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Abstract

Many modeling tasks in computer vision. e.g.
structure from motion, shape/reflectance from shad-
ing, filter synthesis have a low-dimensional intrinsic
structure even though the dimension of the input data
can be relatwely large. We propose a simple but sur-
prisingly effective iterative randomized algorithm that
drastically cuts down the time required for recovering
the wntrinsic structure. The computational cost de-
pends only on the intrinsic dimension of the structure
of the task. It is based on the recently proposed Cas-
cade Basis Reduction (CBR) algorithm that was devel-
oped in the context of steerable filters. A key feature
of our algorithm compared with CBR 1is that an arbi-
trary apriori basis for the task is not required. This
allows us to extend the applicability of the algorithm
to tasks beyond steerable filters such as structure from
motion. We prove the convergence for the new algo-
rithm. In practice the new algorithm is much faster
than CBR for the same modeling error. We demon-
strate this speed-up for the construction of a steerable
basis for Gabor filters. We also demonstrate the gen-
erality of the new algorithm by applying it to to an
example from structure from motion without missing
data.

1 Introduction

Many tasks in computer vision involve the deter-
mination of a low-dimensional structure from high-
dimensional data. For example, in structure from mo-
tion [6], we are provided with a sequence of 2D images
in which interest points have been located and tracked.
The task is to recover the shape of one or many objects
in the scene. The dimension of the input data which in
this example is the number of frames in the sequence
times the number of interest points in a frame, is typ-
ically very high. Nevertheless, the dimension of the
shape to be recovered is typically very small (for eg.,
it is atmost 3 for each rigid body in the scene under

scaled orthographic projection). Methods such as fac-
torization [6] require the determination of the SVD of
the measurement matrix constructed from the frame
sequence. Even though the shape that is to be re-
covered has low dimension, the direct computation of
the SVD of the measurement matrix depends on the
dimensions of the matrix hence does not scale well.

Another example is in the construction of steerable
filters [5, 3, 4]. Given afilter ¢(z,y) and a set of trans-
formations T', the task is to find a set of basis filters
® = {¢1,...,dx} such that the response of the origi-
nal filter ¢ under any transformation from 7' is some
linear combination of the responses of the basis filters
in ®. For reducing the run-time cost, we would like to
keep the number of basis filters in ® as small as pos-
sible. Analytical solutions are known only for some
filters under a restricted set of transformations. One
straight-forward technique that was recently proposed
for numerically constructing ® [4, 5] is to sample ¢ un-
der various transformations from 7" and then sample
the transformed filter spatially upto some required res-
olution. The most significant left eigenvectors of the
SVD of the matrix of such samples provide a basis set
for steering ¢. The cost of directly computing such
an SVD can be high if the set of transformations over
which the filter is to be steered and the required res-
olution are high-dimensional.

Both these examples along with other tasks in vi-
sion can be put in a common framework that high-
lights the common features that are shared across all
such tasks. Consider a task where the input measure-
ment data can be looked upon as columns of an m x n
matrix M. For example, in the case of structure from
motion, column ¢ represents the coordinates of the in-
terest points in frame . In the case of steerable filter
synthesis, each column is a transformed version of the
filter to be steered.

We consider a task to have a low-dimensional struc-
ture when the corresponding measurement matrix can



be factored into two low-rank matrices M = BC,
where B, CT are both m x r matrices with r < m, n.
Here, r is a measure of the dimension of the struc-
ture of the task. Thus, in the example of structure
from motion, B is the “shape” matrix that describe
the rigid structure of an object (or objects) in the
scene and C' is the “motion” matrix which is related
to the camera parameters for each frame (for simplic-
ity we consider scaled orthographic projection). In the
case of steerable filter synthesis, the columns of B are
the set of basis filters that steer the original filter and
each column of C' describe the “steering coefficients”
that steer the basis set to the transformed filter in
the corresponding column of M. The factorization
M = BC can be found with an application of SVD
M = UXVT. Under noise-free conditions, the dimen-
sion r of the task is the number of non-zero singular
values in ¥ (with noise and modeling errors, r is taken
to be the number of singular values above some thresh-
old). Then M can be factorized with B = UTE}«NA
and C = A_lE}«/zVTT. Here, U,,%,,V, denote the
sub-matrices that correspond to the top r singular val-
ues in . A is an unknown invertible r x r transforma-
tion that has to be further constrained by the task at
hand; for example, in structure from motion, rigidity
constraints are imposed to determine A.

The computation of the SVD of M is bounded be-
low by roughly the cubic of the minimum of m and n
both of which can be large for the given task. How-
ever, the structure of the problem (as measured by r)
might be much smaller. Hence, it would be preferable
to have a method for computing the SVD of M whose
cost 1s dominated primarily by only r, the actual di-
mension of the matrix. We propose such a method
of factoring M that is based on a recent algorithm
that was developed in the domain of steerable filter
synthesis.

The Cascade Basis Reduction (CBR) algorithm [5]
was proposed as a method for reducing the cost of
computing the SVD of M in the case of steerable fil-
ter synthesis. In this method, an a priori basis matrix
B for steering the original filter was assumed and im-
proved upon. The number of a priori basis filters was
low enough to make the computation of the SVD fea-
sible. A limitation of the approach is in the choice of
an appropriate a priori basis. A poor choice will result
in an inadequate basis for steering the original filter.
In [5], the choice for an a priori basis was arbitrary
and did not depend on the actual filter that was be-
ing steered. Also, while the number of a priori basis
filters was low, it was still typically much higher than
the actual dimension of the structure of the task at

hand.

In this paper, we show that the CBR scheme can be
extended in such a way that we do not have to make an
arbitrary choice for an a apriori basis. It is shown that
a natural choice for an a priori basis can be directly
drawn from the particular task at hand. The number
of a priori basis needed is typically far smaller than the
number required if an arbitrary choice is made. Also,
in contrast with CBR, the a priori basis can be im-
proved upon monotonically as discussed and proved in
§ 2.2. As a result of the natural choice for the a priori
basis, unlike CBR, the resulting algorithm is not lim-
ited to the task of steerable filter synthesis. It can be
used for any task that has a low-dimensional intrinsic
structure. We demonstrate its applicability with two
examples. In § 3.1, we apply the algorithm for the task
of steering a gabor filter over the 4-parameter 2D lin-
ear transform. We show that a significant reduction in
the number of a priori basis required can be achieved
as compared with CBR for the same modeling error.
In § 3.2, we demonstrate the use of the new algorithm
for the task of structure from motion without missing
data, resulting in a large speedup compared to the use
of the traditional SVD. In § 4 we also discuss its ap-
plicability as a component for other vision tasks such
as the recovery of shape/reflectance from shading.

2 Iterative Randomized CBR

In this section, we start with a description of the
original CBR algorithm. We then motivate and in-
troduce the extension where the choice of an a priori
basis is natural. We describe how we can monotoni-
cally improve this basis. We next prove the conver-
gence of the algorithm. We finish the section with a
demonstration of the effectiveness of the algorithm on
a matrix with random entries where we can explicitly
control the rank of the matrix.

2.1 Cascade Basis Reduction (CBR)

The original CBR algorithm was developed in the
context of steerable filter synthesis. We recast the
algorithm in terms of factoring the measurement ma-
trix M = BC'. As in the introduction, let M be an
m x n matrix and B, C”T both be m x r matrices with
r <€ m,n. Assume for now that we can choose an
a priori set of k, m-dimensional basis vectors that
spans the columns of M with & < m,n. Hence, it
is necessary that & > r. Let B’ be an m x k matrix
whose columns are the a priori basis. Since we do not
know B yet, nothing can be said about the relation-
ship between B and B’ a priori. Ideally, we would like
the columns of B to be spanned by the columns of
B’. Assuming for now, that the columns of B’ span
B, CBR gives an efficient algorithm for computing B



from M and B’ as follows. Since the columns of B’
span M, we can express M = B’C’ where the coef-
ficient matrix C’ can be determined by applying the
pseudo-inverse of B’ on M. Finding the SVD of M is
then reduced to finding the SVD of B’C”, which can be
computed efficiently by a sequence of two SVDs, one
involving B’ and the other involving C’ as follows :

M = B
= (UpZpVi)C (1)
= UB/C“
= Up/(UcnXenVin) (2)
= (UgUcm)EcnVE,
= UniuViy

Where, UM = UB/UCH,EM = Ecu and VM = ch.
Since B’ is an m x k matrix with k¥ < m, the SVD in
eq 1 can be obtained by solving for the SVD for BTH
which is only a k x k matrix, as follows. B = U'S'V'7
where BTB' = V'¥2V'T and U’ = B'V'/||BV||.
Similarly the SVD in eq 2 can be obtained by solving
for the SVD for C”C"T which is also a k x k matrix.
Hence, a significant reduction in the cost of computing
the SVD for M can be achieved if £ < m,n. From the
SVD for M the factorization M = BC' can be achieved
as discussed in the introduction. In practice, M can
only be approximated (say in the least squares sense)
by a low-dimensional factorization M ~ BC'. In such
a case, in the discussion above all the equalities above
are replaced by least squares approximations.

2.2 The New Algorithm

In the case of steerable filter synthesis for which the
CBR was developed, the only constraint made on the
choice of the a priori basis B’ was that the basis were
few in number and was itself steerable. Apart from
this, no constraint was imposed by the actual filter
to be steered. Hence, with respect to the filter to be
steered, the choice is arbitrary. In this section, we
propose a simple and yet surprisingly effective choice
for the a priori basis that is directly drawn from the
measurement data. We then describe how the basis
can be improved iteratively and prove its convergence
in the next section.

Consider again the SVD of M = UXVT. As dis-
cussed, the left-eigenvectors in U that correspond to
the r most significant singular values in X are the ones
that will be taken as the basis set B that will span
the columns of M. It is well-known that each left-
eigenvector in U is spanned by the columns of M. As
a simple generalization, the subspace spanned by any
subset S of the left-eigenvectors is also spanned by the
columns in M. This implies that if S has dimension

k, then there exists a subset of columns of M that is
k-dimensional that spans S. This observation gives us
a simple method for choosing a natural a priori basis
that can approximate the columns of M. We can sam-
ple the columns of M a number of times and use the
resulting samples to form the a priori basis B’. The
hope is that a large enough number of samples will
have enough independent columns to span S. The
number of samples required to span S is dependent
on two factors. The first is the dimension k£ of S. The
lower the dimension k, the lower the expected num-
ber of samples required from the columns of M that
will span S. However, a more important factor is the
magnitude (and hence significance) of the singular val-
ues associated with the vectors in S. A high singular
value associated with a given left-eigenvector u € S
means that the columns of M will have on average, a
large projection onto u. Hence, we make the impor-
tant observation that the higher the sum of the singu-
lar values associated with the vectors in S (relative to
the sum over all singular values), the more likely that
a randomly drawn column from M will have a large
projection lying in the subspace spanned by S. Hence,
with high likelihood, in a sample of [ x k columns of
M, where [ is small, there will be at least k& sampled
columns that are independent and will span all of S.

Once we have chosen a sample number of columns
as the a priori basis B’, we approximate M with B’,
giving the coefficient matrix C’. We can think of ap-
proximating M with B’ as the process of modeling the
columns in M with a basis B’ giving rise to a coeffi-
cient matrix C’. Applying the CBR algorithm on B’'C’
then gives us feedback on which linear combinations
of the basis vectors in B’ (the most significant vectors
in Uy = (Up/Ugn) in equation 2) span the columns
of M. The k most significant linear combinations (i.e.,
the k top vectors in Ups) are chosen as the basis for
approximating the columns in M.

It is important to realize that it is not necessary for
the distribution of the samples in the a priori basis B’
to match the distribution of the columns in M. If in
a given trial, due to a bad draw, the distribution of
the samples in B’ does not resemble the actual distri-
bution of the column vectors in M, as along as there
exists some k linear combinations of the chosen sam-
ples in B’ that span S, we will be able to recover a
basis that spans S. This is due to the crucial feedback
provided by the coefficient matrix C’ which can be
thought of as offsetting the effects of poor sampling.

It can happen that in a given trial, the k-
dimensional subspace S is not fully spanned by the
samples in B’. In such a case, the top k-dimensional



initialize B’ with s columns sampled from M
do
approximate M with B’ : M ~ B'C'
apply CBR on B'C’ and obtain UXV7T
let S = k most significant vectors from U
reset B’ with :
the k£ columns from S’
s — k new columns sampled from M
until (Zle o?) converges
return S’

Figure 1: Pseudo-code for the iterative randomized ex-
tension of CBR: s is the total number of columns sampled
from F' per iteration, k is the number of significant basis
vectors to be returned, the o;’s are the singular values from
3 arranged in decreasing order.

subspace S’ recovered from B’ through the CBR algo-
rithm is not optimal, i.e., there is only a partial overlap
between S’ and the desired subspace S. Nevertheless,
we need not throw away the information contained in
the partial overlap. We can improve the recovered
subspace S’ by augmenting it with information from
additional columns sampled from M and iterating the
algorithm. More precisely, we create a new a priori
basis B"” where k of the columns are the k vectors
spanning S’ (i.e., the top k vectors from B’) and the
rest of the columns of B are additional columns sam-
pled from M. We then iterate the CBR algorithm
and recover a new k-dimensional subspace S”. Since
the new B’ contains the old k-dimensional subspace
S’ intuitively the new subspace S that is recovered
should be at least as good as S’. We prove this more
formally in the following theorem. Hence by successive
application of the algorithm, we can expect to mono-
tonically improve the k-dimensional subspace that ap-
proximates M.

Figure 1 gives the pseudo-code for the iterative al-
gorithm. It is useful to interpret what goes on in each
iteration as follows. At the start of each iteration,
new information is added to the current estimate for
S’, by adding new samples drawn from M. At the end
of the iteration, some information is thrown out (s—k
least significant columns of U). The following theorem
proves that in effect the “net” information gained at
each iteration is non-negative.

Theorem 1 Let S’ be the mx k matriz whose columns
are the top k-dimensional basis set returned by the new
algorithm at some iteration i. Let o1,...,0% be the
corresponding singular values. Let B' = [S'|T] be the
new basis set at the start of iteration i+ 1, where T is

an m x (s — k) matriz whose columns are new samples
from the columns of M. Then, if o},..., o} are the
top k singular values of the new approrimation M =

B'C' -
k k
PO I
j=1 j=1

Furthermore, the singular values are bounded above by
those for M, and hence convergence follows.

Proof. Let Uy = [ui,...,ux] be the matrix of orthonor-
mal left-eigenvectors u; spanning S’ that is returned at
iteration 2. Then the best k-dimensional approximation of
M at iteration 7 is U1 X, V¥ where &; = Diag(o1,...,0%)
and Vi is the corresponding set of right-eigenvectors. The
span of the new basis B’ = [S’|T] is the sum of the span
of S’ (which is U1) and the span of T. Let [Uy,Uz] be an
orthonormal basis spanning B’ such that we choose the
first k basis to be U; (hence, Uz spans any remaining in-
dependent dimensions that are introduced by 7'). Since,
U, and U are subspaces that are orthogonal to each other
by construction, the new approximation M = B'C’ at it-
eration ¢ + 1 is the sum of the projections of M onto the
subspaces spanned by U; and Uz. The projection of M
onto Uy is simply U1 1 V,T. Let the projection of M onto
Us be given by U, Cy where Cs is the matrix of coefficients
for projecting the columns of M onto U,. The SVD of
UsCy = UéEszT gives us a new set of basis vectors U,
that is still spanned by U, (since U is the column space
of Uy Cg) and hence U3 is still orthogonal to U;. As noted
above, the projection of M onto the orthogonal subspaces
Uy and Us (and hence Us) denoted by P is the sum of these

two projections :
P=U\VT + U VF

Since Vi and V2 are the right-eigenvectors of their re-
spective SVD’s, the vectors from each set are orthonor-
mal to the other vectors from the same set, i.e., VTV, =
1, ‘/QT‘/Q = I. However, in general a vector from Vi need
not be orthogonal to vectors from V- since they are a result
of independent SVD’s. Let R = V,TV4 be the correlation
matrix between the subspaces Vi and V2. Then, taking
PPT above, we get :

PPT = U, 220F + UL2U,T 4+ Uiy REUST + UL RIS, UT

It can be verified from the expression above that since the
subspace U, is orthogonal to the subspace Us, we get

tr(Uf PPTU) =" o) (3)

J=1

where tr stands for the trace of a matrix and the o;’s are
the singular values in X; in descending order.

Now, at iteration : + 1, M is projected onto the com-
bined subspace spanned by Ui, Us to give another expres-
sion for the same projection P = Usv'T, Taking PPT



again, we get PPT = U'SU' T, Since PPT is symmetric,
we can apply a generalization of the Poincare separation
theorem [2], which states that (adapting the statement for
the real matrix PPT) :

k
’
max tr(UTPPTU) = o, 4
max tr( =30, (1
where U is any matrix with k& orthonormal vectors. Since
U, is a particular matrix with k orthonormal vectors, we
get after combining equations 3 and 4 :

k k
2 2
E o} > E o;
J=1 j=1

Convergence follows from the fact that during all itera-
tions, P is a projection of the measurement matrix M
and hence the sum of all singular values squared of P are
bounded above by the sum of the singular values squared

of M. O

In the proof, there is no improvement at a given it-
eration if the new samples in T" are already spanned by
U;. However, since sampling is uniform, if there exists
samples not spanned by U, they will be spanned in
future iterations with non-zero probability. Nothing
in the proof gives a hint about the speed of conver-
gence. We show below that in practice, the conver-
gence is very fast for problems with low-dimensional
structure.

We illustrate the performance of the new algorithm
for computing the SVD for a randomly constructed
matrix whose rank can be explicitly controlled. We
generated a 100 x 1000 random matrix R of rank 50
with entries in the range [0.0,1.0]. We deliberately
chose a large rank so that computing the SVD for the
random matrix with the new algorithm would be ex-
pected to be a difficult test since it does not have a
low-dimensional structure. As can be seen from Fig. 2,
the singular values of R (top-most curve) decay grad-
ually. In other words, the columns of R cannot be
approximated well by a small number of basis vectors.

We choose the desired number of basis vectors & to
be 10. The total number of columns sampled from R
in each iteration was s = 20. Despite the fact that R
does not have a low-dimensional structure » = 50, the
singular values in the very first iteration is close to the
actual values computed using an ordinary SVD on R.
Successive iterations improve the first 10 singular val-
ues (the ones before the vertical line) monotonically
as expected '. By iteration number 10, the singular

lthe highest singular value (corresponding to the average of
all the columns) is not shown since it is out of the range of the
graph, however it shows the same behavior as the rest of the
first 10 singular values
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Figure 2: Singular Values vs. Singular vectors across it-
erations for a 100 x 1000 random matrix of rank 50. See
text for details.

values have converged. The computational cost for
10 iterations is dominated by 10 times the SVD for a
20 x 20 matrix (the pseudo-inverse required to approx-
imate R is also obtained as a byproduct of the same
SVD), whereas the full SVD is applied on a 100 x 100
matrix. SVD is roughly cubic in the dimension of the
matrix, and hence we achieve a substantial speedup.
On the other hand, the remaining singular values (af-
ter the vertical line in the figure) do not behave in
any predictable manner as expected and on average
do not improve their values. Thus even for a matrix
for which there is no low-dimensional structure, the
new algorithm is still able to recover the most signifi-
cant basis vectors in a few number of iterations.

3 Results
3.1 Steerable Filters

The original CBR algorithm was developed in the
context of steering filters. Here, we compare both
the original and the new version for the example
task of steering an odd-phase Gabor filter ¢(z,y) =
sin(z/o;) exp(—((z/0s)*+(y/oy)?)). The objective is
to find a low-dimensional basis set ® = {¢1,... o}
that can steer the Gabor filter under the set of 4-
parameter 2D linear transformations :

g-6=> ai(g)e; (5)

i=1

where g - ¢ denotes the application of the transfor-
mation g on ¢. The coefficients «; are the “steering”
functions that depend on only the parameters describ-
ing the transformation g. The condition above is for
exact steerability. In practice, for many of the filters
and transformations of interest, the above condition



cannot be met exactly. In such cases, the goal is re-
laxed to find a basis @ that will steer the original filter
¢ approximately. In the condition above, this means
replacing the equality with a least squares approxima-
tion. Given a threshold for the least squares error, we
find the minimum possible number of basis filters that
will meet the threshold. In addition to the determi-
nation of ®, we also need to determine the steering
functions (the «;’s in equation 5).

The determination of the basis ® is computed nu-
merically by first constructing a measurement matrix
M where each column corresponds to a gabor filter
that has undergone a sample 2D transformation. The
column is the resulting filter sampled to some fixed
spatial resolution. In order to make a fair compar-
ison, we use the same parameters as the ones used
in [5]. The Gabor filter was sampled spatially over
[—1,1] x [=1,1] with a resolution of 64 x 64 (hence
the number of rows of M is 4096). As in [5] we
parametrize the 2D linear transformation uniquely as :
A = R(02)Sz(54)Sy(sy)R(01), where R denotes ro-
tations and the S;,S, denote scaling in the x and
y directions. The filter was steered over the fol-
lowing range of parameters : 6,0, € [0,27) and
Sz, 5y € [1,5/3]. A total of 22,500 samples of the Ga-
bor filter steered over the above range of parameters
were used to form the columns of M. For the original
CBR algorithm, 231 2D Legendre polynomials with a
total degree upto 20 were used as the a priori basis
B’. For the new algorithm, we used the number of
desired basis vectors k to be 11 to remain compatible
with the choice in [5] where sum of the first 11 singu-
lar values squared is 99.9% of the total. Note that we
could have chosen k at run-time automatically by us-
ing a threshold on the sorted singular values. We ran
two experiments, one with total number of samples
s = 231 in each iteration, and another experiment in
which the total number of samples s = 30. The ratio-
nale for the first experiment was to keep the number
of a priori basis B’ the same as that for the original
algorithm. The total number sampled across all itera-
tions is more than that used for the original algorithm,
hence for a fair comparison, we report results only for
the first iteration. For this task, the algorithm con-
verges in the very first iteration itself. In the second
experiment, we show that we get identical results as in
the first experiment, despite using a far fewer number
of total samples s. Again the algorithm converges in
the first iteration itself.

Fig. 3 shows the results for the case s = 231. Four
of the 11 basis filters corresponding to the top 11 sin-
gular values obtained after the first iteration are shown

(b)

Figure 3: (a) Four of the 11 filters recovered by the new
algorithm in the first iteration with s = 231. (b) Two of
the 11 filters recovered by the original CBR using 231 2D
Legendre polynomials

in Fig. 3 (a). We also show the first and third most
significant basis filter returned by the original CBR al-
gorithmin Fig. 3 (b). As can be seen from the singular
value plots in Fig. 5, the results for the two algorithms
are comparable. The original algorithm returns filters
with slight ripples in the otherwise uniform region of
the basis filters. This is due to the mismatch between
the functional form of the Gabor filter and that of
the Legendre polynomials. The mean squared error
in approximating 1000 test gabor samples under var-
ious transformations was only 0.01% (expressed with
respect to the squared norm of the gabor sample in
each case). Fig. 4 (a) shows the results for the case
s = 30 after the first iteration. Despite the much
smaller number of a priori basis vectors used, the re-
covered filters are indistinguishable from that for the
first experiment. This is also seen from the plot for
the singular values. For comparison, we also ran the
original CBR algorithm with a similar number of a



(b)

Figure 4: (a) Four of the 11 filters recovered by the new
algorithm in the first iteration with s = 30. These and the
other filters are identical to the ones recovered with s =
231 shown in Fig. 3 (a). (b) Two of the 11 filters recovered
by the original CBR using 36, 2D Legendre polynomials.
As can be seen the filters are of poor quality.

priori basis : to be conservative, we chose 36 Legendre
polynomials of degrees upto 7. The recovered filters
are of very poor quality as shown in Fig. 4 (b). This
illustrates the fact that the choice of a natural a priori
basis can allow us to reduce the number of a priori
basis vectors used dramatically and hence also reduce
the computational cost as compared to the case where
we choose an arbitrary a priori basis.

In [5], the steering functions (a; in equation 5) were
derived through the analytic steering functions that
are easily derived for the Legendre polynomials (this
is the main reason for using these polynomials). For
the new algorithm, a simple interpolation scheme is
sufficient to steer the filter. For the interpolation, the
coefficients that steer the basis filters to approximate
10000 gabor samples sampled under various transfor-
mation were recovered and stored in an interpolation
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Figure 5: Singular values vs. singular vectors for the
various experiments in steering the gabor filter. The plots
for the new algorithm are shown for the first iteration and
can be seen to be indistinguishable for s = 231 and s =
30. Both these plots in turn are similar to the plot for
the original CBR that uses 231 2D Legendre polynomials.
However, CBR with only 36 polynomials has much worse
performance compared to all others, specifically with the
new algorithm with s = 30.
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Figure 6: One frame from the hotel sequence

table. Given a new transformation over which the Ga-
bor filter is to be steered, we obtain the steering coeffi-
cients corresponding to this transformation by using a
4-th order polynomial interpolation on the coefficients
stored in the interpolation table. The mean squared
error involved in using the interpolation scheme to
steer the basis filters over a sample of 1000 test trans-
formations as compared to actually steering the ba-
sis filters themselves was only 0.17% (again expressed
with respect to the squared norm of the resulting ga-
bor sample in each case).

3.2 Structure From Motion

We had claimed that the new algorithm can be used
for tasks other than that for steering filters. We illus-
trate the use of the new algorithm as part of a struc-
ture from motion task without missing data. Fig. 6



shows one frame from a 181-frame 2D image sequence
of a model hotel. In the whole sequence, 197 inter-
est points have been located and tracked from frame
to frame (see [6] for details). A 394 x 181 measure-
ment matrix M is formed where each column contains
the z and y coordinates of the interest points for each
frame. We assume that all the points are visible in all
the frames, i.e., there is no missing data. For an or-
thographic projection model for the camera, the mea-
surement matrix can be decomposed into a shape S
and motion C' matrix : M = SC where both S and
C have rank 3 for each rigid body in the scene under
noise-free conditions. The shape and motion matrix
can be recovered using factorization [6], which uses
the SVD of M to compute the best rank 3 approxima-
tion to M. Rigidity constraints are imposed on this
rank 3 approximation to recover the S and C' matri-
ces. Here, we deal only with the efficient computation
of the SVD. The imposition of the rigidity constraints
and the rest of the factorization algorithm is exactly
the same.

We applied the new algorithm with the desired
number of basis vectors set to &k = 3 and the total
number of samples per iteration set to s = 10. The
algorithm converges quickly in the first two iterations.
The Frobenius norm of the residue between the best
rank 3 approximation and M normalized with respect
to the Frobenius norm of M was only 0.02%. The time
for the two iterations was 0.54 secs compared with 20
secs for the ordinary SVD for M, hence resulting in a
speedup of 37.

4 Conclusion

We have presented a new algorithm that can be
used for the efficient recovery of the low-dimensional
structure of a task even if the measurement data is
high-dimensional. Convergence of the iterative algo-
rithm was proven to be monotonic and also fast in
practice. Unlike the original CBR algorithm from
which it was derived, the algorithm is applicable to
a wider variety of tasks in vision that have a low-
dimensional structure. It should be noted that based
on the evidence from the experiment on a random
matrix in § 2.2, the algorithm performs well even if
the matrix does not have a low-dimensional structure.
However, it does not converge as fast as in the case
when the task has a low-dimensional structure (see
the example for steering the Gabor filter and the re-
covery of structure from motion). Another task for
which the algorithm is applicable is the recovery of
shape or reflectance from shading [1].

An important obstacle in applying the algo-
rithm to tasks such as structure from motion or

shape/reflectance from shading is the issue of miss-
ing data. Due to occlusion, some of the data can be
unobservable. Missing data affects the algorithm in
two places. First, when sampling the basis vectors for
B’ from the data, a newly sampled vector can con-
tain missing data. One way of dealing with missing
data is to set the missing components of the sampled
vector to random values. The feedback from approx-
imating the data with B’ as well as the true values
for the same component from other sampled vectors
should utilize the random settings that were set in the
right direction and disregard the others. The second
place where missing data is an issue is in approximat-
ing the data with B’ (see the pseudo-code in Fig. 1).
For each vector v in the data, the coefficients for re-
covering the best least squares approximation for that
vector is obtained by applying the pseudo-inverse of
B’ on v. One way of dealing with missing components
in approximating v is to recompute the pseudo-inverse
after first deleting the rows of B’ that correspond to
the missing components in v. Recomputation of the
pseudo-inverse is cheap if the number of basis in B’ is
small (use the SVD of B'Y B’ where the appropriate
rows corresponding to missing components in v have
been removed). Also, if the data is such that there are
only a few patterns of missing data, i.e. the pattern
of which components are missing, then the number of
pseudo-inverses to compute may not be prohibitive.
In the future, we intend to investigate such schemes
for handling missing data for large datasets.
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