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Abstract

We develop a multi-class object detection framework whose
core component is a nearest neighbor search over object
part classes. The performance of the overall system is crit-
ically dependent on the distance measure used in the near-
est neighbor search. A distance measure that minimizes the
mis-classification risk for the 1-nearest neighbor search can
be shown to be the probability that a pair of input image
measurements belong to different classes. In practice, we
model the optimal distance measure using a linear logis-
tic model that combines the discriminative powers of more
elementary distance measures associated with a collection
of simple to construct feature spaces like color, texture and
local shape properties. Furthermore, in order to perform
search over large training sets efficiently, the same frame-
work was extended to find hamming distance measures as-
sociated with simple discriminators. By combining this dis-
crete distance model with the continuous model, we obtain
a hierarchical distance model that is both fast and accu-
rate. Finally, the nearest neighbor search over object part
classes was integrated into a whole object detection sys-
tem and evaluated against an indoor detection task yielding
good results.

1 Introduction

The reliable detection of an object of interest in an input
image with arbitrary background clutter and occlusion has
to a large extent remained an elusive goal in computer vi-
sion since the beginning. In a multi-class object detection
task, we would like to detect the presence or absence of an
object of interest in an input image, given a prior training
set (2D or 3D data) for the objects of interest. The factors
that confound reliable detection include background clut-
ter, occlusion of the objects of interest and the variability in
viewing conditions. See Figures 1 and 2 for the objects of
interest and sample test images for an indoor detection task.

Previous approaches to object detection can be grouped
under two main categories: (a) exemplar based and (b) non-
exemplar based approaches. Broadly speaking, the latter

Figure 1: The 15 objects of interest for the indoor detection task.

set of approaches can be characterized by the assumptions
they make about the objects being detected. For exam-
ple, in model-based or generative approaches [7], a model
for each object of interest is assumed, while for invariant-
based approaches [15], geometric or texture based features
are assumed to exist for each object that are invariant to
lighting or viewpoint changes. The main difficulty in such
non-exemplar based approaches is the development of good
models or invariants and their estimation from training data.
This is especially a problem for a general object detection
task in which we are interested in detecting an arbitrary set
of objects. Each object of interest might in general require
different modeling assumptions.

Exemplar-based approaches [10, 11, 12, 16] on the other
hand avoid making assumptions about the objects of inter-
est and instead represent them by a training set of images
of the objects under various viewing conditions and scene
illumination. At run-time, a nearest neighbor (NN) search
is performed over the training set and the object class la-
bel of the exemplar that best matches the input image is
reported. The classification performance of the NN rule is
crucially dependent on the distance measure used for find-
ing the nearest neighbor. Consequently, it is natural to ask
the following questions: (a) What is the optimal distance
measure for NN search ? and (b) How do we model the op-
timal distance measure in practice ? Furthermore, for run-
time performance we will also be interested in the follow-
ing: (c) How do we perform efficient NN search ?

The rest of the paper addresses these questions as fol-
lows: In § 2, we derive the optimal distance measure that



Figure 2: Sample test images for the indoor detection task. White empty squares indicate correct detections by our system described
in § 5.3, while squares with a cross indicate false positives.

minimizes the NN mis-classification risk. We then present
a simple linear logistic model in § 3 that directly model the
optimal distance measure in terms of more elementary dis-
tance measures defined over simple feature spaces like his-
tograms of color, shape and texture. We extend this model
in § 4 to learn weighted hamming distance measures asso-
ciated with a set of discriminators. This is used in a heirar-
chical distance measure for object detection that is both fast
and accurate in practice. Section 5 describes the details of
a practical system for object detection under occlusion and
clutter whose core component is the nearest neighbor search
over object part classes. Finally, we evaluate our detection
scheme in an indoor detection task in § 6.

2 Optimal NN Distance Measure

We assume that we have a training set Sn =
{(x1, y1), (x2, y2), . . . , (xn, yn)} where each tuple (xi, yi)
is chosen i.i.d. from some unknown distribution p(x, y)
over X × Y where X is the space of image measurements
and Y is some discrete set of object class labels. A mea-
surement is the representation of the image in terms of a set
of features like color, shape or texture. We are also given a
distance measure d : X × X → IR between any two image
measurements.

On input measurement x ∈ X , the 1-nearest neighbor
rule reports the class label y′ associated with the training
image x′ ∈ Sn that is closest to x according to the distance
measure d. The n-sample NN mis-classification risk R(n)
is defined as:

R(n) ≡ E(x,y),Sn
[L(y, y′)] (1)

where L is the 0-1 loss given by L(y, y′) = 1 if y 6= y′ and
0 otherwise. Note that the risk is averaged over all inputs

x as well as all training sets of size n. The large sample or
asymptotic risk is then defined as R ≡ lim

n→∞

R(n).

Conditioning on input x, the risk can be re-written as:

R(n) ≡ Ex,Xn
[r(x, x′)]

r(x, x′) ≡ Ey,y′ [L(y, y′)|x, x′]

= p(y 6= y′|x, x′) (2)

where r(x, x′) is the conditional risk on an input x and Xn

is the set of training measurements xi from Sn. For any
given training set size of n, the risk R(n) depends only on
the distance measure d used for the nearest neighbor search.
Thus, it is natural to ask for the distance measure that mini-
mizes the risk.

Since the conditional risk r(xi , xj) = p(yi 6= yj |xi, xj)
is itself a measure defined over any two input measurements
xi, xj ∈ X , we can consider using it as a candidate dis-
tance measure. Under this distance measure, two images
are “closer” to each other if they are both likely to come
from the same class. Thus intuitively at least, the condi-
tional risk seems like a good distance measure to use. We
can in fact easily show that this distance measure minimizes
the NN risk.

For a given input x and training set Sn, using r(·, ·) as
the distance measure gives the training example x′ that min-
imizes the conditional risk over the training set Sn since
by construction the distance measure used is also the con-
ditional risk and thus finding x′ ∈ Sn that minimizes the
distance measure also minimizes the conditional risk. Since
the conditional risk r(x, x′) is minimized for any input x by
the chosen distance measure, the unconditional risk R(n) is
also minimized. We have thus shown the following :

Theorem 1 The distance measure d(xi, xj) ≡
p(yi 6= yj |xi, xj) minimizes the risk R(n) for any
n.



We now list a few important properties of the optimal
distance measure without proof, for details see [1]:
The optimal distance measure is not a metric distance.
In particular it does not satisfy the axiom of self-similarity:
d(xi, xj) ≥ 0 with equality iff xi = xj . Lack of self-
similarity is a direct consequence of the lack of complete
certainty for the class membership for any given measure-
ment as will be the case for most real tasks. Somewhat sur-
prisingly however, the optimal distance measure does sat-
isfy the triangle inequality which is useful for some applica-
tions like efficient image retrieval [3]. Most prior work [8]
on the other hand have studied the use of optimal metric dis-
tance measures primarily due to strong asymptotic results
for classification performance for any metric distance.
Classification performance. It can be shown that the mis-
classification risk R (in the limit as training set size n → ∞)
for the 1-NN rule when using the optimal distance measure
is no worse than the risk RM when using any metric dis-
tance measure and in general can be better. In fact, depend-
ing on the task, the risk can approach even the bayes optimal
risk RB :

RB ≤ R ≤ RM (3)

where the lower bound is tight.

3 Modeling the Optimal Distance

Under the i.i.d. assumption the optimal distance measure
p(yi 6= yj |xi, xj) can be expressed in terms of generative
models p(x|y) for each class as follows: 1

p(yi 6= yj | xi, xj) =
∑

y

p(y|xi)(1 − p(y|xj)) (4)

Thus one approach [6] is to first estimate a generative
model p(x|y) for each class from training data and then
construct the optimal distance measure using the expression
above. The Achilles’ heel of such an approach is the need
to reliably estimate generative models from data. We argue
that such an approach is flawed on two counts especially for
a multi-class object detection task. First, if we can estimate
generative models reliably from data, then we should get
better classification performance using the Bayes’ decision
rule directly (see the inequality 3). More likely, estimat-
ing generative models from data may not be reliable since
a good model may require the estimation of many param-
eters, even though most of which may be irrelevant to the
task of discriminating one object from another. Secondly, in
the context of a multi-class object detection system, coming
up with a generative model is likely to be difficult in prac-
tice since it entails making modeling assumptions which are

1The posteriors p(y|x) are obtained from p(x|y) and the priors p(y)
using Bayes rule

not obvious for an arbitrary collection of objects of interest.
In fact, the reason for adopting the nearest neighbor frame-
work is to avoid making any assumptions about the objects
of interest.

Our approach instead will be to model the optimal dis-
tance directly in terms of more elementary distance mea-
sures defined on simple to construct feature spaces like
color, texture and local shape properties. Several discrimi-
native simple features for objects have been well-studied in
the literature. Examples of feature spaces include normal-
ized pixel intensities [11], edge maps [9] and shape con-
texts [5]. Each of these feature spaces are associated with
elementary distance measures for comparing two measure-
ments, examples include Euclidean distance, the χ2 or L1

distance for histograms and the Hausdorff distance mea-
sure [9]. Our motivation for using such simple features are
because they are easy and efficient to implement. Thus from
a practical point of view, we seek to model the optimal dis-
tance measure by combining such elementary distance mea-
sures defined over simple feature spaces.

For simplicitly of implementation, we consider a linear
logistic model for combining the elementary distance mea-
sures for approximating the optimal distance measure. For-
mally, let C = {d1, d2, . . . , dN} be a possibly large col-
lection of elementary distance measures, each of which is
associated with some simple feature space. We wish to se-
lect K elementary distance measures dk ∈ C from this col-
lection that best approximate the optimal distance measure
using the following linear logistic model:

log
p(yi 6= yj |xi, xj)

p(yi = yj |xi, xj)
≈ α0 +

K
∑

k

αkdk(xi, xj) (5)

where α = {α0, . . . , αK} is a set of linear combining co-
efficients.

Let yij be a binary variable taking the value −1 if yi =
yj and +1 otherwise. Then it can be seen that by inverting
the transform above we get:

p(yij |xi, xj) ≈ σ

(

K
∑

k=0

αkyijdk(xi, xj)

)

(6)

where σ(u) = 1/(1 + e−u) is the sigmoid function and
where for compactness of notation we have assumed the in-
clusion of a constant distance measure d0 ≡ 1 correspond-
ing to α0.

In practice, we need to estimate the best model for the
optimal distance measure from training data. We can use
the maximum likelihood framework for the estimation as
follows. As before, let S = {(x1, y1), . . . , (xN , yN)} be
the training set of image measurements and corresponding
class labels. Let d = {d0, . . . , dK} be a particular selection
of elementary distance measures from C. The log-likelihood



l(α,d|S) for a particular model for the optimal distance
measure that is parametrized by α and d given the training
data S is defined as:

l(α,d|S) ≡
N
∑

i,j

log p(yij |xi, xj) (7)

For a given choice for d, the optimal value for the com-
bining coefficients α under the maximum likelihood frame-
work is that which maximizes the likelihood. Substituting
the model (6), maximizing the likelihood above amounts to
minimizing the following cost function:

Jd(α) ≡
N
∑

i,j

log
(

1 + e−
�

k
αkyijdk(xi,xj)

)

(8)

This cost function is convex [1] and can be optimized using
standard iterative techniques like Newton’s method [14].

Finally, the best choice for d is the one that maximizes
the likelihood or equivalently minimizes Jd over all choices
of K distance measures from the collection C. The brute-
force search over all choices is clearly infeasible when K is
large. Instead we adopt a simple greedy strategy in which
at each iteration k we choose the best dk ∈ C that along
with the distance measures {d1, . . . , dk−1} chosen in the
previous iterations minimizes the cost function.

4 Efficient NN Search

In practice, given an input measurement x we need to search
the training set S efficiently for the nearest neighbor x′. The
basic idea behind most previous attempts [4, 13] to make
NN search efficient is to (possibly recursively) partition the
measurement space X . For example, in Kd-trees [4], each
node of the tree recursively partitions X based on the com-
ponent of the measurement with maximum variance. How-
ever, Kd-trees are not appropriate in our case since the im-
age measurement will be composed of measurements from
different feature types like color, texture and shape. It does
not make sense to compare variances of measurements from
different feature spaces as required for the construction of
Kd-trees.

In [13], the space of measurements is partitioned by a
collection of random hash functions. Our strategy is similar
in spirit, but instead uses a collection of discriminators each
of which is constructed in some simple feature space. Fur-
thermore, the choice of discriminators is not random. As
we shall see, our motivation for using such a scheme is so
that we can re-use the framework presented above for find-
ing a continuous model for the optimal distance measure to
also construct a distance measure for performing efficient
NN search.

Feature
Space
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Figure 3: The partition of image space induced by discrimina-
tors. Three classes of objects are shown within the image space
(depicted as an ellipse). The particular type of discriminators il-
lustrated here are the nearest prototype discriminators described
in § 4.2 constructed in some feature space. The discriminator on
the left is a nearest 2-prototype discriminator, the prototypes are
marked by ×’s. The discriminator on the right has 3 prototypes.
The partition boundaries in each case is given by the voronoi di-
agram induced by the prototypes which are at the center of each
cell.

Any discriminator can be characterized by the partition
in measurement space X that it induces. For example, a
simple discriminator might test whether the average inten-
sity or some other simple statistic of the input image crosses
a threshold, in which case the the measurement space X is
split into two parts. A decision tree on the other hand par-
titions the measurement space into many parts, where each
part corresponds to a leaf node of the decision tree. Another
type of discriminator which we use in our work due to its
ease of implementation and wide applicability is the near-
est prototype discriminator that is described later in § 4.2.
Figure 3 illustrates the partition induced by discriminators.

Formally, let the discriminator h induce the partition
X = X1∪X2∪. . .∪Xn, Xi∩Xj = ∅, i 6= j. On input x, let
h(x) denote the partition Xi that x falls under. Given a set
of such discriminators {h1, h2, . . . , hK}, an input measure-
ment x has a “code” {h1(x), h2(x), . . . , hK(x)} in terms
of the partitions that x falls under for each discriminator
hk. Thus a set of discriminators partitions the measurement
space X , where each partition corresponds to a unique code.

Given two measurements xi and xj , a distance measure
between the corresponding codes is given by the hamming
distance. More generally, we consider a weighted hamming
distance:

H(xi, xj) = α0 +
∑

k

αk[hk(xi) = hk(xj)]

where [hk(xi) = hk(xj)] is the one-dimensional hamming
distance for each discriminator defined by:

[hk(xi) = hk(xj)] ≡

{

−1 if hk(xi) = hk(xj)
+1 otherwise



A good hamming distance measure can be used to effi-
ciently search over the training set as follows. As noted be-
fore, most approaches for performing efficient NN search
works by effectively partitioning the image measurement
space X . In our scheme, the set of chosen discrimina-
tors {h1, . . . , hK} partitions X where each partition corre-
sponds to a unique code in terms of the set of discriminator
outputs. The ideal code is that for which separates mea-
surements from different classes into different partitions.
To access these partitions efficiently, we use a hash-table
where on input x, the hash function accesses the bucket
corresponding to the code {h1(x), h2(x), . . . , hK(x)}. At
training time, in each bucket we store all the training mea-
surements that maps to the bucket, which are returned at
run-time.

We now describe how to construct optimal hamming
distance. The optimal distance measure is the one that
minimizes the mis-classification risk. Thus we can use
the maximum likelihood framework presented in § 3 for
finding the hamming distance measure that best approx-
imates the optimal NN distance measure. Formally, let
H = {h1, h2, . . . } be a (possibly large) collection of dis-
criminators. For ease of implementation, each of these dis-
criminators are constructed in some simple feature space
like color, shape or texture as described in more detail later
in § 4.2. Corresponding to H, we have the collection of el-
ementary one-dimensional hamming distance measures (4)
C = {[h(xi) = h(xj)] | h ∈ H}. Similar to the case for es-
timating the best continuous model for the optimal distance
measure in § 3, we select the best K best discriminators
hk ∈ H in a greedy manner that gives the hamming dis-
tance that best approximate the optimal distance measure.
The corresponding cost function to be minimized is then
given by:

J ≡
N
∑

i,j

log
(

1 + e−
�

k
αkyij [hk(xi)=hk(xj)]

)

(9)

(compare with (8)).

4.1 Hierarchical Distance Measure

Although the hamming distance measure can be used for
efficient NN search, it cannot be expected to be accurate in
terms of returning the true nearest neighbor since it is a dis-
cretized distance measure. To overcome this shortcoming,
we propose the use of a simple heirarchical distance mea-
sure that combines the search efficiency when using the dis-
crete hamming distance with the accuracy of the continuous
distance measure described in § 3. The scheme is explained
in Figure 4.

Coarse but Efficient NN search
using discrete distance model

Accurate but Expensive NN search
using continuous distance model

Input Image

Candidate Neighbours

Nearest Neighbour

Figure 4: Our scheme for efficient and accurate nearest
neighbor search. An input measurement is matched against
the training set using the coarse but efficient hamming dis-
tance measure discussed in § 4, yielding a small list of can-
didate nearest neighbors, rather than just the nearest neigh-
bor. These candidate neighbors are then searched for the
closest neighbor using the more accurate continuous model
for the optimal distance measure discussed in § 3. On the
left is shown an actual example from our experiments re-
ported in § 6). The nearest neighbors shown are for the
patch from the input that is circled.

4.2 Constructing Candidate Discriminators

We conclude this section by specifying how we generate
the collection of discriminators H from which the best K
discriminators hk are chosen. For ease of implementa-
tion and wide applicability, the type of discriminators we
choose are what we call the nearest prototype discrimina-
tors constructed in simple feature spaces like color, texture
and shape. Such a discriminator is completely specified by
a set of prototypes in some feature space. Figure 3 illus-
trates such discriminators. The image space is partitioned
by the set of prototypes where each partition corresponds
to the subset of the image space that is closest to one of
the prototypes. The distance used for the construction is
any elementary distance measure associated with the fea-
ture space. Such discriminators are similar in spirit to vector
quantization in signal processing and have been used earlier
for object detection in [2].

In our work we use discriminators with at most 3 proto-
types. Ideally, we should consider all possible nearest pro-
totype discriminators that we can construct. However this
is infeasible in practice. Instead we sample the location of
the prototypes from actual training data. Such a sampling
scheme is sufficient since we do not require great accuracy
for the resulting hamming distance measure due to the use
of the hierarchical distance measure discussed above.



5 Implementation

We have thus far only discussed the issue of using the opti-
mal distance measure for nearest neighbor search for object
detection. In practice, there are several other issues that
need to be addressed when using a nearest neighbor search
framework in the context of an overall scheme for object de-
tection. Since the main focus of this paper is on developing
and using an optimal distance measure for object detection,
for the rest of the object detection system, we will seek the
simplest implementation that we can get away with, but yet
which is sufficient and realistic enough for evaluating the
distance measures that we develop.

The rest of the section describes (a) representing objects
in terms of a few discriminative parts, (b) the feature spaces
we use to represent image measurements and (c) the whole
object detection scheme.

5.1 Representation in terms of Parts

In practice, the objects that we are interested in detecting
can be of varying sizes and shapes. The naive approach of
performing a nearest neighbor search at each location over
a training set with whole object views will result in poor
performance since no single choice for the size of the sup-
port window can be expected to be optimal for all objects.
Instead we represent each object training view in terms of a
few discriminative parts, each of which has a support win-
dow of 32 × 32 pixels in our work. The nearest neighbor
search is then performed over part classes rather than whole
object views. Conceptually, a part class corresponds to im-
age measurements of some surface patch of an object of
interest, taken under differing viewpoints and lighting con-
ditions, just as in the case for whole object classes.

For run-time considerations, we represent a training ob-
ject view using the most discriminative parts (10 in our ex-
periments). The discriminative power of a part is defined as
follows: let z be a candidate part patch, i.e. a 32× 32 patch
from some training view of an object and let Z be a random
sample of part patches that do not belong to the same ob-
ject class as z, as well as random patches from background
clutter which for the current purpose is considered a pseudo-
class. Then a natural measure for the discriminative power
for part z is the log-likelihood l(z, Z) that z and any part
z′ ∈ Z belong to different classes:

l(z, Z) ≡
∑

z′∈Z

log p(y 6= y′|z, z′) (10)

where y and y′ are corresponding part class labels. Here
p(y 6= y′|z, z′) is the optimal distance measure for part
classes. It is estimated using the maximum likelihood
framework presented in § 3 using a random training sam-
ple of part patches from all whole object training views.

Figure 5: The top discriminative part patches selected for sample
training images.

Each selected part patch from an object view is a repre-
sentative of some part class, that models the image views of
the underlying surface patch of the object. We collect addi-
tional training images for each part class as follows. Train-
ing images under variations in translation, in-plane rotation
and scale can be collected from the original whole object
training view from which the part patch was chosen. For
our experiments we sample translations of ±4 pixels along
both axis, rotations of ±10◦ and scale variations of 0.9 and
1.1. Ideally, we would also like to sample rotations in depth.
However, this requires finding part correspondences in other
whole object training views. Solving such a correspondence
problem is error-prone in practice. For simplicity of imple-
mentation, we model parts in different whole object views
independently. This implies that the same underlying sur-
face patch of an object might be represented redundantly by
parts in multiple whole object views.

Figure 5 shows the discriminative part patches selected
for sample training images. Once the parts are selected for
all training views and additional training images for the cor-
responding part classes are sampled as described above, a
new optimal distance measure for NN search is estimated
from these part classes.

5.2 Feature Spaces

As discussed in § 3, we approximate the optimal distance
measure by a linear combination of elementary distance
measures in simple feature spaces based on color, shape or
texture. We now describe the details of the types of feature
spaces that we use in our experiments.

The histogram of various image feature types is a widely
used feature space in computer vision [16, 18, 17]. His-
tograms are popular in the computer vision literature since
they are efficient to create from an input image by making
one sweep across the image from top to bottom and left to
right, as well as being robust to a fair amount of geometric
transformations [16, 18].

For additional discriminative power, we also coarsely
discretize the spatial location of the feature. This is simi-
lar in spirit to the work on shape context [5]. In our work,
we discretize each coordinate axis into two levels within the
32×32 pixel window of support (the size of a part) centered
around the point of interest in the input image.

We conclude by listing all of the specific feature types
that we use in our work:
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Figure 6: Our Detection Scheme. See text for explanation.

Color Three single dimensional feature spaces are consid-
ered corresponding to the red, green and blue bands,
each of which is normalized illumination invariance.

Texture Characterized by Gaussian derivative filter re-
sponses [16] along the two coordinate axis with the
width of the Gaussian set to σ = 2.0 pixels. Addi-
tionally, we also use the magnitude of the derivative.
Again, the each of these bands are normalized for illu-
mination invariance.

Local Shape Two local shape properties are constructed
from the contours detected by the Canny edge detec-
tor: (a) the orientation of the edges that fall within the
support window and (b) the local curvature along the
contours that fall within the support window.

Thus we have a total of 8 one-dimensional feature spaces
(3 for color, 3 for texture, and 2 for shape) which are com-
bined to approximate the optimal distance measure. The
elementary distance measure that we use for comparing his-
tograms in each feature space is the L1 norm.

5.3 Detection System

The detection system that we have built has a nearest neigh-
bor search over part classes as its core component. Figure 6
walks through the following steps in our detection pipeline
using an actual test input (the step number here and in the
figure correspond): (1) After pre-processing the image to
extract histograms of various features, the NN parts from
the training set are determined at each sampled location
across the image and at two scales using the hierarchical
distance measure (§ 4.1). Shown here are the top 5 parts for
a few locations. (2) Each NN part detected forms an object
view hypothesis corresponding to the training view that the
part came from. (3) The locations of the other parts in the
training view for each hypothesis is determined and the cor-
responding parts are searched around the expected location

in the input image. The hypothesis is scored by accumulat-
ing the NN scores (distance measure between training part
and input patch) of these parts along with the NN score for
the part that generated the hypothesis. Shown here are 2
object view hypotheses formed from parts detected at two
locations. In the actual system, each part detected at each
location forms a hypothesis, each of which is scored. Fi-
nally, object detections are reported after thresholding the
score with a value θ for each hypotheses and performing
local non-maximal suppression.

6 Experiments

The detection scheme was tested on a collection of everyday
objects of interest in an indoor environment under clutter
and occlusion. Figure 1 shows a collection of 15 objects of
interest. Training images for each object were taken at two
elevations that were 10◦ apart and which were close to the
height of a person at a distance of approximately 7 ft from
the object. At each elevation, training images were taken
over a 180◦ sweep horizontally around the object at inter-
vals of 20◦. As described in § 5.1, up to 10 discriminative
part patches are selected in each training image, for each
of which training views for the corresponding part class are
sampled synthetically from the whole object training image
at different scales and rotations (see § 5.1). The training
images were taken under illumination conditions that were
natural and kept constant for an indoor setting. Rather than
collecting more training images under varying illumination
conditions, we chose to rely on normalizing the various fea-
ture spaces as described in § 5.2. This was found to be suf-
ficient in compensating for the moderate amount of illumi-
nation variation encountered in typical indoor settings.

Testing images were collected under a large number of
backgrounds with varying viewpoint and scale changes for
the objects of interest along with some occlusion and varia-
tions in lighting. 25 images for each object of interest were
taken for a total of 375 test images. Figure 2 shows sample
test images.

For the indoor discrimination task, a hamming distance
measure used in the hierarchical distance measure was con-
structed with 80 discriminators as detailed in § 4. The num-
ber of nearest neighbors returned by the first stage of the
hierarchical distance measure that uses this hamming dis-
tance was set to 10.

See § 5.3 to review the details of our detection scheme.
Figure 7 shows various ROC curves for the detection
scheme plotting the detection performance as the threshold
θ used for pruning each hypothesis score is varied. The
main ROC curve corresponds to the case when we use the
hierarchical distance measure for the NN part search. As a
representative point, we get a detection rate of 78% corre-
sponding to a false positive rate of 0.5 per test image.
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Figure 7: ROC plots for the indoor detection task. See text for
explanation.

For comparison, we also show the performance when
using just the more accurate continuous optimal distance
model (which forms the second stage of the hierarchical
distance measure) in a naive brute-force NN search over the
training set. As a representative point, we get a detection
rate of 82% corresponding to a false positive rate of 0.5 per
test image (compare with the representative point above).
As can be seen, there is little degradation in detection per-
formance when using the hierarchical distance measure. On
the hand, there is an order of magnitude difference in run-
time performance. On a 1.5 GHz CPU x86 machine, it took
≈ 40 seconds when using the hierarchical distance measure
compared with more than 13 minutes when using just the
continuous distance measure, giving a speed-up of around
20. The implementation was done in OCAML, a high-level
functional language.

Also shown in Figure 7 are the relative performance
of the various feature types when used in isolation. Note
that each feature type is comprised of more than one fea-
ture space (3 for color, 3 for texture and 2 for local shape,
see § 5.2). All of the feature spaces comprising a given
feature type are used when that feature type is tested in
isolation. For our implementation of these feature types,
both color and texture are quite discriminative on their own,
while local shape is the least discriminative. However, all
of these detection rates are far lower than the rate obtained
when using all the feature types together. For a false posi-
tive rate of 0.5 per test image, each of the features in isola-
tion gives a detection rate < 15% Thus we see that the var-
ious feature types complement each other to a substantial
degree when used together, especially at operating points
with low false positive rates, which is precisely the region
that is most useful in practice.

7 Conclusion

In this thesis, we derived and modeled the optimal distance
measure for use in a nearest neighbor framework for ob-
ject detection. The optimal distance measure was modeled
directly by a linear logistic model that combined more el-
ementary distance measures associated with simple feature
spaces.

In this paper, the distance models that we considered
were all global models, that is the distance score output
by these models did not depend on where in measurement
space they were used. One promising avenue for future
work is to investigate adapting distance models locally, say
one for each part class, for better performance.
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