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Abstract

Recent research in human-robot interaction has investigtte idea of Sliding, or Adjustable,
Autonomy, a mode of operation bridging the gap between cetapbbot autonomy and full teleoperation.
This work, by and large, has been in single-agent domainwehiimg only one human and one robot
— and has not examined the issues that arise when moving ti-ageht domains. Here, we discuss
the issues involved when adapting Sliding Autonomy coreéptcoordinated multi-agent teams. In our
system, remote human operators have the ability to joireard, the team at will, to assist the autonomous
agents with their tasks while not disrupting the team’s dowtion. We employ user modeling in order
to allow agents to request help when appropriate, regadi€svhether human operators are actively
monitoring their progress. To validate our approach, wesgme the results of two experiments. The
first evaluates the human—multi-robot team’s performanudeu four different collaboration strategies
including complete teleoperation, pure autonomy, and tigtirgtt versions of Sliding Autonomy. The
second experiment compares a variety of user interface qroafions, to investigate how quickly a
human operator can attain situational awareness when #shedp. The results of these studies support
our belief that by incorporating a remote human operatar multi-agent teams, the team as a whole

becomes more robust and efficient.

. INTRODUCTION

As expectations for robotic systems increase, it becomedehand harder to meet them with the

capabilities of a single robot. One approach is to use malspmple robots to perform tasks that would
This work has been supported by NASA under grant number NIXUABDA.
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require a very complex single mechanism. These teams ngtlmirig a much broader spectrum of
potential capabilities to a task, but also may be more roloutiie face of errors and uncertainty.

While it is envisioned that robot teams eventually will bdeabo perform complex tasks such as
large-scale assembly autonomously in remote hostile @mvients, the current state of the art falls short
of the necessary capabilities. In particular, the numbecaftingencies that must be considered and
provided for to make robots fully autonomous in open and dyinanvironments is prohibitively large.
On the other hand, pure teleoperated control of such rosotslikely to be very efficient because of
the communication delays involved, the large number of huoyerators required, and the sensing and
visualization problems inherent in any teleoperation dom@ur goal is to develop a framework within
which a single human operator can oversee and intervene iogtbration of a team of largely autonomous
robots.

One scenario exemplifying this approach is the assembigrgélstructures in hazardous environments,
such as orbital solar power arrays or Mars habitats. In sustranments, in-place human labor is
either unfeasible or scarce and expensive, making les8efraibots an attractive option. We have been
examining how robots and ground-based humans could woekhiegwhile assembling large scale orbital
structures, such as kilometers-wide solar power arrays.ewdsion many teams of robots working
independently on different portions of the structure, eeen by a small number of human operators on
Earth.

In order to develop the architectures, software capadslitaind models needed for such an endeavor, we
have assembled a heterogeneous team of Earth-bound r@hotexperimental task is the construction
of a square from four beams and four compliant nodes (Figiw@&éfore each end of a beam can be
inserted into a node, that node must be braced against thgiinmsforces. After each side of the square
is completed, the next beam must be procured and broughtetovtinksite. Heterogeneous teams are
well-suited to such construction scenarios, where manfereifiit skills, and correspondingly different
hardware, are required. Our team consists of an impreciaeyH#t robot, a weaker but more precise
mobile manipulator, and a dedicated sensing robot (Figure 2

Human operators bring their own unique set of skills to treteTo make the most efficient use of
the flexible problem-solving skills of humans, a robot tedraudd operate mostly autonomously, getting
help from a human operator only when a problem arises tharihat resolve by itself or when human
control provides significant benefits. Sliding, or AdjudégbAutonomy is an approach that has been
developed to address this, yielding more robust and eftiggstems. Most work in Sliding Autonomy,

however, has been limited to control of single robots [FIXREFS; MAYBE KORTENKAMP? ANY
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MULTI-AGENT SA SYSTEMS OUT THERE?]. In this work, we extentée concept to heterogeneous
multi-robot teams.

One fundamental difference in applying Sliding Autonomynrtalti-agent teams is that the human will
not always be aware of everything that is happening to alhefagents, whereas a human who must
monitor only a single agent is able to keep abreast of alvagiedevelopments. This gives rise to three

major issues that need to be addressed for multi-agenn§liélutonomy:

1) Requesting help: Since the human cannot keep track of all robots at all times, ability of
an agent to ask the human for help is critical. By using pertorce models of the autonomous
system and the human operator that incorporate empiricmpeance data for the current operator,
knowledge of typical human learning curves, and informatout the team’s state, the system
can make reasonably accurate performance predictionshvitniturn allows it to make principled
decisions about when to ask the human for help.

2) Gaining situational awareness. Since the human will not be able to monitor all robots at omce,
may be called away to attend to another team, it is importaatsure that the operator can quickly
gain situational awareness of a robot's workspace when isekpquested. It is also important that
the autonomous system model how long this will take, in otdenake principled decisions about
when to ask for help.

3) Maintaining coor dination: During and after human intervention, the components of yistesn that
remain under autonomous control must continue to operatenamtain the inter-agent coordination
necessary for task completion. We address this issue byliegagents to monitor themselves and
other agents as appropriate for their current task, allgwiirem to maintain coordination with

another agent even when the operator is in control of eithenta

To validate our approach to Sliding Autonomy in the multeagdomain, we have conducted an exper-
iment that varied the degree of human involvement in the. thkk experiment consisted of performing
our construction task under four different human/robotpsyation strategies: pure autonomy, System-
Initiative Sliding Autonomy (SISA), Mixed-Initiative Siing Autonomy (MISA), and teleoperation. Pure
autonomy clearly does not involve the human, consistinglgaf autonomous behaviors and recovery
actions. During teleoperation, the human is in completdrobof all aspects of all the robots. Bridging
the gap between these two extremes, SISA allows the opdoatotervene only when asked to do so by
the autonomous system, while in MISA the human can alsoviater at any time of his own volition.

SISA is designed to approximate situations where the opeisia scarce resource, and must multi-task
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in attending to different robot teams. MISA, on the otherdaraptures situations where humans can be
more dedicated to observing the team’s activities.

In this experiment, we examined time to complete the taskustmess, and the human’s perceived
workload. The results indicate that the autonomous systeoomsistently faster, but less reliable, than
a purely teleoperated approach. In both SISA and MISA, tleedmf assembly approaches that of the
autonomous system. While operator workload results shalagdhe preference for either SISA or MISA
is very task- and user-dependent, the workload for the husnaearly less than during pure teleoperation.
We conclude that our adaptation of Sliding Autonomy impmothee multi-agent team’s reliability without
compromising efficiency, and can be easily reformulated é@tthe differing constraints of a variety of
domains.

We also conducted a study examining how human operators esinaltain situational awareness in
our scenario. The experiment examined the types and améumtoomation that should be maintained
in order to minimize time to achieve situational awarengggen that the operator was attending a
different task prior to the request for help. The resultsvsliwat the interface designer can make clear
trade offs between time to achieve situational awarenedgta quality of the resulting understanding.
In general, accuracy (i.e. quality of understanding) inses as more data is available to the subject.
However, the time needed to attain situational awarenes®tisa monotonic function of the amount,
nor type, of information available. Instead, there is a rclgaint at which the time taken to absorb
additional information outweighs the corresponding daseein response time. The results from these
two experiments bolster our contention that Sliding Autoiocan be an effective approach to robust

control of multi-robot teams.

[l. RELATED WORK
A. Multi-Agent Robotic Assembly

The most common multi-agent assembly systems are thosetorfasettings, where multiple industrial
robots are involved in the assembly of a product. To allow fmeximum flexibility in production,
such systems are designed to be easily reconfigurable; ltbigsathem to adapt to different variants
of the same product, or even entirely different products.y8team of four industrial robots arranged
around a conveyor network for material handling is desdrilve[1]. The setup is typical of industrial
applications, with stationary robots and interactionsitiich to scheduling of shared resources (such as
the conveyor system or temporary storage areas). Sinceigimfesignificant concern in factory settings,

such industrial applications typically are managed by atreércontroller. In contrast, our system is
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comprised of multiple mobile and stationary robots. Theystmilexibly coordinate their motions in
order to complete the assembly task, and adapt to a dynantgestain environment; this requires close
coordination between various combinations of heterogeseabots, often involving more than one robot
simultaneously manipulating the structure.

Coordinated assembly performed by teams of mobile robatkpsime interest to the space community.
Stroupe et al. [2] use the CAMPOUT architecture to coor@inaibots with purely behavior-based
strategies to perform very tightly coupled tasks, simitaotirs. Two heterogeneous robots collaboratively

carry a beam and position it with respect to an existing stinecwith sub-centimeter accuracy.

B. Human-Robot Interaction

Recently, there has been significant interest in allowingnduu collaboration with robots in assembly
scenarios. The COBOT project seeks to make manually ogknadéehines more intelligent by providing
guidance so that the operator does not have to provide fingagoé control. Typically, the human
provides the force input, while the system steers the mestmaimto the right place [3] [4]. The roles of
the human operator and the system are clear and unvaryingahduman and the system must operate
simultaneously.

NASA's ASRO project [5] developed a mobile robot to assispace-suited human by carrying tools,
helping to manipulate objects, and providing sensor infdrom. While the robot was physically working
alongside the astronaut, it was teleoperated by anotheopén communication with the astronaut from
a remote site. Unlike the complete teleoperation used in @Seur system allows the remote user to
take control of parts of the assembly task, while leavingréreainder active under robotic control. The
human and robots in our scenario cannot directly interagsighlly since, unlike [3], [4], and [5], they
are not collocated.

A system closely related to our approach to human-robotant®n is presented by Fong et al. [6],
in which the robot and the user participate in a dialogue. it can ask the operator to help with
localization or to clarify sensor readings. The operateo &lan make queries of the robot. This framework
assumes that the robot is capable of performing all taskeragds it has full state information, whereas

our approach allows the human to assume control if necessary

C. Sliding, or Adjustable, Autonomy

Our use of the term Sliding Autonomy corresponds with thentédjustable Autonomy as presented

by Dorais et al. [7]. That work provides several future exdag@n which Sliding Autonomy will be
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essential for space operations where demands on the oparash be focused and minimized, such as
[FIXME: INSERT EXAMPLES FROM DORAIS PAPER].

Using a roving eye and a (fixed) manipulator similar to oursrt&nkamp et al. [8] developed and
tested a software infrastructure that allows for slidingtoal of a robot manipulator. The task involved
a pick-and-place operation during which Sliding Autonontipveed the operator to recover from visual
servoing errors, participate in high-level planning, aetedperate the manipulator to complete tasks
beyond its autonomous capabilities. Our work extends thith & more complex assembly task that
involves a team of robots and a finer granularity of Slidinggkomy.

Scerri has proposed an architecture for Sliding Autonomglieg to a daily scheduler [9]. This
autonomous system attempts to resolve timing conflictss@dianeetings, group discussions, personal
conflicts, etc.) among some set of team members. Memberdkréoaadjust the autonomy of the system
by indicating their intent to attend gatherings or willirggs to perform tasks.

Maheswaran et al. [10] describe a system of personal assistgnts that can operate under either
user-based or agent-based autonomy. The entity in coritbe¢ an agent or a human) explicitly reasons
whether and when to transfer decision making control totearogntity (another agent or human). While
our system currently does not allow control to be transtefrem one robot to another, our approach to

Sliding Autonomy operates at a much finer level of granufarit

D. Situational Awareness

Over the years there has been a large body of research ondnéipiman operators maintain situational
awareness. A significant amount of the initial research ia #ea focused on helping pilots maintain
situational awareness while flying [11] [12]. The focus hh#ted in more recent research to studying
how human operators can maintain situational awareneds vet¢operating robots, such as those in the
search and rescue domain [11]. This work is most relevanystems where the operator is in constant
contact with the system. In our domain, however, the openat@y have periods where he is not in
contact with the system; thus, we are also interested inifgelibe operator repeatedly attain situational
awareness after being out of contact with the system.

Goodrich et. al. [13] also study situational awareness timations where the operator may not be in
constant contact with the system. That work examines trec@feness of an operator when controlling
a robot at different levels of autonomy given increasingtgrion to the robot. It attempts to facilitate
such awareness by designing a usable interface for the topefais is similar to our system, where

the operator sometimes multi-tasks between interactigsodps, effectively ignoring the robots for that
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period of time.

I1l. CONTEXT: SCENARIO, HARDWARE, AND ARCHITECTURE
A. Scenario

One significant area of robotics research is large-scaletimbssembly. Robots are especially useful
in areas that humans are not well adapted to, particularBard®aus environments, such as space,
the Moon, or Mars. Building one robot that can handle therentionstruction task on its own is
often either very difficult or impossible, especially fordar-scale assemblies. Our approach is to use
multiple, heterogeneous robots that coordinate with omtheen to complete the task. While this increases
complexity due to the necessary coordination [14], it alkawes for more flexibility during task execution.

The construction task used in our experiments involves fmams and four planarly compliant nodes
that are assembled together into a square structure (Figukeft). In a rough attempt at simulating
conditions in space, the nodes are supported by castersothatsily along the floor. A node must be

braced before the end of a beam can be inserted into it; obmrthe insertion forces can cause the

e

node to roll away.

Fig. 1. The fully assembled four-beam structure (left), ewiof a beam being inserted into a

node (center), and a close-up of a node about to be bracedeb@rdne (right).

This task decomposes naturally into subtasks that can bgleted by heterogeneous agents filling
three different roles: an agent that provides informatibowa the state of the world (the Roving Eye;
Figure 2, left), an agent that braces the nodes during dgdkie Crane; Figure 2, center), and an agent
that does the actual manipulation and insertion of the beatosthe nodes (the Mobile Manipulator;

Figure 2, right).
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To assemble one side of the square, the Crane first braceseasndtiat the Mobile Manipulator can
insert one end of a beam into it. The Crane and Roving Eye thpaosition to the other end of the
beam, where the Crane braces another node while the MobilgpMator completes the node-beam-
node subassembly. Once the beam is securely docked, thdeMdbnipulator releases it and moves to
the next side of the square in order to receive the next beaincantinue. This process repeats four
times until the complete square is assembled. Running amtously, the three robots can complete each
side of the structure in 7.3 minutes, on average. The suceéser side for completely autonomous

assembly is 75%.

Fig. 2. The three robots used to build our square structime:Roving Eye (left), the Crane
(center) and the Mobile Manipulator (right).

B. Hardware

Our Roving Eye (Figure 2, left) is Xavier [15], a synchrowdrirobot built on a RWI B24 base and
equipped with a stereo camera pair mounted on a pan-tilt th& Roving Eye’s cameras are the team'’s
only extrinsic sensors - the Crane and the Mobile Manipulatly on the camera data in order to complete
their tasks. By using an independent sensing agent suchisasmé avoid the conflicts of interest that
arise when an agent has multiple duties. For instance, @maounted on the Mobile Manipulator
might become obscured when carrying a beam, forcing thet rmboompromise between manipulation
and sensing, inevitably resulting in suboptimal perforogan

In this scenario, we simplify the vision problem by attachiiducials to all important objects. The
Roving Eye uses the fiducials to identify and locate the dbjecthe workspace relevant to the task at
hand. Sample fiducials can be seen on the side and wrist of ti@léMManipulator (Figure 2, right).

The Crane (Figure 2, center) is a NIST-built RoboCrane [46 consists of a 6-DOF inverted Stewart

platform carrying a simple mechanism to allow the bracingwof nodes. The bracing mechanism is a
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hollow square that can be lowered onto the top of a node, tefé#g preventing the node from moving
(Figure 1, right). We chose the RoboCrane because it is gteoough to immobilize the nodes against
sizable insertion forces by grasping them from above withoypugning upon the workspace of either
the Mobile Manipulator or Roving Eye. This vertical bracitegsens the interference problems that often
occur when multiple robots are moving in a tight, shared \spdce.

The Mobile Manipulator (Figure 2, right) consists of a MetfiTRACLabs 5-DOF anthropomorphic
arm [FIXME: CITE?] mounted on the front of an RWI ATRV-2 sk#deered base. The arm has an
electromagnet on its end effector, which attaches to a n@taé fastened to the underside of each
beam, allowing the Mobile Manipulator to grasp the beam.sTikian ideal selection for the Mobile
Manipulator, as it allows very precise manipulation of treaims while remaining low enough so as not

to avoid interfering with the Roving Eye’s view of the struc.

C. Architecture

In order to support the closely coupled coordination resgliipetween the robotic agents to complete
the assembly scenario, we developed the Syndicate arthite®©ne of Syndicate’s core features that
enables this coordination is its three-layered approaatthHayer is associated with a different task
granularity and level of abstraction about the world, ang mammunicate with the layers immediately
above and below it. In general, higher and more abstractdag@mmand lower, more reactive, layers,

while the lower layers provide data to inform those comma(fdigure 3).

Synchronization / Coordination o

A

Planning

g Planning R >

Planning

Commands
Data

Behavioral Behavioral Behavioral
Control ) | Control g Control
A
Agent 1 Agent 2 Agent 3

Fig. 3. The Syndicate architecture. Note that each layer coaymunicate directly witfall other

layers of the same type; all of these links are not depictedeasons of clarity.
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The Syndicate architecture has three layers of abstraciibe bottom-most is the behavioral layer,
which deals with fine-grained, stateless control of the teb®he behavioral layer, which is based on
the Skill Manager of [17], acts as the interface between trerollers/hardware and the executive layer.
Thus, it views the world at a very fine temporal granularitgncerning itself with the hardware and
environmental details that higher layers abstract away.dBing so, it is able to react very quickly
to changes in the world. The executive layer is responsibtebtiilding and maintaining the agents’
hierarchical task trees, thus managing all of the statefsk-tevel aspects of the system [18]. A task
is loosely defined as an abstraction of one element of theasicethat requires state and/or may be
decomposed into atomic behaviors in order to satisfy a ddahy tasks rely on data passed up from
the behavioral layer to decide when to change state. Thidioakhip illustrates a secondary objective
of the executive layer: configuring the behavioral layerdoben the current state of the task tree. The
top-level planning layer is not yet implemented. Instehd,éxecutive layer contains a fixed task ordering
for a given scenario in order to obviate the need for a plarierare currently investigating different
approaches to building a planning layer for Syndicate, thigll likely include both planning and
scheduling aspects, such as used in [19].

In addition to communication between the layers of a singlend, Syndicate supports communication
amongst agents at each abstraction layer. This gives atfentbility to coordinate directly with other
agents at all levels of the hierarchy. For example, in thecathee layer, we want to ensure that the
Roving Eye does not move to the next corner until the Mobilenialator is finished with the current
beam-node docking operation, since the Mobile Manipuldapends on the raw position data provided
by the Roving Eye to complete the docking. To accomplish, tBismdicate enables the executive layer
on one agent to constrain its task execution with respect task on the other agent. Coordination
at the behavioral level is also required by many tasks. Fstaite, to dock a beam into a node, the
Mobile Manipulator’s behavioral layer must communicatehwthe Roving Eye’s in order to receive the
raw position information generated by the Roving Eye’s ‘ttéitbehavior, forming a distributed visual
servoing loop [20]. Although our planning layer is not yetplemented, an example of coordination at
that level can be seen in the FIRE project [19], where compatinin between peer planning layers is

used for auction-based role assignment.

IV. SLIDING AUTONOMY FORMULTI-AGENT TEAMS

Even with closely coupled coordination, it is nearly imgbssto prevent errors from occuring in large-

scale construction tasks, such as our motivating scenBaoause of the complexity and uncertainty
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involved in such domains, even a highly-specific, well-pesgmed robotic team can sometimes fail.
One common way to compensate for this possibility is to addl@operation mode to the system. In
this mode, instead of the robots operating autonomouslyraam operator controls each of the robots
during all of its tasks. Both teleoperation and pure autoptiave been shown to have distinct strengths
and weaknesses. In general, teleoperation is slower, bue mediable, while full autonomy is faster,
but less robust [21]. Additionally, communication lagseyalent in space-based applications, make total
teleoperation difficult and tedious. The goal of Sliding é&wdmy is to allow human-robot teams to move
smoothly along this autonomy spectrum, making approprateof the differing capabilities of the team
members in order to outperform both pure teleoperation amd putonomy.

Sliding Autonomy for multi-robot teams, however, has coiggtions not found in single-robot systems.
In general, we have found that there are three ways in whicti-agent Sliding Autonomy is more
demanding than the single-agent version: (1) deciding whesk for help, as the human is not guaranteed
to be monitoring any one robot at any given time; (2) asgidire human in gaining situational awareness
of the requesting robot’s workspace when he is asked for; laglg (3) maintaining coordination of the

team as a whole when the human is controlling one of the rolagents.

A. Our Approach to Sliding Autonomy

Our approach to Sliding Autonomy uses mixed-initiativeenatctions to orchestrate the collaboration
between the human operator and the robotic agents. Thesedtions consist of either the human
or the autonomous system varying who is in control of différaspects of the task; the autonomous
system’s motivation is to optimize metrics such as efficjeand robustness, measured by time elapsed
and likelihood of success, respectively.

To implement these types of interaction, we introduce théonoof “task switching”. Nearly every
task in the executive layer decomposes into “monitor” arctite” components, each of which is itself a
task, and may be controlled by either the human or the autoneraystem. The monitoring component
of a task is responsible for detecting failures and deteénginvhen the task is completed. The action
subtask interacts with the robot controllers via the betralilayer to perform the desired actions. While
the majority of tasks are split in this fashion, some nor-leades of the task tree that are merely
responsible for creating other tasks, and thus have no okaotion/monitor split, are not divided. This
methodology yields significant flexibility. For exampleethutonomous system often is able to perform a
task, but its sensing capabilities are not always suffidizingliably determine when it is finished. In such

a case, the human can be assigned the monitoring portioreda#k, in order to ensure it is accurately
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executed. A concrete example of this is the docking taskezhwut by the Mobile Manipulator. While
the autonomous system is quite proficient at completingdhk, the final tolerance is on the same order
of magnitude as the noise in the Roving Eye’s sensing systenyccasion making it quite difficult
for the autonomous system to determine when the dockingrgptie. The human operator can look
for additional clues in the video feed, and often can make senagcurate determination of when the
docking has successfully completed (or when it is horriltlyck).

On the other hand, the action subtask may be given to the hifnthe autonomous system detects
that it is having problems or believes the operator will béeab perform it more efficiently. In such
a case, the human could be asked to complete execution, Wiellsystem monitors his progress. A
prime example of this is the search task carried out by theirigokzye when it loses sight of a fiducial
of interest. Humans are better suited to the action comgooiethis task, as they can decide where
to move the camera based on their understanding of the waxks@as opposed to the blind grid-based
search pattern the autonomous system uses. However, it isbn@us to the human when the system
has detected a fiducial, since the human'’s vision is so mutdreiit from that used by the Roving Eye.
Thus, in this instance, the autonomous monitoring compbbcam work side-by-side with the human to
complete the search task.

Whether a task is switched as a result of operator interverdr as a result of a system request for
help, it interacts as needed with the behavioral layer tdcéwall necessary low-level components to
the appropriate operational mode. This provides fine-gdicontrol over operations, as the human can
assume control of very specific portions of the system, wieidving the remainder under autonomous
control. For instance, if the user were to take control of gkarch task on the Roving Eye responsible
for visually searching for fiducials, the pan-tilt unit wdube placed under human control, while control
of the Roving Eye’s base and responsibility for determinimgen the search was successful would
remain under autonomous control. At the completion of a,talilaffected behaviors are returned to the
operational mode in which they were prior to the switch.

This approach to Sliding Autonomy still leaves open the tjaas of when and who decides to switch
tasks. In order to investigate how best to structure thetaations, we have experimented with two
different approaches, each of which spans the control gpacbut varies in how tasks may be switched.
System-Initiative Sliding Autonomy (SISA) enables the abbeam to ask the human for assistance, but
does not allow the human operator to interrupt the robotSASiodels situations where the human
operator is multi-tasking and attending to other respalitséls while the robots handle the majority of

the execution, so that the human has no ongoing knowledgéalf iz occurring in the robots’ workspace.
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The operator’s attention is needed only when the team dedlt® the human is better suited for the
execution of some task (see below) or when an individual rdias encountered an error condition
from which it cannot recover on its own. While facilitatinguiti-tasking may raise the productivity of
the overall system, the time it takes users to regain sitnatiawareness of the robots’ workspace when
asked to help cannot be disregarded (Section IV-B). We lingsite that SISA is the best fit when human
resources are scarce and the autonomous system is reaspraldient at error detection.

We also investigated Mixed-Initiative Sliding Autonomy [8A). Here, while the robotic team members
still can ask for help, the human operator also has the omtfdnterrupting the system to take control
of a task or subtask. While this has the potential to increabastness, since the human operator can
intervene before a robot makes a fatal error, such gainsrdyerealized if the human actively monitors
the progress of the robotic team.

The next three subsections describe our approaches tonglesith the three aspects that are en-
demic to multi-agent Sliding Autonomy: requesting helpinggg situational awareness, and maintaining

coordination.

B. Requesting Help: System and User Modeling

In many Sliding Autonomy systems, only the human operat@bie to change the control of tasks.
In general, this is adequate for single-robot applicatiGirece a human operator generally is more than
capable of monitoring the status and progress of a singletimlagent, and can take over either if he
feels he would do a better job than the robot or if the robonigeng into a dangerous situation. As the
number of robots increases, however, it becomes harder arttbfor a single operator to keep track
of the status of each agent. One way of addressing this proideto allow the robots to switch the
control of tasks by asking for assistance as appropriatas,Ta robot in trouble can request help from
the human, instead of waiting for the operator to realize: there is a problem.

We have developed an approach that enables the autonongiamsyp make reasoned decisions about
when to switch control of tasks based on current conditioms the specific operator available. These
decisions are made when tasks are initially launched asaselthen a failure occurs. If the operator has
shown he is usually better than the autonomous system, shewtifl be assigned to him immediately.
Alternatively, the system may try to perform the task itsblit later decide to hand control to the human
if it is unable to complete the task. Such decisions need tmaée in both SISA and MISA modes, as
the system may request help with a task in either case.

While these task allocation decisions could be made via bitrary set of heuristics (such as “try
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twice autonomously, then cede control to the human”), sustrategy has the potential to be extremely
suboptimal, since corner cases exist for nearly every stairinstead, by building empirical performance
models of both the autonomous system and the human openatlave developed a principled approach
to making such decisions that allows the autonomous sysiengason about expected task duration and
agent reliability to decide who should perform what task.

The decision problem can be phrased as a comparison betheexpected time to complete the task
given that either the human or the autonomous system makeneikt attempt. In order to make this
comparison, we evaluate two decision trees — one where thamperforms the task under consideration,

the other where the autonomous system controls the tasleefagssociated with the autonomous system

making the next attempt is diagrammed in Figure 4.

0 b ¢ Time , , f
D ,..., »

a - ® (O Operator Attempt

|:| Success

@ Autonomous Attempt

‘ Autonomous Failure

O. . <> Operator Failure

v

Fig. 4. An example of the decision trees that are evaluatethbyuser modeling system. (a)
corresponds to the probability of succe#¥:S,|F. = i) (Equation 2); (b) represents the expected
time taken to succedf(¢.|Sr, Fr = i) (Equation 2); (c) is an example of the expected time to
fail: E(t-|-Sr, Fr = i) (Equation 2); and (d) represents the exppected time of thieeatecision
tree: E(ts|F = i, Fr = j) (Equation 1)

There are three components to this recursive predictianptbbability of success for a given party’s
attempt, the expected time given success, and the expé#oediven failure. In Figure 4, these correspond
to the probability of branch (a), timespan (b), and timesf@nrespectively. To estimate these values,
we use prior observations of execution time, conditionedttan number of preceding failures by the

controlling party that have occurred so far during this igatar task. The number of preceding failures
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is roughly equivalent to the current depth in the decisiee tiand is used because a failure is empirically
a good predictor of future failures (at least within our sa@w). In addition, we condition our estimated
time calculations on the outcome of the attempt, as failofe=n take significantly longer than successful
attempts. Since our models are updated during task execanio are maintained on a per-operator basis,
the system’s decisions will dynamically change in respaesthe operator's current performance and
will depend on the specific operator available.
By conditioning execution time on previous failures, wentuwwrhat was a multimodal distribution into
a set of (more or less) unimodal distributions, which gseatises the calculation of expected time. We

estimate how long it will take to complete a task directlynfrehese distributions:

E(t,|F, =i, F), = j
E(ts|Fr = i, Fy = j) = min (tr|Er h=1J) 1)
E(tn|Fn = j, F =1)

B(t,|F, = i, F = j) = P(S,|F, = ))B(t,|S,. Fy, = i)+
(1= P(S,|F = ) (B(t, =S, Fr = i) + B(t|Fy = i + LE, = ) (2)
P(S/|F, = fr +1) = L0 3)
E(t,|S,. Fy = fr +1) = E(t,S,, F, = f,) (@)

where:
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E(ts|F,. =i, F, = j): Expected time to complete the task, givepreceding autonomous failures
and j preceding human failures. Far= j = 0, this corresponds to the
expected time of the entire decision tree (timespan (d) gui 4).

E(t.|F, =i, F, = j): Expected time to complete the task if the autonomous syseeriorms the
next attempt, given preceding failures. This is the expected time of one
subtree of the decision tree, such as the expanded subféxedkin Figure
4.

P(S,|F. =1i): Probability of the autonomous system successfully cotimgehe task, given
i preceding failures. This corresponds to the probabilitypbcdnch (a) in
Figure 4.
E(t.|Sy, F,. =1i): Expected value of the distribution formed by all data psiitt which the
task was successfully completed by the autonomous systémi wreceding
failures (timespan (b) in Figure 4).
fr» Maximum number of preceding failures by the autonomousesyghat have

occurred in practicef, + f5 is the maximum depth of the decision tree.

The minimization in Equation 1 represents the decision aldether to assign the next attempt to
the human or the autonomous system. Equation 2 weightsrtieettiken to succeed and the time taken
to fail plus the remainder of the decision tree by the proliglaf success or failure, respectively. While
the decision tree could, in theory, continue indefinitelyr anodel contains a finite amount of data.
Equations 3 and 4 represent the optimistic assumption theg @e have passed beyond the boundaries
of our data we will always succeed. This assumption servesrtoinate Equation 2's recursion by setting
the probability of failure to zero. In the presence of readiiy sized datasets, the effect of this assumption
on the final predicted time is minimal, since the cumulativebability of reaching this base case is quite
low. Also, note that the equations f@#(¢;) (the expected time given that the human performs the next
attempt) are identical to Equations 2, 3, and 4; merely exgbaher andh subscripts.

The expected time of an attempt given its outcotBétf|S,, F,. = i) or E(t.|-S,, F, = 1)) is treated
as a sample from a static distribution when considering thtermmous system or an expert operator.
This distribution is formed from all prior execution time s#yvations that match this combination of
success and preceding failures. Since it is nearly alwaysadal, the expected value of such a sample
is merely the mean of the component data points. Howeves, dimiple model does not apply in the
case of a novice human. Since the operator is still learritnig, more appropriate to modéel(t;) by

predicting the next point on the operator’s learning cutde have previously conducted experiments
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to determine a reasonable model for this curve and how begsaoit as a predictor of the human’s
performance [22]. According to our data, a logarithmic eufitted to the available data was a more
accurate predictor of future performance than linear, agptial, or quadratic fits. The fit of this curve is
updated, on a task-by-task basis, as more data is acquiced ab operator's performance during a run.
Unfortunately, it is not clear how to independently predied time taken to succeed and the time taken
to fail while learning, so we simply calculat€(¢,|F, = j) as the next point on the learning curve, as
long as we believe the user is a novice. Once the operataferpence has leveled off (generally after
15-20 attempts on a particular task), we assume he is anteamabiswitch to using the static distribution
assumption with the asymptoted data.

Branch points in the decision tree are caused by the statetask or the failure of an attempt.
There are two varieties of failures: physical and tempordlysical failures are caused by erroneous
states detected by the autonomous system or the human thatth® controlling party to back off and
try again. For instance, if the Roving Eye completes a visaalrch of its environment without finding
all of its target fiducials, its search task fails. The samgotask responsible for docking a beam into
a node fails if it manages to wedge the beam against the node angle such that docking cannot
proceed without resetting. On the other hand, temporalrfesl occur when the human or autonomous
system takes too long to accomplish a task. This thresha@merallym + ¢ x o, wherem is the mean
of the observed execution timesjs a tunable parameter ardis the variance of the observations for
the party in question. Because human operators rarely,eif, @ive up on their own, temporal failures
are the autonomous system’s primary method for requestiageturn of control.

There are currently three idiosyncracies with the way inolhihe user models are evaluated and
interpreted by the system that curtail their usefulnesthdfsystem’s calculations show that the human is
better at a certain subtask and assigns control to him, thererrently no way for the operator to hand
control back to the system. Every attempt to do so simplyltegu the system reevaluating its decision,
very likely coming to the same conclusion and passing comight back to the human. Unless the
estimates of human and autonomous performance are vew, diogll take a significant number of such
exchanges to change the system'’s decision. We are comgidemumber of solutions to this problem,
including allowing the operator to force the autonomougeysto perform the next attempt, or allowing
the operator to indicate he is entirely unwilling to perfothe task. Secondly, giving up control over a
subtask is currently counted as a failure for the party thet im control, while timing of the other party’s
attempt starts with the switch. Thus, failures close to the @f a subtask often lead to overly optimistic

performance scores for the new controller because it/heqo@kly complete the remainder of the task

October 11, 2005 DRAFT



PROCEEDINGS OF THE IEEE - SPECIAL ISSUE ON MULTI-ROBOT SYSVIE 18

and move on. One potential solution is to condition our eigedime calculations on the failures of
both parties (e.g. instead @&f(¢,.|S,, F,, = i), we would calculaté(¢,.|S,, F, =i, F, = j)). Finally, the
autonomous system does not yet track the operator’'s cunerkioad, and may request assistance with
multiple simultaneous tasks from a single operator. Siheenbodel does not incorporate the operator’s
inability to attend to more than one task at a time, this cdrodtuce significant inefficiencies, as the
autonomous system waits for the human to handle each ofdks.t&he obvious solution to this problem
is to track the operator’s current task queue and includeskgcted time to service the queue when
calculating the expected time to complete the task undesideration if the human performs the next
attempt.

While currently we are simply comparing task execution sinee have considered using a full cost
model in order to model such things as varying labor costs atiortized cost of hardware, continuing
expenses associated with teleoperation or autonomousotofithe robots, the cost of repairs, etc. The
specific cost function would be highly dependent on the paldr domain in question, but would be
parameterized at a minimum by(¢,) and E(¢,), as well as domain-specific price or cost parameters.

This is an area for future work.

C. Operator Situational Awareness

Another important issue in Sliding Autonomy is attainingeogtor situational awareness. This is
particularly critical in multi-agent domains. In the sieghgent domain, the operator needs to monitor
only a single robot. Even if he does lose situational awasgnié is easier for the operator to remember
the state of the system and use that to assist him in attasifngtional awareness the next time he is
asked for help. In the multi-agent domain, there are mangteobith the ability to ask for help. Not only
is there a potentially longer time before an operator assisbbot a second time, but the operator also
has more than likely provided assistance to other robothéniriterim, speeding the loss of situational
awareness.

Our approach is to maintain a buffer of information of thetestaf the robots’ workspace, including
both synthesized and raw video views, and show these buéiarse operator when he is asked to assist
the system. By viewing these buffers, the operator can marekly gain situational awareness of the
pertinent workspace, and can more efficiently assist thetsoin their task, than he could from viewing
just the current state of the system.

It remains an open question, however, what types of infdoma&and how much should be shown.

There is an obvious tradeoff between performance and iiyalbiaving more information and a larger
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buffer typically leads to a more accurate assessment, liakdts longer to attain situational awareness.

Section VI desribes an experiment we performed to help dfyahiat tradeoff.

D. Maintaining Inter-Agent Coordination

The third issue that arises while adapting Sliding Autonaimythe multi-agent domain is how best
to maintain inter-agent coordination of the robot team wthihe or more of its members is under
operator control. We address this by enabling the robots émitor their and others’ task progress
through monitoring subtasks, updating their own task ettecuaccordingly. For example, consider a
situation from our scenario in which the operator is asketbreice a node with the Crane. While the
operator is performing this task, the Roving Eye continuesnbnitor the location of the Crane, and
recognizes when the operator has finished. Then the systtamaiically continues with the tasks that
depended on the completion of the bracing task: the MobilaiMdator approaches the node with the
beam, the Roving Eye changes its focus to the tip of the beathtte Crane stays where it is in order
to continue bracing the node.

This approach allows the team to remain coordinated duritgiraan intervention, as long as the
human does not deviate too greatly from the system’s plaa.ekisting monitoring capabilities primarily
monitor for task completion, so the human can take whatevarse he wishes to complete the task at
hand when he is in control of the action component of a tasi tla@ agents remaining under autonomous
control will remain coordinated. However, if the human dies to accomplish additional tasks first, undo
previous work, or make arbitrary modifications to the pldre turrent system will lose coordination.
Open research questions in this area include the develdprheetion recognition, plan prediction, and

cooperative plan generation capabilities for the autonmraystem.

E. Summary of Multi-Agent Extensions to Sliding Autonomy

To summarize, we have extended the traditional singletgjating Autonomy approach to multi-agent
teams. In the course of our work, we have discovered threeapyi differences between performing Slid-
ing Autonomy with single agents and multiple agents: (1) Buéhe human’s inability to simultaneously
monitor all of the agents in the team, the autonomous systest ,eason about when to request help,
and cannot rely on the human to step in. This increases thertanre of detecting that an error has
occurred and makes user models a necessity. (2) In additierhuman’s inability to monitor all of the
agents simultaneously results in a loss of situational emess between requests for help. Consequently,

the human must first attain situational awareness befoiistiagsthe robotic team, a step that typically
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does not need to occur in single-agent Sliding AutonomyF{Bally, the multi-agent autonomous system
must maintain inter-agent coordination, even when one tagamder the control of the human.

We have conducted an experiment to compare the effects edgefation, MISA, SISA, and pure
autonomy control strategies on robustness and efficiemay,raport on the results next. In addition,
we carried out an experiment to determine how differentrfates affect the human’s ability to attain
situational awareness, which helps encourage efficieatantions, and quantify how long he takes to do

so, which can be used to refine the user model.

V. MULTI-AGENT SLIDING AUTONOMY EXPERIMENT

This experiment investigated the effects of mixing full tgys autonomy with teleoperation on the

overall efficiency and robustness of our multi-agent system

A. Methodology

For this study, expert users of the system performed a nuwibkials for each mode of interaction
with the system. We had initially hoped to use operators miliar with the project, but found that the
time needed for novices to become proficient with the systerm excessive: after 14 hours of training,
the novice users were still slower than experts by a factdhife. Since in order to obtain meaningful
results, we needed our subjects to be roughly on par with énnance of the autohomous system,
we changed the study to employ two project members.

During an earlier pilot study, we determined that the timeetafor the system to complete a beam-
node-beam subassembly was independent of the side of tletuse by using a double-sided t-test with
a 0.95 confidence threshold. Therefore, our unit of anakysis a one-beam subassembly, as detailed in
Section llI-A. Each subject performed this assembly tasKidis in teleoperation mode, 16 times in
System-Initiative Sliding Autonomy (SISA) and 20 times inxgd-Initiative Sliding Autonomy (MISA).
The 48 trials were performed in random order. Together withrins of the autonomous system,that
gives a total of 120 datapoints.

In order to create a semi-realistic teleoperation expegethe subject sat at a workstation facing away
from the robots and the workspace. She was able to see ontguheideo output from one of the Roving
Eye’s cameras and the output of a visualization tool, whidpldys depth information relevant to the
current task (see Figure 5), as provided by the Roving Eye. fbbbots were controlled via a 6-DOF

“Space Mouse” [23].
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Fig. 5. Screen shots of the visualization tools used forrediitig the robots. From left to right: a
bird’s eye overview of the workspace, a closeup used durgarbdocking, another closeup used

during node bracing, and the raw video feed provided by thérigoEye.

During teleoperation runs, subjects indicated which sslbtd the overall assembly they were working
on. This selection was used to extract timing informationdach user to initialize her user model for
the Sliding Autonomy trials. For Sliding and full Autonontie timing information was logged directly
by the system. At the end of each run, the subjects completddSA-TLX survey [24] to assess her
perceived workload while controlling the robots. This syvakes into account factors such as mental,
temporal, and physical demand, as well as effort and friistra

In order to emphasize the difference in initiative betwe®n tiwvo Sliding Autonomy modes, the users
performed a distractor task while using SISA. The screereir tworkstation and the video feed from
the Roving Eye were turned off. The only feedback availabéenaudio cues asking for help. During
MISA, the users actively followed the system’s progressl ey were told to make use of their ability
to actively take over control whenever they saw the oppdstuie complete a subtask faster than the

system.

B. Results

H Time to Completion | Success Rate | Human Workload

Teleoperation worst best worst

Autonomous System best worst best

System Initiative medium medium good

Mixed Initiative good good medium
TABLE |

EXPECTED RESULTS FORSLIDING AUTONOMY PERFORMANCE

Table | summarizes our hypotheses about the effects ofdatiag Sliding Autonomy into our system
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on three relevant metrics. With the exception of severdkdahlighted in bold in Tables Il and I,
the results we obtained agreed with our expectations. Bbarice, teleoperation (729-911 seconds) took
1.5-2 times as long as any of the modes involving autonomy-<432 seconds). The times and TLX
results of failed runs were not included in the results.

Both users generally followed the hypothesized trend thatduccess rate would increase as human
involvement increased: pure autonomy was the worst at 78%awied by SISA, MISA, and finally
teleoperation, which had an average 96% success rate. haitéhe users did not give up on the failed
teleoperation runs; instead, the system reached a poietrmwirial failure.

Not surprisingly, due to the subjective nature of the NASIBXTworkload survey, the actual values
varied strongly between users, although trends were densisTeleoperation had by far the highest
workload, approximately twice that of the Sliding Autonorogses (the rightmost column of Tables |l

and III).

User 1 Mean Time to Completion | Success Rate TLX Workload
[standard deviation] (# of trials) | [standard deviation]
Teleoperation 729 [139] seconds 100% (12) 42 [10]
Autonomous System 437 [94] seconds 75% (24) 0
System Initiative 462 [63] seconds 75% (20) 16 [16]
Mixed Initiative 492 [140] seconds 81% (16) 17 [11]
TABLE 1l

RESULTS FORUSER1. DISCREPANCIES COMPARED TO THE EXPECTED RESULTS ARE HIGHLIGHED IN BOLD.

User 2 Mean Time to Completion | Success Rate TLX Workload
[standard deviation] (# of trials) | [standard deviation]
Teleoperation 911 [193] seconds 92% (12) 71 [9]
Autonomous System 437 [94] seconds 75% (24) 0
System Initiative 458 [106] seconds 85% (20) 50 [14]
Mixed Initiative 445 [72] seconds 88% (16) 34 [11]
TABLE Il

RESULTS FORUSER2. DISCREPANCIES COMPARED TO THE EXPECTED RESULTS ARE HIGHLIGHED IN BOLD.

Comparing our two users side by side with the autonomousesyste note a completion time
comparable with that of the autonomous system for both fooh$liding Autonomy and a much
longer completion time for teleoperation (Figure 6, lefhe teleoperation time to completion also
shows differences between the two users. In the center off€&i§ we see an upwards trend of success

rate proportional to the amount of human involvement duthrgassembly task. Finally, Figure 6 (right)
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shows that the perceived workload measured by the TLX sureagls are not consistent between the two
users - the second user found SISA to be mentally frustraierhaps due to the difficulty of attaining
situational awareness. The autonomous system is omittedtfris chart for the obvious reason that there

was no human operator involved and consequently no repontekload.
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Fig. 6. Comparison of our two subjects and the fully autonasnsystem. Completion time and

success rate generally follow our expectations, but pémemf workload is very task and user
dependent.

The histograms of User 1's performance (Figure 7) show atjgihthe autonomus modes are clearly
faster than teleoperation. The fastest run time was redowmheler autonomous operation at just over
300 seconds. At the same time, a large portion of the telatiparruns took almost 900 seconds, much

longer than the slowest run during an autonomy trial.

C. Discussion

When comparing the two extremes of the autonomy spectrume (autonomy and complete teleop-
eration), it is obvious that there is an inherent trade-6fgeed against robustness. If we were willing
to allow an increase of 50-100% in the time needed to completestructure, we could achieve near-
perfect reliability by allowing the human to teleoperatemthing. However, our operator workload data
indicate that in addition to the significantly increaseddito complete the assembly, operators would
swiftly become mentally overloaded in addition to being hiego multi-task during assembly. Depending
on the situation, this may or may not be an acceptable salutio

Our experimental results suggest that this dilemma maydmwed by employing some form of Sliding
Autonomy. As is shown in Figure 6, adding any amount of auteypeeduces the required time to be
comparable with the purely autonomous approach, while anguat of human involvement increases

the reliability of the overall system. Sliding Autonomyssiin the intersection of these two trends. It
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Fig. 7. Histograms comparing User 1's performance whergusia the different Sliding Autonomy
modes. The horizontal axis marks completion time in secoadd the height of the bars shows

the number of experimental runs for each time interval.

combines the low completion time advantage of autonomoasabpn with the increased success rate
due to human involvement. The rise in system reliabilityingirSliding Autonomy operation can be
attributed to the operator’s intuition and ability to quickinderstand problematic conditions and then
initiate recovery measures to help the system avoid fatdoraitions. In addition, there is a clear benefit
to introducing Sliding Autonomy from a workload perspeetiSince the system still performs tedious
tasks autonomously, the perceived workload reported byusers was significantly lower than during
pure teleoperation.

The subjective nature of the TLX scores does not allow a tluser to user comparison, but we can

make statements about trends in the data. We expected Sl8avinthe lowest workload because the
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user has to work with the system onlywhen asked for help. Wewéhere are at least two factors that are
not captured well within the TLX framework: boredom and thegluency of interruption by the system.
Both of these are directly linked to the specific user’s abtb perform the task at hand. For example, a
relatively strong user will likely be asked for help with nyatasks, to the point where she is called back
to help with the next task almost as soon as she returns toisieaator task from assisting the team.
On the other hand, a relatively weak user will not be askedhédp very much; she may be called to
help only a few times during a 15-minute experimental runp&wling on the individual user, this could
be interpreted either as a relaxing situation with low wodkl, or as a frustrating situation where the
individual has to be on call for the system but is never askeda anything. This frustration is likely
responsible for high workload results such as the data sHowbser 2 in Figure 6.

The multi-modal grouping of the completion time resultswhadn the histograms in Figure 7 cor-
responds to assembly attempts with varying degrees of ssicGée left-most group represents smooth
runs without any failures, and subsequent groups indicaetieedsing amounts of difficulty or near-failure
conditions.

There are three discrepancies between our hypotheses amdtaal results: User 2's workload, User
1's mean time to completion in the MISA and SISA cases, andr Usesuccess rate uder SISA (the
bolded entries in Figures Il and Ill). The high workload ofdd®2 can be explained by the subjective
nature of the TLX survey, as discussed above. User 1 tooleloog average to complete the task under
MISA than SISA (although there is not a statistically sigrdfit difference between the means). This
may be due to an overeager operator intervening in caseswherautonomous system is in fact more
efficient, resulting in an overall decrease in efficiencydfly, User 1's success rate under SISA is not
superior to the autonomous system'’s. Success rate impentebetween pure autonomy and SISA is
dependent upon the autonomous system’s ability to diseglurds with which it requires assistance; if
few discernable failures occur, little gain will be realizby applying SISA.

Our experiment shows that adding a human agent to a multtredgam via a Sliding Autonomy
framework combines the advantages of autonomous robotatpewith the reliability of teleoperation
at a mental workload level tolerable by the operator. The wahof attention the operator pays to our
task has no measurable effect on the time to task completiorpared to fully autonomous operation,
but it does manifest itself in overall system robustness: dheater the operator’'s involvement in the
team’s operation, the higher the success rate.

Purely from a system performance point of view, which fornstfling Autonomy (SISA or MISA) is

the better choice depends heavily on the system as a whdlee Hvailable operators are comparable in
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skill level with the autonomous system, and the system ie abperform significant portions of the task
on its own, then the humans can productively multi-task wbparating under SISA. With the system
able to reliably detect failure conditions, the slightlwier success rate compared to MISA is outweighed
by the fact that a few operators can oversee several difféeegams at the same time. The additional time
required to attain situational awareness can be minimizedetiecting the most effective user interface
(see Section VI).

For comparatively weak human operators, a similar mudtiitay argument holds, but a higher degree
of autonomy is required of the system since the operatoilityatp help can be rather limited. For very
skilled humans, however, their abilities often lead to theeing continously asked for help. Switching
between different teams performing different tasks vetgrofind rapidly is more confusing and stressful
to the operator than helpful to any team. Instead, for stigperators, a MISA setting is often the more
appropriate one, since it allows the human to focus her tdteron a specific task so that the team
can benefit maximally from the available resource. Cleaflyhe autonomous system were unable to
detect most failures, MISA would be the preferred methodlircases in order to compensate for the

autonomous system’s lack of reliability.

VI. SITUATIONAL AWARENESSEXPERIMENT

In addition to experimentally evaluating the differencesaAeen our different approaches to multi-agent
Sliding Autonomy, we also conducted an experiment to test well users attain situational awareness
of our robotic system. In order to help the operator gainasitutnal awareness more quickly when asked
for help, we maintain a buffer containing the state of thetesysover the last: seconds, which can be
replayed to the operator when the system asks for help. Twaralagquestions arise: “What kinds of
information should be included in the buffer?”, and “How rhudata should it save?”. To help answer
these questions, we tested how quickly users attain Singltiawareness of our system when using
various combinations of displays and data buffer lengthsddition to informing the design of operator
interfaces, this experiment provides the information meeetb account for the time necessary to gain
situational awareness in the system’s model of the humaati(@®elV-B). If the types of information
available to the teleoperator were to change (e.g. if a sefags), the system could use the data from

this experiment to dynamically update its user model apisigy.
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A. Methodology

The experiment tested four different combinations of infation streams. The first was simply a
video feed from one of the Roving Eye’s cameras (Figure 8B second was the Roving Eye video
along with the synthesized “technical drawing’-style d@Beer (Figures 5 and 8.1), showing the relative
positions of the beam and node from above and in front of trerbeThe third was the Roving Eye
video along with two other video feeds - one from a fisheye campéaced on top of the Crane, looking
down (Figure 8.4), and one from an external camera placesideuthe robot workspace, looking towards
the structure (Figure 8.3). Finally, the fourth combinatiacluded all of the above elements.

We also varied the length of the data feed that was preseatie tsubjects. The four possible lengths
were 0 (still shot), 5, 10, and 20 seconds. This, in combomatiith the four different displays, yielded
a total of 16 different test conditions.

During each trial, each of the 32 subjects was shown the ddfarlfrom an attempted docking, and
was asked to identify through a dialog (Figure 8.5) why thbotorequested help. The experimental
procedure was a combination of training and testing. Thgestib training began with reading a written
overview of the task and hardware at hand, with the expetieneanswering any questions. The subject
was then shown one example of each of the seven types of efeotte graphical interface (Figure 8),

using the maximal data and 20-second playback condition.

TOP VIEW

Flease choose ane of the following options
md| [indicating the error you believe occurred from the first cumhu5

Then choose what action you would take with it.

‘When you are salisfied with your choices,
please select "Done"

--Flease select an error-- El

[ Done |

Fig. 8. The subject interface for the situational awareregseriment, including three video
streams (the Roving Eye’s cameras (2), an external camgrar(® a Crane-mounted camera (4)),

a synthesized view of the beam and node (1), and the errogaraation input dialog (5).

After training, the subjects began the actual experimdayjipg Crack Attack (a Tetris-like game [25])
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in between trials to simulate multi-tasking. Each user veasetd on four of the 16 conditions, performing
six trials per condition. We applied Latin squares to both data feed and length effects to account for
ordering effects. A Latin square is a statistical technitha allows experimenters to test effects while

controlling for two other known sources of variation (herder-subject variability and ordering effects).

B. Results

During this experiment, we recorded the time that elapséddsn the beginning of playback and when
the user chose which error she believed had occurred. Weredsoded her response, to allow analysis
of user accuracy. Users were not allowed to choose a respotiséhey had watched the entire playback
clip. Also, although users were able to change their answermnly considered the data collected from
their final responses. We used a univariate ANOVA test toyaealhis data.

The data suggest that with respect to response time, thalispéy and data feed length combination
is the Roving Eye video plus visualizer, viewed for between B0 seconds (Figure 9, left), as this
combination had the shortest average response time. @oimgjdsolely data feed length, significance
was found between 0 and 5, 0 and 10, 5 and 20, and 10 and 20 ggleybdcks. If instead we consider
the composition of the display, significance was found betwie Roving Eye and the Roving Eye plus
other videos displays, the Roving Eye and all displays, theii) Eye plus videos and Roving Eye plus
visualizer displays, and the Roving Eye plus visualizer ahdlisplays.

With respect to accuracy, the best data feed condition iswfita the longest (20 second) data feed
length (Figure 9, right). Similarly, the display that hack thighest accuracy was the Roving Eye video
plus other videos (Figure 9, right), although it is not sfigraintly different from the all displays condition.
Considering data feed length, significance was found betvWeand 10, 0 and 20, and 5 and 20 second
playbacks. Significance in display composition was fountiveen the Roving Eye and Roving Eye plus

videos displays, as well as the Roving Eye and all displays.

C. Discussion

If response time is the only metric under consideration, régults are clear - the best conditions
were the Roving Eye video alone or the Roving Eye Video plusiaiizer, with 5 - 10 seconds of
playback. We believe that this is because as more raw videoadded, the mental overhead required
to process, interpret and merge the available informatimneiases, resulting in slower response times.
The more abstract visualizer view, however, requires lesatat overhead, and thus its inclusion does

not significantly increase user response time. Similarky, velieve that a 5 - 10 second playback was
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Mean Time to Error Classification Mean Classification Accuracy
From Start of Data Feed
as a Function of Test Condition

as a Function of Test Condition

o
o o

curacte Classification

Time to Error Classification (s)
= N w B (41
o o o o

o

Roving Eye, Visualizer,
and Other Video
Roving Eye, Visualizer
Roving Eye, Other Video

Roving Eye

20 Roving Eye, Visualizer <@/,0[ 0
Roving Eye %

Fig. 9. The effects of available information and data feewjte on how long subjects took to
choose an error (left) and how accurate their decisions \ragt). Note that the ordering differs

between the two figures, although the shading is consistent.

the best range because with longer data feed lengths thersmbmeaningful information the user can
process and remember plateaus, making the extra informagtiatively less useful (when only considering
response time) in the decision making process.

The accuracy measures, however, suggest a slightly diffessry. When considering this metric,
the longer the data feed playback, the more accurate tha’umaswers become. This is most likely
because users can make a more informed decision, even thloeglake longer to respond in order to
process the additional information. The same argumentiegppd the display condition. Although the
extra videos require more time to process, they allow usersake more informed decisions, leading to
higher accuracy.

From this experiment, we can make some recommendationd akttaining situational awareness in
systems such as ours that involve a remote human as part ofteagent team. There is obviously a
trade-off between accuracy and response time: in gené@rlmnbst accurate conditions were those that
had the longest response time. This effect, however, mayedse as users become more expert: the
information they derive from the data feed may plateau earfihus, a follow-up to this experiment
should use expert users as subjects, and examine whethaceheacy trends still hold or if they begin
to correlate with the response time results. Either way, @cehneeds to be made between efficiency

and accuracy. If timing is critical, then it might be worthiehto accept a lower accuracy in order to
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encourage the operator to respond more quickly; similérbccuracy is the more important metric, then
users should be given as much information as possible, affidisnt time to process and merge the
information, in order to allow them to make more informed idiems. It is important to keep in mind,

however, that our measures of time did not include time fek teompletion. Because a misdiagnosis
may lead to wasted recovery effort, it is quite possible tassification errors can affect the speed of

the system to a greater extent than these results indicate.

VIl. FUTURE WORK

Determining how to proceed when the human relinquishesrabot a task remains an open research
question. If the human returns control after completingdbsigned task (and only the assigned task), it
is straightforward: our current system is able to moniter tdsk’s completion and continue with the tasks
that were dependent upon it. However, the human may insteddrm additional or different tasks than
those that the system had planned on. In addition to deddlcg\guman’s goals and tracking the arbitrary
effects her actions may have on the structure, the systemisrteebe able to replan to accomplish the
scenario’s goals from whatever state in which the humandgsishes control.

Our current scenario encompasses a relatively complex tagkcontains minimal coordinated ma-
nipulation of a single object by multiple manipulator rohoOur earlier work involved a much simpler
task, but required extensive coordinated manipulationhe type [26]. We are now moving to a new
scenario that combines a complex three-dimensional adgenith a need for this type of coordinated
manipulation. Addressing both these issues while usindjrigJiAutonomy in a multi-agent setting should
uncover many new issues; for example, deciding how best ¢todamate tightly coupled manipulation
between a human and robot, instead of between two robotsitidwally, we are looking into adding
additional robots with overlapping capabilities to thenteaNith these additional robots, the planning
problem will become much more interesting, as a wider waragdt solutions to the scenario will be
possible. Their overlapping capabilities will also allolaetrobots to ask each other for help in addition
to, or instead of, asking the human. This additional step aibw the human to be treated as simply

another agent in the system, just one with a slightly difiemskill set.

VIIl. CONCLUSIONS

We have presented various issues involved with extendiinglAutonomy into a multi-agent domain.
One of the main challenges is allowing the robots to ask fgg,lgnce the human is not always guaranteed

to be paying attention to each robot at any given time. We nit@ikgpossible by incorporating user models
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into our system, which allow the robotic agents to make mifed and reasonable decisions about when
to request the operator's assistance. Experimental dat&eshthat this way of incorporating a human
into a multi-robot team combines the advantages of automsmobot operation with the reliability of
teleoperation, resulting in a more efficient and robustesysas a whole.

By allowing the system to ask the operator for help, we al¢mduce the question of how to best
enable operators to quickly gain situational awarenessi@frobot’s workspace and state, so that they
can provide assistance more quickly and effectively. Ts #md, we conducted an experiment testing
different operator displays and playback times to find outtiztombination resulted in the most efficient
interaction. Based on the results, we feel that a human tgeraour system will be able to quickly
gain situational awareness and assist any robotic teamberethat asks for help, whether or not the
operator had previously been paying attention to the $itnat

In order to allow inter-agent coordination even when a huimsacontrolling some task, we allow the
robotic team members to monitor their and other team merhpeygress as related to their current task.
This allows the robots to continue with their respectivek¢éagven when their team members are being
controlled by an operator or are waiting for an operatoroasp. In other words, a team member can use
its knowledge of the other agents’ actions to ensure thaa#iks remain coordinated. Our experiments
have shown that this is an effective way of maintaining tastrdination while using Sliding Autonomy.

Overall, we have shown some shortcomings of controllingdascale construction systems through
both full autonomy and complete teleoperation. We have detnated that by allowing humans to work
as team members via Sliding Autonomy in a multi-agent systesynergy of complementary skills and

abilities emerges that increases the system’s overallstabas and efficiency.
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