstacle avoidance: The raw 3D point cloud (a) and (b) the sampled
points (shown in color), along with the open path limits (red boxes). The
robot location is marked by the axes.

d(6) = min_ (max(0,[|p-0l| - 1)) 2
0* = arg max (d(8) cos(6 — 0y)) 3)

Here, 6 is a unit vector in the direction of the angle 0,
and the origin of the coordinate system is coincident with
the robot’s center. Fig. 2 shows an example scene with two
tables and four chairs that are detected by the depth camera.
Despite randomly sampling (with a maximum of 2000 points)
from the depth image, all the obstacles are correctly detected,
including the table edges. The computed open path lengths
from the robot location are shown by red boxes.

IV. EXPERIMENTAL RESULTS

Our experiments were performed on our custom built omni-
directional indoor mobile robot, equipped with the Microsoft
Kinect sensor. To compare the accuracy in localization using
the Kinect, we also used a Hokuyo URG-04LX 2D Ilaser
rangefinder scanner. Localization using the laser rangefinder
was performed using MCL [2] and CGR with a 2D point
cloud sensor model [1].

Fig. 3 shows the mean errors in localization for the Kinect
and laser rangefinder sensors while traversing a path 374m
long. Although localization using the Kinect is not as accurate
as when using the laser rangefinder, it is still consistently
accurate enough for the purposes of indoor mobile robot
navigation, with a mean offset error of less than 20cm and a
mean angular error of about 1.5°. It is worth noting, however,
that the Kinect sensor is an order of magnitude cheaper than
the laser rangefinder, and hence would still be the more cost-
effective solution for robots on a lower budget.

To test the robustness of the depth-camera based localization
and navigation solution, we set a series of random waypoints
for the robot to navigate to, spread across the map. The total
length of the path was just over 4.1km. Over the duration of the
experiment, only the Kinect sensor was used for localization
and obstacle avoidance. The robot successfully navigated to all
waypoints, but localization had to be reset at three locations,
which were in open areas of the map where Kinect sensor

0.25
Kinect
g o2t == 2D Laser Rangefinder |
g
= 0.15 |
S
w o1
o
@
2 \
0.05 | -
e) N
0 :
5 10 15 20 25 30 35 40 45 50
Number of Particles
Fig. 3. The offset errors from the true true robot locations while localizing

using the Kinect vs. Laser Rangefinder

Fig. 4. Trace of robot location for the long run trial. The locations where
localization had to be reset are marked with crosses.

could not observe any walls for a while. Fig. 4 shows the trace
of the robot’s location over the course of the experiment.

REFERENCES

[1] Corrective Gradient Refinement for Mobile Robot Local-
ization. To Appear in IROS 2011.

[2] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte
carlo localization: Efficient position estimation for mobile
robots. In Proceedings of the National Conference on
Artificial Intelligence, pages 343-349. JOHN WILEY &
SONS LTD, 1999.

[3] P. Kohlhepp, P. Pozzo, M. Walther, and R. Dillmann.
Sequential 3D-SLAM for mobile action planning. In /ROS
2004.

[4] A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann.
6d SLAM with approximate data association. In ICAR
2005.

[5] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn,
S. Schwertfeger, and J. Poppinga. Online three-
dimensional SLAM by registration of large planar surface
segments and closed-form pose-graph relaxation. Journal
of Field Robotics 2010.

[6] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak. Fast
plane detection and polygonalization in noisy 3D range
images. In IROS 2008.

[7] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm
for mobile robot mapping with applications to multi-robot
and 3D mapping. In ICRA 2000.

[8] J. Weingarten and R. Siegwart. 3D SLAM using planar
segments. In IROS 2006.

