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Abstract—Using a saliencymeasure based on the global property of contour closure, we have developed a segmentationmethodwhich

identifies smooth closed contours bounding objects of unknown shape in real images. The saliency measure incorporates the Gestalt

principles of proximity and good continuity that previous methods have also exploited. Unlike previous methods, we incorporate contour

closureby finding theeigenvectorwith the largest positive real eigenvalueof a transitionmatrix for aMarkovprocesswhereedges from the

image serve as states. Element ði; jÞ of the transition matrix is the conditional probability that a contour which contains edge j will also

contain edge i. In this paper, we show how the saliency measure, defined for individual edges, can be used to derive a saliency relation,

defined for pairs of edges, and further show that strongly-connected components of the graph representing the saliency relation

correspond to smooth closed contours in the image. Finally,we report for the first time, results on large real images forwhich segmentation

takes an average of about 10 seconds per object on a general-purpose workstation.

Index Terms—Perceptual organization, contours, Markov chains, eigenvectors.

�

1 INTRODUCTION

VISUAL perception evolved in a world of objects, many of
which are bounded by smooth closed contours. We

hypothesize that these contours obey a stochastic distribution
that is utilized by perceptual processes in finding contours
bounding objects. In prior work, [23], [25], [26], this distribu-
tion has beenmodeled and used to derive a saliencymeasure
which exploits the closure of contours bounding objects. It
was found that this measure provides a significant improve-
ment over previous approaches in highlighting edges lying
on contours bounding objects in small synthetic scenes
created from contours of real objects and natural background
texture [26]. However, nomethod was presented for actually
segmenting out the salient closed contours. Despite the
effectiveness of the saliency measure, we will show that a
simple threshold on the saliencies is not sufficient for
segmentation, especially in caseswhere twoormore contours
contain edges of similar saliency. In this paper, we generalize
the saliency measure described in [26] and use it as the basis
for a system which segments out multiple smooth closed
contours in real images. In previous work, a routine from a
standard numerical library was used to solve the eigenpro-
blem required to compute the saliency measure. However,
due to the number of edges involved, this is infeasible for
large real images. To address this problem, we have
developed an efficient technique that exploits the sparseness
and symmetry of representations intrinsic to the problem,

using, which we report for the first time, results on large real
images.1 Given an edge image as in Fig. 1, we would like to
extract out separately the individual contours bounding the
twopears.Wewould like toachieve suchasegmentationwith
no a priori knowledge of the specific objects that generate
these contours. Such a task is one of the goals of perceptual
grouping. In lieu of any specific knowledge about the objects
generating the contours, we impose a subset of the Gestalt
principles for perceptual organization. Most previous ap-
proaches to perceptual grouping of edges have incorporated
the Gestalt principles of proximity and good continuation in
some form (e.g., [2], [9], [6], [12]). These approaches assume
that adjacent edges of an object boundary are close together
and can be smoothly interpolated. In addition to these two
local properties, we exploit the global property that contours
bounding objects must be closed. Unlike proximity and good
continuation, closure cannot be reduced to a local property
defined for pairs of edges in isolation.

Previous approaches [1], [6], [11], [17] have used graph-
based search techniques to find closed contours. A graph of
affinities between edges is constructed where the affinities
model proximity and good continuation. The affinity
between two edges is a purely local relation that is positively
correlatedwith the likelihood that a smooth contour joins the
pair of edges. Closure is imposed by searching the graph for
cycles that minimize a cost function (possibly subject to other
constraints like convexity [11] or winding number [6]). Our
approach differs from these others because we first use the
local affinity relation (which, in our case, is a transition
matrix) to compute a global saliency relation (which gives the
probability that a closed contour joins the pair of edges). This
relation, defined for pairs of edges, is based on a saliency
measure, defined for individual edges, which was first
proposed and compared extensively with other saliency
measures (including [9], [18], [21]), which do not incorporate
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closure in [26]. Only after the computation of this global
saliency relation do we employ graph search to isolate
individual closed contours. Furthermore,we show that using
a saliency relation based on contour closure leads naturally to
a specific type of graph search, namely, the determination of
strongly connected components. The close relationship between
the strongly connected component computation and the
closure property of the global saliency relation distinguishes
our work from previous approaches, where generic graph
search techniques have been applied to graphs representing a
local affinity relation defined for pairs of edges. To illustrate
the crucial role played by the global property of contour
closure, we show that a method based on a purely local
affinity relation produces poor segmentations.

Computing the saliency measure (and relation) requires
identifying the eigenvector with the largest positive real
eigenvalueof a sparse, positivematrixpossessing aparticular
symmetry. Ordinary techniques for the computation of
eigenvectors and eigenvalues are infeasible for large real
images. We have developed efficient techniques that exploit
the sparseness and symmetry of the matrix to significantly
reduce the time required to compute this eigenvector. In this
paper, we report the first results on real images with a large
number of edges. Our technique reduces the time taken to
compute the segmentation for each object contour from an
average of around 2 1=2 hours to around 10 seconds.

2 PROBLEM FORMULATION

Since the Gestalt principles of proximity and good continua-
tion can be reduced to local properties of the positions and
orientations of twoedges,wecanmodel themusingonly local
information. Following [15], [23], [25], proximity and good
continuation can be modeled by a distribution of smooth
curves traced by particles moving with constant speed in
directions undergoing Brownian motion. In our work, the
transitionprobability betweenedge iandedge j is denotedby
Pji. It is the sum of the probabilities of all paths that a particle
can take between the two edges (see [23] for details). Two
parameters control themotion of the particle and embody the
Gestalt principles of proximity and good continuation. Each
particle has a half-life, � , which determines the distance over
which pairs of edges are likely to be linked by randomwalks.
Hence, � models proximity. The variance, T , of the Gaussian
randomvariable representing change in directionmodels the
principle of good continuation. A third parameter, �,
represents the speed of the particle and, hence, determines
the effective scale at which the scene is analyzed, since the
transition probabilities varywith speed. At larger speeds, the

distance between a pair of edges is effectively smaller, while
at slower speeds, the samedistance is effectively larger. Inour
initial experiments,we chose a fixed speed thatwas judged to
give good results for most images. In a later section, we
present resultswhere theoptimal� for eachobject in the scene
is identified using an optimization method. This leads to a
scale-invariant segmentation.

The smooth continuation of a curve between two edges
requires that the tangent at any point along the curve be
continuous. If we wish to extend the curves to include
additional edges, then tangent continuitymust be enforced at
the edges themselves. A particle visiting an edge, and
traveling in a given direction, must continue along in that
same direction to preserve tangent continuity. This require-
ment can be ensured by replacing each oriented edge, where
the orientation is an angle in the range, ½0� �Þ, with two
oppositely directed edges, where the directions are angles in
the range, ½0� 2�Þ. A particle must enter and exit a directed
edge in the same direction. If we do not impose tangent
continuity at the edges, it is possible to get contours with
cusps (i.e., reversals in direction) at the edges, which are not
judged to be salient in practice. For more details, see [26].
Since every directed edge i has a sibling edge at the same
position, but pointing in the opposite direction, it will be
convenient to denote the sibling edge by �ii.

Imposing tangent continuity through the use of directed
edges has an important implication for the structure of the
transition matrix P. From symmetry, the probability that
any particle travels along a curve starting from edge i and
ending in edge j is the same as the probability of a particle
traveling from edge �jj to edge �ii in the reverse direction.
Hence, Pji ¼ P�ii�jj. We call this special symmetry of the
transition matrix reversal symmetry, which is distinct from
the usual symmetry Pji ¼ Pij, which need not hold in
general. Reversal symmetry has important implications for
both the form of the expressions that define the saliencies
and for the problem of efficiently computing them.

In the rest of the paper,wewill have occasion to associate a
vector s with the set of directed edges (e.g., the vector of
saliencies for each directed edge), one component for each
directed edge. Analogous with the case for edges, a
component of such a vector si associated with edge i will
have a sibling component denoted by �ssi ¼ s�ii associated with
edge �ii.

3 EDGE AND LINK SALIENCIES

In this section,wefirstmotivate theexpression for thesaliency
measure introduced in [26]. We then show that the saliency
measure can be computed by solving an eigenproblem
associatedwith the transitionmatrixP. Given an edge image,
wedefineaclosedcontourasa finite closedsequenceofedges.
By a closed sequence, wemean that, if we start from any edge
in the sequence and traceout the contour,wewill return to the
same edge. Each closed contour � has a likelihood (or
probability) associatedwith it, whichwedenote by pð�Þ. This
probability is the product of the transition probabilities along
the path defined by the edges of the contour.

3.1 Edge Saliency

We would like to define the saliency of an edge so that it is
directly related to the likelihoodthataclosedcontourcontains
that edge. We begin by considering the set of infinite closed
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Fig. 1. An example of an edge image. The image was synthetically
created by superimposing two copies of edges from the boundary of a
real pear on a background texture.



contours containing the edge. In order to calculate the relative
saliencies of infinite closed contours, we start by considering
the relative saliencies of closed contours of finite length and
take the limit as the length goes to infinity. Restricting
ourselves to finite contours for now, the saliency of an edge
should be proportional to the expected number of closed
contours which contain that edge. The expected number of
closed contours of length nwhich contain edge i is simply the
sum of the probabilities of all such closed contours:

En
i ¼

X
�

pð� j i 2 �; j�j ¼ nÞ: ð1Þ

Since we are interested in the relative saliencies of the
various infinite contours which contain different edges, we
take the limit n ! 1 for the expected number of closed
contours which contain a given edge i relative to the
expected number which contain any edge and obtain the
formal definition for the saliency of edge i:

ci ¼ lim
n!1

En
iP

j E
n
j

: ð2Þ

This definition suggests that there is a simple relationship
betweenedgesalienciesand theeigenvector corresponding to
the largest positive real eigenvalue of the transitionmatrixP.

Theorem 1 (First Saliency Theorem). The saliency for edge i
is given by:

ci ¼ si �ssi; ð3Þ

where the sis are the components of the eigenvector (normal-
ized so that

P
i si�ssi ¼ 1) corresponding to the largest positive

real eigenvalue, �, of the transition matrix P, i.e., Ps ¼ �s.

Proof. See Appendix A and, also, [26] for an earlier proof.tu
It is important to note that sinceP is positive (all entries are

positive), Perron’s theorem [10] guarantees that the largest
eigenvalue ofPwill be real and positive. The components of
the corresponding eigenvector si will all be positive (i.e.,
si > 0). Note that, due to reversal-symmetry, we would
expect ci ¼ c�ii as can be verified from the expression above.

3.2 Link Saliency

In this section,weuse the saliencymeasure, defined in the last
section for individual edges, to derive a saliency relation, and
defined for pairs of edges. Because it is associated with a
“link” between two edges,we term an element of the saliency
relation a link saliency. The link saliency, Cij, equals the
probability that a closed contour passes through edge j and
then (without visiting another edge) passes through edge i. In
a way which is analogous to the definition for edge saliency,
we have:

Cij ¼ lim
n!1

En
ijP

l E
n
l

; ð4Þ

whereEn
ij is the expected number of closed contours of length

n, which pass through edges j and i in succession andEn
l is as

defined before in (1). Like the edge saliencies, the link
saliencies also have a simple relationship with the eigenvec-
tor corresponding to the largest positive real eigenvalue ofP .

Thereom 2 (Second Saliency Theorem). The link-saliencies
between any two edges j and i are given by:

Cij ¼
�ssiPijsj

�
; ð5Þ

where the sis are the components of the eigenvector (normal-
ized such that

P
i si�ssi ¼ 1) corresponding to the largest

positive real eigenvalue, �, of the transition matrix, P.

Proof. See Appendix A. tu
As in the case of the edge saliencies, due to reversal

symmetry, we would expect Cij ¼ C�jj�ii as can be verified
from the expression above (recall that Pij ¼ P�jj�ii and ��ss�ssi ¼ si).

Sinceweare concernedwith closed contours, an important
conservation property holds for all edges. Any closed contour
that goes from some edge k to a second edge imust continue
on to some third edge j. This is not necessarily true in the case
of open contours.We confirm this conservation property and
at the same time use it as a consistency check on the
expressions for the Cijs and cis:

X
k

Cik ¼
X
k

�ssiðPikskÞ
�

ð6Þ

¼ �ssið�siÞ
�

ð7Þ

¼ �ssisI ð8Þ
¼ ci: ð9Þ

Doing a similar calculation for
P

j Cji, we findX
k

Cik ¼ ci ¼
X
j

Cji: ð10Þ

3.3 Contour Saliency

Ideally, our segmentation algorithm should extract closed
contours in order of increasing saliency. Apossible definition
for the saliency of a closed contourwould be to define it as the
probabilityofaparticle tracingapaththrough thesameedges,
i.e., the product of the conditional probabilities along the
contour’s path. However, this definition is dependent on the
length of the contour. A closed contour,�, and another closed
contour formed by traversing the edges in � twice, i.e., � � �,
should be judged to have the same saliency. However, it is
clear that the probability of the second contour will be much
less than thatof the first. In fact, itwill be the squareof the first.
Amorenaturaldefinitionfor thesaliencyofaclosedcontour�,
a definition which is invariant to repetition, is the geometric
meanof theconditionalprobabilitiesalongthecontour’spath:

�ð�Þ ¼ pð�Þ1=j�j; ð11Þ

where j�j is the length of the closed contour and pð�Þ is the
product of the conditional probabilities which comprise it. In
other words, if the length normalized probability of one
contour is greater than that of a second contour, then, we
consider the first contour to be more salient than the second.
This definition of contour saliency has an interesting relation-
ship with the transition matrixP constructed from the given
contour (see [26]). If we imagine a scene containing just the
closed contour �, and where the probabilities between
nonadjacent edges are zero, then the saliency of the contour
is just the largest positive real eigenvalue of P.

3.4 Importance of Directionality

We conclude this section by demonstrating how well the
saliency measure performs for a simple example consisting
of edges from the silhouettes of two pears artificially
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superimposed on a background texture. See Fig. 1. The
saliency measure for each edge was computed using the
expression for ci given in (3) after solving for the largest
positive real eigenvalue of P and its corresponding
eigenvector. The saliency plot is shown in Fig. 2a. The
length of an edge in the plot is proportional to its saliency. It
can be plainly seen that the edges bounding both pears have
high (and comparable) saliencies. The saliencies of all other
edges have been suppressed. Numerically, their saliencies
are 20 orders of magnitude smaller than those of the pears.

Using the same example, we demonstrate the importance
ofusingpairs ofdirected edges to forman transitionmatrixP,
of size 2N � 2N as opposed to simply using the N edges to
form a symmetric transition matrix A, of size N �N . Recall
that thismechanism is required so that closed contours donot
include reversals in direction at the locations of the edges. For
the purpose of this demonstration, we construct a symmetric
transition matrix A from P by setting Aij ¼ Pij þ Pi�jj

þP�iij þ P�ii�jj. It can be verified that A is symmetric because
Pij ¼ P�jj�ii. Fig. 2b shows the squared magnitude of the
components of the eigenvector with largest positive real
eigenvalue of A. Two edges in the background texture that
which, simply by chance, are proximal and very nearly
collinear, areextremelysalientwhileedges formingtheclosed
boundary of the pears are ignored. It follows that using a
nonsymmetric transition matrix P and pairs of oppositely
directed edges, iand �ii, is essential to satisfactoryperformance
of the saliency measure.

In order to distinguish the contours bounding the two
pears, one might try to simply threshold the edge saliencies,
i.e., the cis. However, as is illustrated by this example, edges
from different objects can have saliencies of comparable
magnitude. It is therefore likely that such a simple strategy
will group together edges bounding distinct objects. In the
next section, we develop a more robust approach that uses
the link saliencies, i.e., the Cijs, to group together sets of
edges belonging to individual objects.

4 SEGMENTATION

The goal of segmentation is to group together into distinct
sets, edges boundingdistinct objects in the scene. Tomotivate
our segmentation algorithm, consider the hypothetical case
where some oracle provides uswith a setS of closed contours
in the scene whose saliencies are above some threshold. We
can construct a graphwhose vertices correspond to the edges
in our scene.We create a directed link in this graph fromedge
i to edge j if i and j are successive edges of some salient
contour in S. The Third Saliency Theorem (see Appendix A)
tells us that such a construction induces a partition of the
graph into a set of isolated strongly-connected components. A
strongly-connected component [5] is a set of edges in which
anypair of edges i and jhave a path fromone to the other, i.e.,
ie>j as well as je>i. In general, each strongly-connected
component will contain multiple salient contours that share
common edges. It is shown in Appendix A that the partition
into a set of strongly-connected components is a direct
consequenceof thepropertyof closureof the contours inS.As
noted in the introduction, the strongdependencebetween the
nature of the partition and the property of closure is a
distinguishing feature of our approach, as compared with
other approaches [6], [11] which employ generic graph
search. More precisely, in our approach, the determination

of strongly-connected components makes sense only in the
context of a graph derived using a saliency relation based on
contour closure.

In practice, of course, we do not know the salient contours
beforehand. Nevertheless, since the links in the salient
contours become the links in the graph, all we need to know
is which of the links are salient, i.e., the likelihood that some
salient contour passes through a given link. The link-
saliencies, i.e., the Cijs, encode precisely this information.

Ideally, the set of edges will be partitioned into isolated
components. However, in practice, not all of the components
provide reliable segmentations. The dominant contours tend
to suppress the saliencies of all other contours to the degree
that the saliencies of these nondominant contours are
insufficient to induce components that can be isolated
reliably. Hence, in practice, we begin by extracting the most
salient contours, and since such contours will normally
contain the most salient edge, we first identify the contours
corresponding to the strongly-connected component contain-
ing the most salient edge. Having identified the most salient
contours, we suppress their link saliencies in order to reveal
thenext set ofdominant contours.Wesuppress the current set
of dominant contours by deflating all transition probabilities
between edges of the strongly-connected component. Speci-
fically, if i and j are edges in the component, then the link
i ! j is deflated by setting Pji ¼ 0 (as well as setting the
reversal-symmetric “sibling” P�ii�jj ¼ 0). We then iterate this
process to reveal multiple salient contours.

Ideally, the strongly-connected component containing the
most salient edgewill be isolated from the other components.
In practice, due to noise, some of the Cijs might wrongly
indicate that the strongly-connected component containing
the most salient edge is connected to one or more other
strongly-connected components. Nevertheless, we can ex-
tract the component of interest by utilizing an important
property of strongly-connected components:The set of edges in
a strongly-connected component containing a given edge is the
intersection of the set of edges reachable from the given edge and the
set of edges reachable if all links are reversed. Because of reversal
symmetry, the above property reduces to a particularly
simple form. Let reachableðjÞ be the set of edges reachable
from a given edge j. Due to reversal symmetry, it can be
verifiedthat thesetofedgesreachable from jwhenall linksare
reversed is the sameas the reversalof the setof edges reachable
fromedge �jj. Thereversalof the setreachableð�jjÞ isdefined tobe

reachableð�jjÞ ¼ �kk j k 2 reachableð�jjÞ
� �

:
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Fig. 2. Saliency plots for the 2-pear example. (a) Our measure with
directed edges. (b) Our measure with undirected edges. The length of
each edge is proportional to its saliency value.



Hence, in order to identify the strongly-connected compo-

nent containing the most salient edge j, we find

reachableðjÞ \ reachableð�jjÞ:

See Algorithm 1. Interestingly, the above is analogous to the

expression for edge saliency, ci ¼ si�ssi. One needs simply to

replace the the eigenvector si with the set reachableðiÞ, the
reversal operator for vectors with the reversal operator for

sets, and component-wise multiplication of vectors with

intersection of sets. In our case, due to reversal symmetry, the

above property reduces to a particularly simple form.

In order to decide if a link is salient or not, we need to

threshold the Cijs. We could use a single threshold for the

entire graph. However, we can do better by choosing an

adaptive threshold for the set of links which originate from

edge j, i.e., the jth column of the link saliency matrix, C. To

threshold these Cijs in a natural manner, we sort the jth

column in decreasing order. In this sorted list, z, we find the

kth largest value (in all of the experiments in this paper k

equals two). Edges joined by links from j with magnitude

larger than the zk areassumedto lieonsalient closedcontours,

and are therefore selected. Such a thresholding schememight

misclassify certain links as salient. However, we have

observed that the extraction of strongly-connected compo-

nents is usually robust to such misclassifications. See

Algorithm 3.

The termination criterion we use for the current imple-
mentation is to simply stop after reporting some fixed
number of components. See Algorithm 2. One way to justify
the use of such a simple criterion is to imagine a higher-level
module that, for example, performs object-recognition, and
which employs the segmentation algorithm to highlight
regions where the presence or absence of some object can be
determined using domain knowledge available to the
recognizer. It is up to the recognizer to determine the number
of salient contours that it wants to process (based on, for
example, real-time constraints). If the module determines
that the segmentation algorithm is reporting garbage after a
certain number of iterations, then it can decide to terminate
the search for additional contours. Alternatively, we could
stop when the largest positive real eigenvalue � becomes
negligibly small.

As a demonstration, we apply the segmentation algo-
rithm to the two pear example from Fig. 1. The segmenta-
tion in the first and second iterations is shown in Figs. 3a
and 3b, respectively. As previously noted, a segmentation
based on simply thresholding the edge saliencies would not
be able to separate the two pears.

5 RESULTS

In this section, we show results of our segmentation
algorithm on a few real images. All the images were taken
using a Kodak DC50 480� 480 pixel digital color camera.
The Canny edge detector [4] was run on the images after
converting them to gray scale, with the parameters � ¼ 3:0,
low hysteresis threshold ¼ 0:2 and high hysteresis thresh-
old ¼ 0:8. The set of edges returned by the Canny edge
detector were found to be quite redundant. The edges are
sampled to improve running times with almost no sacrifice
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in performance. In our experiments, we sample the edges
such that no two edges are closer than 5 pixels apart.

The entries of the transitionmatrixPwere calculatedwith
parameter settings (see Section 2 for their descriptions and
also [23]) � ¼ 0:15, T ¼ 0:004, and � ¼ 5:0. All edge images
are remapped to a 64� 64 image size. Since the transition
matrixP has a special symmetry (the reversal symmetry), we
had previously developed an algorithm that finds the
eigenvector corresponding to the largest positive real eigen-
value of P (required for the computation of the saliency
relation) by exploiting the reversal symmetry. See [24] for
details.

5.1 Example Segmentation

In our first example, we chose a simple scene where
nonoccluding objects (fruits) were placed on a textured
background (concrete). Fig. 4 shows four fruits on a concrete
background in gray scale, Fig. 4a and the corresponding edge
image, Fig. 4b (with 2; 800 directed edges after the sampling
process described above). Notice that the contrast between
the texture of the fruit on the top-left (a cantelope) and that of
the background is quite low. As a result, few edges are
detected along some parts of the boundary of the cantelope.
Figs. 4a, 4c, 4e, 4g, and 4i show the edge saliencies, i.e., the cis,
computed during the first five iterations of the segmentation
algorithm. Figs. 4b, 4d, 4f, 4h, and 4j show the corresponding
contours that are extracted during those same iterations. It is
interesting to note that the contour bounding the cantaloupe
has been extracted despite the fact that there are large gaps in
some parts of the contour.

Fig. 5a shows the variation of the saliency of the dominant
contour across iterations. The dominant contour is extracted
at each iteration by tracing out the most salient links starting
from themost salient edge until we return to the most salient
edge again. Its saliency is measured by the expression in (11).
Since the saliency of the dominant contour decreases as we
extract out successive contours, we see that the contours are
indeed extracted in the order of their saliencies.

Finally, we give the time requirements for our algorithm
for this example. It takes � 13 seconds to generate a total of
� 111; 000 entries in the sparse transition matrix P on an
SGI R10000. Since generating the entries in the matrix is
easily parallelizable, it is useful to know the time per entry
which is � 0:11 msec. In Fig. 5b, we show the time taken to
isolate successive objects. The eigensolver described above
(see [24] for details) is adaptive, the time roughly varying
according to the complexity of the contours extracted and

the number of edges each contains. As expected, the first

iteration took the least time of � 3 seconds since the contour

extracted is relatively salient (as seen from the dominant

contour saliency plot above) compared to the other contours

in the scene. The third iteration took the longest time of

� 20 seconds—possibly because of the large gaps in the

contour being extracted (bounding the cantelope). The

average time for all iterations is � 9:9 seconds.
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Fig. 3. Segmentation results for the two pear example. (a) First iteration.
(b) Second iteration.

Fig. 4. Fruits on concrete. (a) Gray-scale image. (b) Canny edge output.
(c), (d), (e), (f), (g), (h), (i), and (j) First four iterations of the segmentation
algorithm. For each iteration, the saliencies are shown on the left and the
segmentation is shown on the right. In each saliency plot, the length of an
edge is proportional to the saliency of that edge. The most salient edge in
both the saliencyandsegmentationplots are shown inside thesmall circle.



5.2 Importance of Global Information

In this section, we will show the importance of the global
information encoded in the link saliency matrix C by
replacing it with the transition matrix Pwhich encodes only
local information. The edge saliency vector c is left
unchanged. With this replacement, the segmentation algo-
rithm extracts out the same contour in the first iteration as
the algorithm using the Cijs. Note that this contour is easy
to trace out since there are no large gaps present between
successive edges of the contour. However, the hard part is
to get a starting edge (i.e., the most salient edge in the
current iteration) which (for this demonstration) is still
being provided by the cis. Fig. 6 shows the segmentation
after the second iteration. As can be seen, the segmentation
completely breaks down. The Pijs are sufficient as long as
we start off from the most salient edge in each iteration and
there are no large gaps in the contours being traced. The
breakdown in the second iteration shows the need for the
more global information encoded in the Cijs in cases where
there are large gaps in the contours being traced.

In a previous paper [26], a purely local saliency measure
(termed WJ) was judged to be more effective in isolating
smooth closed contours in the presence of background clutter
than threeotherwell-knownsaliencymeasures (those termed

GM,SB, andSUandbasedon [8], [18], and [21]).Analogous to
the expression, ci ¼ si�ssi (where s and �ss are right and left
eigenvectors with largest positive real eigenvalue of P) the
saliency of an edge according to theWJ measure iswi ¼ xi�xxi,
where xi ¼

P
j Pij. We observe that the WJ measure can be

seen as a single step of the power-method iteration necessary
for computing the eigenvector with largest positive real
eigenvalue of P. It follows that, by comparing the perfor-
mance of a segmentation algorithm based on the saliency
measure derived in this paper (the measure termed WT in
[26]) to one based on the WJ measure, we can ascertain the
valueofpower-method iterationsbeyond the initial step.This
speaks directly to the important issue of iterative versus
noniterative (i.e., voting) methods in perceptual organiza-
tion, an issue that is explored extensively in [14].

Using reversal symmetry, Pij ¼ P�jj�ii, we can easily show
thatwi ¼

P
j;k PkiPij, which implies that the saliency for edge

i is the sum of the probabilities of contours of length two
centeredon i. Because the saliency is determined solely by the
probabilities of length two contours, it follows that the global
property of contour closure plays no role indetermining edge
saliency. Consequently, edges forming a closed contour can
be of low saliency despite the fact that they contain many
closed contours of relatively high probability.

In our second demonstration of the importance of using
global information, the global link saliency matrix C, based
on the WT measure, is replaced by a local link saliency
matrix W, based on the WJ measure. The expression for
local link saliency is analogous to the expression for global
link saliency, (5). Specifically,

Wij ¼ �xxiPijxj: ð12Þ

Using reversal-symmetry, it can be shown that

Wij ¼
X
k;l

PkiPijPjl: ð13Þ

Thus, the Wijs are proportional to the probability that a
contourof length three is centeredon the link j ! i.However,
when we use this local relation, the segmentation algorithm
breaksdown in the first iterationas shown inFig. 6b.Themost
salient edge according to the wis (indicated by the circle) lies
on the cantaloupe, which was the third fruit extracted using
the global saliency relation. While tracing the contour
bounding the cantaloupe, the algorithm loses its way when

MAHAMUD ET AL.: SEGMENTATION OF MULTIPLE SALIENT CLOSED CONTOURS FROM REAL IMAGES 7

Fig. 5. (a) Dominant contour saliency versus iteration number. (b) Time
per iteration.

Fig. 6. Fruits on concrete. (a) When the global link saliency matrix C is
replaced by the local transition matrix P, from which it is derived, the
segmentation algorithm fails in the second iteration. (b) When the
global link saliency matrix C is replaced by a local link saliency matrix
W, based on the WJ saliency measure, the segmentation algorithm
fails in the first iteration.



it encounters the large gaps. In summary, the cis are essential

for reliably determining the starting edge for the segmenta-

tion algorithm, and the Cijs are essential for bridging large

gaps. Both are functions of the eigenvector the with largest

positive real eigenvalue of the Pmatrix.

5.3 Additional Segmentation Examples

Fig. 7 shows the same four fruitswithgrass as thebackground

and with one of the fruits occluding another. Due to poor

contrast between the two dark fruits and the background, the

Canny edge detector does not reliably detect the edges

bounding the two fruits. The fruits are hardly salient in the

edge image (not shown), even for human observers. Our

algorithm can be expected to extract out contours only when

provided with reliable edge information. In this case, the

algorithm picks out only the other two fruits in the image. Of

the two fruits that it does pick out, one partly occludes the

other. Due to the poor contrast between the two fruits, the

edge information (especially the orientation) is quite poor in

the region around the occlusion. However, despite this fact,

and the fact that the contour bounding the occluded fruit

contains a large gap at the occlusion, the algorithm segments

out both fruits individually.
Fig. 8a shows an example where there are significant

shadows that produce strong smooth contours adjacent to the

stones. However, since they are not closed, the shadow

contours are not as salient as the contours that actually bound

the stones. Consequently, they do not confuse the algorithm.
Finally, Fig. 9a is an image of a large number of coins on a

tabletop.Although this is an imagewhichwouldbe relatively

easy to segment using image brightness, the segmentation

which is shown in Fig. 9c, has been computed solely using the

Canny edges shown in Fig. 9b.

6 FINDING THE OPTIMUM SPEED

The shape distribution that is used to build the P matrix is
defined by three parameters T , � , and �. Although there has
been some interesting recent work on learning parameter
settings for grouping algorithms (see [19]), we have simply
selected values for T , � , and � which we have found yield
good results in practice. In this section, we describe
preliminary work on choosing the value of one of these
parameters, �, the particle’s speed, automatically.

The segmentation algorithm which we have described
assumes a fixed value for �. However, there are two
properties of the shape distribution that are directly affected
by the particle’s speed. First, the distance a particle travels
before it decays increases with increasing speed. Second, the
variance in a particle’s direction of motion relative to the
distance it travels decreases with increasing speed. Conse-
quently, the choice of � effectively determines both the
curvature of the closed contours which will be classified as
most salient and the optimum distance between adjacent
edges.Amoreprincipled approachwouldbe to isolate closed
contours irrespective of their average curvature and irre-
spective of the average distance between adjacent edges. One
way to do this would be to systematically vary speed within
Algorithm 1 so that the contour which is most salient, i.e., the
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Fig. 7. Fruits on grass. (a) Gray-scale image. (b) Canny edge output.

(c) and (d) First and second segmentations.

Fig. 8. Stone on pavement. (a) Gray-scale image. (b) Canny edge

output. (c), (d), (e), and (f) First four segments.



contour with maximum eigenvalue, among contours of all
possible � is extracted. Inprinciple, the saliency of contours of
different average curvatureanddifferent edge sampling rates
would be maximized at different speeds, resulting in a more
robust segmentation algorithm. See Algorithm 4.

Fig. 10a is an image of three fruits on a wooden table
with prominent wood grain background. The segmentation
shown in Fig. 10c was computed using Algorithm 4 instead
of Algorithm 1. The optimal speed within the range
½0:01; 1:5� for each object was computed using Brent’s
method [3], which does not require analytic derivatives,
and is able to locate a local optimum in �ð�Þ.

In our initial attempt to run the modified segmentation
algorithm on this image, we used the same values for T and �
used to compute the other results in this paper. Unfortu-
nately, the � which maximized the eigenvalue was 1.5.
Because this value is on the boundary of the search interval, it
is not actually a local optimum of �ð�Þ and the resulting
segmentation was of very low quality. After increasing the
diffusion constant, T , from 0.004 to 0.007 and the decay
constant, � , from 5.0 to 6.5, the optimization procedure
returned values of � which were within the range ½0:01; 1:5�

which implies that they are true local optima. The optimal
speed, �max, for the first object was 1.23 and 1.27 for the
second. The eigenvalue, �ð�maxÞ, at the optimal speed was
0.0099 for the first object and 0.0071 for the second. The closed
contoursareofgoodquality. SeeFig. 10c.Thealgorithmfailed
to find the third object because the Canny edge detector
returned very few edges that lie on its boundary.

7 CONCLUSION

We have demonstrated how a saliency relation based on the
global property of contour closure can form the basis of a
segmentation algorithm able to identify multiple salient
closed contours in real images. More specifically, we have
demonstrated that computing the connected-components of
a graph representing a saliency relation based on the relative
number of closed contours containing pairs of edges, is more
effective than searching a graph based on a purely local
relation based on geometric properties of the pair of edges in
isolation.

Our approach to grouping edges into salient closed
contours involves the solution of an eigenvector/eigenvalue
problem. Recently, other researchers [16], [18], [19], [22]
have also proposed grouping image features by solving
eigenvector/eigenvalue problems.

The normalized min-cut approach described in [22] can
group more general image features than our approach can.
However, since we restrict ourselves to grouping edges, we
are able to impose the important constraint of tangent
continuity, which has no counterpart for nonedge features
such as texture or brightness. Furthermore, any approach
enforcing tangent continuity using the mechanism of edge-
directionality requires a nonsymmetric transition matrix P
for which the min-cut approach proposed in [22] does not
apply. As previously noted, the use of a symmetric
transition matrix makes contours containing cusps salient
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Fig. 9.Coins. (a) Original image. (b) Edge input obtained by Canny detector. (c) Segmented objects, numbered in the order in which they are extracted.

Fig. 10. Fruits. (a) Original image. (b) Edge input obtained by Canny detector. (c) Segmented contours, numbered in the order in which they are
extracted.



(see the discussion in Section 2). Hence, we would expect
poor performance on edge grouping problems with a min-
cut approach since tangent continuity cannot be enforced.

Like [22], the dominant eigenvector-based method
described by [18] is applicable to features other than edges.
Also like [22], this method assumes that the transition
matrix is symmetric and, therefore, cannot use edge-
directionality to enforce tangent continuity.

Of course, the generic grouping algorithms of [1], [7], [16],
[22] make much weaker assumptions about the input image
than does the algorithm which we describe here. The
algorithmwedescribe is specifically designed to group edges
into smooth closed contours.Whenan imagedoesnot contain
closed contours, when the contours it contains are not
smooth, or when local edge detection processes fail because
of lack of contrast, i.e., when our assumptions are violated,
our methodwill fail. It is possible that, in such cases, generic-
groupingmethodswhich are able to organize awider variety
of image features, and which make weaker assumptions
about them, may succeed in such cases.

However, we believe that grouping-methods that are
designed to solve a specific grouping problem, such as
grouping edges into smooth closed contours, will outper-
form general-purpose methods on images for which their
assumptions hold. This is because generic methods cannot
fully exploit domain specific constraints such as contour
closure and tangent continuity, which have no counterparts
for non-edge features such as texture or brightness.

APPENDIX A

First, we prove some preliminary lemmas.

Lemma 1. If s is a (right) eigenvector of P with eigenvalue �,
then �ss is a left eigenvector of P or equivalently a (right)
eigenvector of PT with the same eigenvalue.

Proof. Taking the ith component of PT�ss,X
j

Pji�ssj ¼
X
j

P�ii���s�jj ð14Þ

¼
X
j

P�iijsj ð15Þ

¼ ��ssi: ð16Þ

Hence, �ss is an eigenvector for PT or equivalently a left
eigenvector for P with the same eigenvalue �. tu

Lemma 2. For an irreducible positive matrix P that is reversal-
symmetric,

lim
n!1

P

�

� �n

¼ s � �ssT; ð17Þ

where � is the largest eigenvalue of P and s is the
corresponding eigenvector.

Proof. For a general irreducible positive matrix A, it is
shown in [10] that

lim
n!1

A

�

� �n

¼ x � yT; ð18Þ

where x and y are, respectively, the right and left
eigenvectors of A corresponding to the largest eigenvec-

tor � normalized such that xTy ¼ 1. From the previous
lemma, we know that if s is a left eigenvector of a
reversal-symmetric matrix P, then �ss is the corresponding
right eigenvector with the same eigenvalue. Hence, the
proof. tu

Proof of the First Saliency Theorem (Theorem 1). First, we
note the simple relationship between the diagonal
elements of the powers of the transition matrix P and
probabilities of closed contours. ðPkÞii is the sum of the
probabilities of all closed contours of length k that pass
through edge i. Using this relationship and letting � be
the largest eigenvalue of P, the definition for ci in (2) can
be rewritten in terms of the powers of P as:

ci ¼ lim
n!1

ðPnÞiiP
jðPnÞjj

ð19Þ

¼ lim
n!1

ðP�Þ
n
iiP

jðP�Þ
n
jj

: ð20Þ

The above limit exists if the limit for both the numerator
and the denominator exists and the limit for the
denominator is nonzero. Using Lemma 2,

lim
n!1

P

�

� �n

ii

¼ si�ssI; ð21Þ

where the sis are the components of the eigenvector of P
corresponding to its largest eigenvalue � and assuming
that the eigenvector is normalized such that

P
j sj�ssj ¼ 1.

Hence, both the limits for the numerator and denomi-
nator in (20) exist and is equal to respectively, si�ssi andP

j sj�ssj. Finally, we note that the limit for the denomi-
nator in the ratio is nonzero. For our problem there is a
nonzero probability that a contour passes through any
two edges in the image in succession.2 Hence, P is
positive [10] and according to Perron’s theorem [10] for
positive matrices, all the components of the eigenvector
corresponding to the largest eigenvalue are positive.
Hence,

P
j sj�ssj > 0 and, hence, the limit of the denomi-

nator in (20) is nonzero. Since we assume that the
eigenvector is normalized so that

P
j sj�ssj ¼ 1, the

expression for ci becomes:

ci ¼ lim
n!1

P
�

� �n
iiP

j
P
�

� �n
jj

ð22Þ

¼
limn!1ðP�Þ

n
ii

limn!1
P

j

�
P
�

�n
jj

ð23Þ

¼ si�ssiP
j sj�ssj

ð24Þ

¼ si�ssi: ð25Þ
ut

Proof the Second Saliency Theorem (Theorem 2). The
probability that closed contours of length n pass through
edges j and i successively is given by Pn�1

ji Pij since all
such contours pass through the link from edge j to edge i
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2. This is not necessarily true when we consider sparse representations of
the matrix P, but for such a case, all that is required is that there is a
nonzero probability that a contour start from edge i and end in edge j with
the possibility of threading through intermediate edges.



at least once. Hence, we can rewrite the definition for the
link saliencies (4) as:

Cij ¼ lim
n!1

P
�

� �n�1

ji
� Pij

�

� �
P

l
P
�

� �n
ll

: ð26Þ

Again,using the limit theoreminLemma2,andarguments
similar to that made in the proof of Theorem 1 on the
existence of limits, we have:

Cij ¼
limn!1

P
�

� �n�1

ji
� Pij

�

� �
P

l limn!1ðP�Þ
n
ll

ð27Þ

¼
sj�ssi

Pij

�

� �
P

l sl�ssl
ð28Þ

¼ �ssiPijsj
�

: ð29Þ

ut

Theorem 3 (Third Saliency Theorem). Given a set C of closed
contours in an image, consider the induced graph G whose
vertices are edges from the image. The only links between
vertices correspond to the directed links between successive
edges of the contours in C. Then, G is partitioned into isolated
strongly-connected components, no two of which have any link
between them.

Proof. It is easily seen thatG has isolated strongly-connected
components iff for two edges i and j, there is a path ie>j iff
there is a path je>i. Hence, in our case, we need to prove
that the above condition between two edges i and j always
holds. It is enough to show this for simple paths where
there are no loops. Anypath ie>j can be decomposed into a
sequence of subpaths, each ofwhich is a subsequence fully
contained in some closed contour of C. The subsequences
are constructed in the following manner. Consider the
set Ai of all the contours in C that contain edge i. Starting
from edge i we trace out the the path ie>j. As we move
along this path, we remove from the set Ai any closed
contours thatdoesnot contain thewhole subsequence seen
so far. Then, either we reach edge j before exhausting the
contours inAi, orAi becomes empty at some intermediate
edge. In the former case, any of the remaining closed
contours in Ai provides a return path to edge i from j by
tracing out the rest of such a closed contour. In the latter
case, let k be the last intermediate edge after which the set
Ai becomes empty. The path from ie>k is the first
subsequence that we construct. At k, there still exists some
closed contour in Ai. Thus, there is a return path ke>i by
completing any such closed contour remaining in Ai. We
recursively construct the remaining subpaths by consider-
ing the path ke>j and starting with the set Ak which is the
set of all contours in C that pass through edge k. As argued
above, each such subpath has a returning path from the
end of the subpath to its beginning. Hence, all the
returning paths can be concatenated together in reverse
order toget a returningpath from je>i.Hence, ie>j iff je>i.A
strongly connected componentof agraph isdefined [5] asa
subset of nodes where for any two nodes i and j in the
subset, there exists apath from ie>jand from je>i.Hence, in

our case, since ie>j iff je>i, if there exists any path ie>j, then
edges i and j belong to some strongly connected

component. Hence, the whole graph can be partitioned

into a set of isolated strongly connected components with

no links between any two of the components. tu

APPENDIX B

In this appendix, we give an analytic expression character-

izing the probability distribution of boundary-completion

shapes derived in [23]. For a derivation of a related

function, see [20]. We define the transition probability, Pji,

between two directed edges, i and j, to be

P ðj j iÞ ¼
Z 1

0

P ðj j i; tÞ dt��FP ðj j i; toptÞ; ð30Þ

whereP ðj j i; tÞ is the probability that a particle which begins

its stochasticmotion at ðxi; xi; �iÞ at time 0will be at ðxj; yj; �jÞ
at time t. This probability is defined to be the sum over the

probabilities of all paths that a particle can take between the

two edges. This integral is approximated analytically. The

approximation is the product of P evaluated at the time at

which the integral is maximized, i.e., topt, and a weighting

factor, F . The expression for P at time t is

P ðj j i; tÞ ¼
3 exp½� 6

Tt3
ðat2 � btþ cÞ� expð� t

�Þffiffiffiffiffiffiffiffiffiffi
�3T 3t7

2

q ; ð31Þ

where

a ¼ 2þ cosð�j � �iÞ
3

ð32Þ

b ¼ xjiðcos �j þ cos �iÞ þ yjiðsin �j þ sin �iÞ
�

ð33Þ

c ¼
ðx2

ji þ y2jiÞ
�2

ð34Þ

for xji ¼ xj � xi and yji ¼ yj � yi. The distribution of shapes

is determined by the half-life, � , the variance, T , and the

speed of the particle, �. The expression for P should be

evaluated at t ¼ topt, where topt is real, positive, and satisfies

the cubic equation

� 7t3

4
þ 3ðat2 � 2btþ 3cÞ

T
¼ 0: ð35Þ

If more than one real, positive root exists, then the root

maximizing P ðj j i; tÞ is chosen. Finally, the extra factor F is

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�t5opt

12ð3c�btoptÞ
T þ 7t3opt

2

vuut : ð36Þ
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