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Abstract

We approach the task of object discrimination as that of
learning efficient “codes” for each object class in terms of
responses to a set of chosen discriminants. We formulate
this approach in an energy minimization framework. The
“code” is built incrementally by successively constructing
discriminants that focus on pairs of training images of ob-
jects that are currently hard to classify. The particular dis-
criminants that we use partition the set of objects of interest
into two well-separated groups. We find the optimal dis-
criminant as well as partition by formulating an objective
criteria that measures the well-separateness of the parti-
tion. We derive an iterative solution that alternates between
the solutions for two generalized eigenproblems, one for
the discriminant parameters and the other for the indica-
tor variables denoting the partition. We show how the op-
timization can easily be biased to focus on hard to classify
pairs, which enables us to choose new discriminants one by
one in a sequential manner. We validate our approach on a
challenging face discrimination task using parts as features
and show that it compares favorably with the performance
of an eigenspace method.

1 Introduction

Many approaches to image-based object recognition pro-
ceed by detecting a number of (possibly localized) feature
responses in an input image and combining the evidence
from these responses to determine the presence or absence
of an object [1, 12, 14]. Two main issues need to be ad-
dressed in such approaches. First, how do we select good
features ? Second, what is an appropriate framework for
combining the evidence from the various feature responses
in a given input image ?

Consider the task of learning a discriminator for a
multi-class object recognition problem, given training data�������	��
���
������	���	��������
���
��

where
�������

are training images
of objects of interest and


��
are corresponding class labels 
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��!�#"%$&��'��	���	����(��
. Our basic approach will be to con-

struct a “code” for an image in terms of the responses to
a set of binary discriminants )+* �-,.�0/1'0��23'��

that we
learn from the training data. These binary discriminants
will be the features that we use. An example for a binary
discriminant is an image template mask 4 for a specific fea-
ture of an object class (say the eyes for a face discrimination
task) along with a threshold 5 and the location 6 in an input
image where the template should be applied. Given an in-
put image, the template responds with

27'
if the correlation

of the subimage at location 6 of the input image with 4 is
greater than 5 and with

/1'
otherwise. More general dis-

criminants can be used and are discussed in 8 4. Figure 1
gives an illustration of the approach. Intuitively, a “good”
code should have the following properties :9 Images from the same object class should be “close”

together in code-space.9 Images of different object classes should be as far apart
as possible in code-space.

For binary discriminants, a distance measure between
two images

���
and

��:
in code space that is simple yet flexi-

ble is the weighted correlation function :; ��� � ��� : 
=<+>�?A@ ? )
? ��� � 
 )

? ��� : 

(1)

which is related to the usual hamming distance when the
weights are all set to

'
. Using this distance measure, given

an input image the class label corresponding to the training
image that has the highest correlation with the input image
is reported. As discussed above, the goal at training time is
to find a set of discriminants such that training images from
the same object class are highly correlated, while training
images from different classes are as uncorrelated as pos-
sible. In our work, we achieve this goal by minimizing a
loss function that penalizes deviations from the above two
criteria. To do this, we first reduce the original multi-class
problem into a binary classification problem so that we can
incorporate both criteria into one loss function.

The original multi-class problem with the training set����� � ��
 � 
CB�DE<F'0���	������GH�
can be reduced to a corresponding
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Figure 1: Illustration of a “code”-space for objects. Each image
of an object of interest has a “code-word” in terms of the responses
to a set of binary discriminants as illustrated at the top of the fig-
ure. The bottom shows a



D embedding of such code-words for a

sample of images from various object classes A, B, C, D. The goal
is to find codes that cluster together images from the same object
class while separating out images from different classes as much
as possible.

binary classification problem with the training set :��� ����� ����:�
���
�� :�
CB D ��� < '��	��������G�� 
�� : �#��/1'0��27' �0�
where the class labels for the binary problem


 � :
is given

by :


�� : <�
 23'
if

���< 
�:/1'

if

����< 
�:

Given this reduction and a loss function � ��� 
 , we can incor-
porate the above two criteria by minimizing the following
total loss :� $ > ��� : � ��
�� : ; ����� ����:�
 


< > ��� : � ��� ? @ ? 
 � : )
? ��� � 
 )

? ��� : 
 

(2)

with respect to both discriminants )
?

and the corresponding
weights

@ ?
. The loss � � : $ � ��
�� : ; ���������0:�
 
 correspond-

ing to a particular pair of images
��� ����:

is high when the
sign of the correlation

; ����� ���0:�

between the two images is

different from the class label

 � :

. The particular approach
that we use to select robust discriminants that minimize the
total loss is the central topic of this paper and is discussed
in 8 2.2.

The energy minimization framework above is most re-
lated to the boosting framework from the machine learning

community [2]. In boosting, so-called “weak classifiers”
are learned sequentially and combined to give a weighted
voting rule for discriminating objects from each other. In
our approach, the correlation term


 � : )
? ��� � 
 )

? ��� : 

in the

total loss (2) corresponding to the discriminant )
?

is analo-
gous to a weak classifier. The weighted voting rule is analo-
gous to the weighted correlation function in eq (1). At each
stage of boosting a running measure is kept of how well the
current set of weak classifiers that have been learned so far
can discriminate the objects (classes in the learning litera-
ture). In the multi-class setting, this measure can be thought
of as a confusion matrix and is analogous to the matrix of
loss terms � � : $ � ��
�� : ; ���������0:�
 
 in our approach, where
the correlation function

;
uses the current set of discrimi-

nants learned so far. The confusion matrix is then used to
bias the weak classifier to focus on discriminating objects
that have been hard to classify. Recent applications of the
boosting framework to object discrimination can be found
in [12, 15].

In our work, we adopt the strategy used in the boost-
ing framework for sequentially learning discriminants in
the energy minimization framework. New discriminants are
learned one by one that minimize the current loss. The over-
all scheme is detailed in 8 2.3.3.

An important issue in the boosting framework is how
easy it is to couple the weak classifier with the confusion
matrix. Typically, when using standard weak classifiers, the
coupling may not be easy or natural. The weak classifier
may even need to be modified to work with a confusion ma-
trix. In our approach, as will be detailed in 8 2.2 the deter-
mination of the optimal discriminant is formulated in such
a way that a straight-forward and tight coupling between
the confusion matrix � � : and the optimization problem for
the discriminant can be achieved. Analogous to “boosting”
weak classifiers in the boosting literature, we can consider
our approach as that of “boosting” discriminants.

In general, the discriminants )
?

used can be any function
that partitions the space of images

�
into two. We would

like to choose those discriminants that satisfy the following
desirable criteria :

I. The discriminant should focus on pairs of training im-
ages that have been difficult to classify (i.e. difficult to
cluster or discriminate as the case may be) so far. In
other words, the discriminant should focus on pairs for
which the corresponding entry in the confusion matrix� � : is high.

II. As much as possible, pairs of training images from the
same object class (i.e.,


 � : < 23'
) should be put in

the same partition induced by the discriminant, while
pairs of training images from different object classes
(i.e.,


�� : <F/1'
) should be put in different partitions.

III. The partition induced on the training set is ‘well-



separated” with each partition “tightly” clustered. This
should make the discriminant more robust at run-time
if the training data is representative of data to be seen
at run-time.

In 8 2.2, we show how we satisfy the above two criteria by
formulating an objective function that can be thought of as
an unsupervised generalization of the well known Fisher
criteria [4] which can be optimized to find both the optimal
discriminant as well as the optimal partition of the train-
ing set. Unlike the traditional formulation, we use a purely
pair-wise formulation, which allows us to easily bias the op-
timization to focus on the pairs of training images that are
currently hard to classify using the discriminants learned so
far (i.e., in the notation above, pairs for which � � : is high).

We summarize our approach by answering the two ques-
tions posed at the beginning as well as outline the rest of the
paper as follows :

9 Various candidate discriminants are constructed by op-
timizing a pair-wise formulation of a generalization of
the Fisher criteria 8 2.2. The candidate discriminant
that reduces the total loss (2) the most is chosen.

9 The discriminants chosen so far are weighted and com-
bined to give the final correlation function to be used
at run-time ( 8 2.3.2 and 8 2.3.3).

In 8 3 we validate our approach on a challenging face dis-
crimination task.

2 Method

2.1 The Loss Function

In our work, we use the exponential loss function � ����
1<����� in the total loss (2), giving us :� < > ��� : � / � � : (3)

< > ��� : � /C
 � : �
? @ ? )

? ��� � 
 )
? ��� : 


(4)

The resulting total loss is a convex function of the weights@ ?
with a global minimum. Another loss function that can

be used is the logistic cost function � ���0
 <��
	���� ' 2 ����� 
 .
Either choice for the loss function can be rigorously moti-
vated and justified in the maximum entropy framework [5].
Given a training set and a set of discriminants, the maxi-
mum entropy framework seeks the least committed model
that is consistent with the statistics of the responses of the
discriminants over the training set. In this framework, it
can be shown that the exponential loss function is the op-
timal choice among all loss functions when unnormalized

models are sought, while the logistic loss is optimal when
conditional probability models are sought. These loss func-
tions are also commonly used in the boosting community
though the justification there is from a learning perspective.
For simplifying the presentation below, we will use the ex-
ponential loss from now on, although all the results below
can be adapted for the logistic loss with little difficulty.

2.2 Boosting Discriminants

Learning a good code requires finding good discriminants)
?

and the associated weights
@ ?

. We now present our ap-
proach to finding good discriminants that satisfy the three
criteria outlined in 8 1.

2.2.1 Finding Good Discriminants

Let us assume that we are given a continuous feature space.
For example, the pixel intensities in a localized

(�
1(
win-

dow around a given location in an input image lies in the
continuous feature space ���

�
. We would like to find a dis-

criminant in the feature space that satisfies the criteria out-
lined in 8 1. One of the criteria (III) is to find a discriminant
along which the training images are partitioned into two
well-separated groups, each of which is tightly clustered.
The rationale for this criteria is that such a discriminant can
be expected to reliably determine the partition that unseen
images of objects of interest belong to, assuming that the
training data is representative of all the images of objects of
interest that will be encountered. In other words, we want
to maximize :

� $ across-partition separation
within-partition separation

If we know the optimal partition that satisfies the above
criteria, then the optimal discriminant can be found by op-
timizing the Fisher discriminant quotient [4]. Let � � be the
vector corresponding to the training image

� �
in the contin-

uous feature space (i.e., � � � ���
�

in the example above).
The Fisher quotient is usually formulated in the literature in
terms of the first and second order statistics of the training
data as follows :

� ���0� 4 
=< B B (���/ ( � B B �
� �

� 2 � �
�

where
(�� ��( � are the means of the projections onto the

discriminant 4 of the � � ’s in the two partitions, and similarly� � � ��� are the corresponding variances. In our formulation
however, we will instead use a purely pair-wise formula-
tion that will allow us to easily incorporate the other criteria
discussed in 8 1. We denote a partition of the training im-
ages by indicator variables � < ��� � ���	������� � �

where each� � � ��/ '���23' �
indicates the partition that � � belongs to in



the feature space. The pair-wise formulation of the Fisher
quotient that we use is then given by :

� ���0� 4 
 < � ��� : � ' / � � � : 
 � ��� � ��� : 
� ��� : � ' 2 � � � : 
 � ��� � ��� : 
 (5)

where
� ��� � ��� : 
 $ 4�� � � � / � : 
 � � � � / � : 
 4 is the separation

along the discriminant hyperplane 4 between training im-
ages

� �
and

� :
. Note that as required the term

� ' / � � � : 
����
is an indicator function that denotes when

� �
and

� :
are in

different partitions, while
� '�2�� � � : 
����

denotes when
� �

and�0:
are in the same partition. The distance function

� ��� � � 

- also known as a kernel - can be generalized to non-linear
kernels as will be discussed in 8 4.

In practice, we will have to determine both the optimal
partition (i.e. a setting for � that optimizes eq (5)) as well
as the optimal discriminant hyperplane 4 . This is an unsu-
pervised mixed discrete-continuous optimization problem
(discrete in � and continuous in 4 ). We derive an iterative
solution for this optimization problem in the next subsec-
tion. Once the hyperplane 4 is found, we can form a linear
discriminant ) ����
1< sgn

� 4�� � / 5 
 where 5 is the optimal
threshold that separates the two partitions.

We can measure the performance of the discriminant
with respect to the binary classification problem at hand.
Two training images from two different object classes are
classified correctly by the discriminant if they fall in dif-
ferent partitions. Similarly, two training images from the
same object class are classified correctly if they fall in the
same partition. However, nothing in the criteria optimized
by the quotient in eq (5) explicitly encourages finding dis-
criminants with good classification performance. We now
do so by encoding the other two criteria (I,II) in 8 1 into the
optimization.

We can constrain the optimization of eq (5) such that
training objects that belong to the same object class are en-
couraged to be in the same partition (criteria (II)). This
is done simply by using the same indicator variable for all
training images belonging to the same object class, i.e. all
training examples

� ? 	 that have the same class label

��

will
use the same indicator variable

���
. Thus any assignment to

the indicator variables will put all training images from the
same object class in the same partition.

We can encode criteria (I) by biasing the optimization
to focus on pairs of training images that have been hard to
classify with the current set of discriminants that have been
learned so far. Let us assume that 
 discriminants have
been learned so far and let

;
?
����������: 


be the correspond-
ing weighted correlation function (eq (1)) of the “code”
between two images

� �
and

� :
in terms of the responses

to the 
 discriminants. As discussed in 8 1 the loss term� � : $ � ��
 � : ;
?
��� � ��� : 


can be considered as a measure of
the difficulty in classifying the two images. The pair-wise
formulation of the Fisher quotient eq (5) is readily amenable

to incorporating these loss terms by weighting each term in
the Fisher quotient by the corresponding loss term. Thus
harder to classify pairs of training images will have a corre-
spondingly larger influence on the optimization of the quo-
tient. The modified expression for the quotient is :

� ���0� 4 
 < � ��� : � '!/ � � � : 
 � � : � ��� � ��� : 
� ��� : � '=2 � � � :0
 � � : � ���������0:�
 (6)

2.2.2 Iterative Optimization

In practice, direct optimization of
�

is hard since it is a
discrete-continuous optimization problem. To make the op-
timization feasible, we relax the discrete optimization over �
to a continuous optimization problem. With this relaxation,
we propose an iterative maximization scheme, by alternat-
ing between maximizing

�
w.r.t � keeping 4 fixed and max-

imizing w.r.t. 4 keeping � fixed. We show below that each
of these subproblems leads to a corresponding generalized
eigenvalue problem.

First, consider maximizing
�

keeping 4 fixed. Define a
matrix � with entries :

� ��D ��� 
 $ > ��� : >? 	 � ? � �
?
	
?
� � ���

?
	 ���
?
� 


where 
 � ranges over all the indices of training images that
belong to class

D
and similarly for 
 : (the notation takes into

account the fact that indicator variables are shared among
training images from the same class, i.e. criteria (II) above).
Let 
 be a vector of

'
’s with the same number of compo-

nents as � . Then
�

can be simplified as follows :

� � � 
 < 
�����
 / ����� �

 � ��
 2 � � � �

Let � be a diagonal matrix with � <
Diag

� ��
 
 . Since
each component of � takes values in

��/1'0��27' �
, the follow-

ing equivalence can be verified : 
�����
 < ����� � . Substi-
tuting above, we get :

� � � 
 < ��� � � / � 
 �
� � � � 2 � 
 � (7)

As mentioned before, instead of solving for the hard
discrete optimization problem, we solve for an approxi-
mate continuous problem. Specifically, instead of assuming
that the indicator variables can take on only binary values�0/1'0��23'��

, we let them take on values in the continuous in-
terval � /1'0��23'�� . In other words, we make “soft” instead of
hard assignments. For continuous values of � , � is maxi-
mized when � is set to the eigenvector corresponding to the
largest eigenvalue of the generalized eigen-value problem� � / � 
 � <������ � 2 � 
 � .



Next, we maximize
�

keeping � fixed. Define the matri-
ces :

� $ > ��� : � '!/ � � � :0
 >?
	 � ? � �

?
	
?
� � �
?
	 / �

?
� 
�� �

?
	 / �

?
� 
 �

� $ > ��� : � '=2 � � � : 
 >?
	 � ? � �

?
	
?
� � �
?
	 / �

?
� 
�� �

?
	 / �

?
� 
 �

with 
 � and 
 : defined as before. An important issue is
the fact that the optimization above for � returns “soft” as-
signments. These soft assignments need to be normalized
such that the largest component (in magnitude) of � is set
to
'
. This ensures that all the components are in the range

� /1'���23'�� . With these assumptions,
�

can be simplified to :

� � 4 
 < 4�� � 44 � � 4 (8)

Once again,
�

is maximized when 4 is set to the eigenvector
corresponding to the largest eigenvalue of the generalized
eigen-value problem

� 4 <���� � 4 .
Figure 2 summarizes the iterative scheme. We alternate

between maximizing
�

w.r.t. � and 4 by solving for the cor-
responding eigenvector problems, until convergence. Al-
though the iteration is guaranteed to increase

�
monoton-

ically, it can get stuck in a local minimum. Hence in our
experiments, we first find the 
 most significant principal
components of all the vectors � � for some 
 that is fixed
apriori, then initialize 4 to each of these principal compo-
nents and optimize using the iterative scheme just described
and choose the hyperplane 4 among them that maximizes

�
.

Note that the optimal partition � is not required for the rest
of the scheme.

Let � � �����	��� �
?

be the first 
 PCA components of the set
of feature vectors � � corresponding to training images

� �
.

do for
DE<&'0���	����� 


I. Set 4 < � � .
II. Iterate between the two eigenproblems� � / � 
 � <�� � � � 2 � 
 � and

� 4 <�� � � 4
until convergence to � � � 4 � .

III. Set
� �E< � � � ��� 4 ��
 .

Output 4 � corresponding to max
� �

.

Figure 2: Pseudo-code for finding optimal discriminants

Figure 3 is an illustration of the above iterative algorithm
on a synthetic example in a continuous

�
D feature space.

There are two training examples for every class (connected
by a dashed line for each class). Both training examples in

1

2
3

Figure 3: Synthetic example in a continuous


D feature space il-

lustrating the iterative algorithm for finding optimal discriminants.
The number next to a line is the iteration number. The final parti-
tion found is denoted by � and � .

each class share the same indicator variable in the iteration.
The algorithm converged to the optimal discriminant (ap-
proximately horizontal) in a few iterations, even though the
initialization was far from the optimal solution. Also, the fi-
nal partition found (denoted by � and



) is consistent with

what one would expect the optimal partition to be. Note
that the variation within classes (approximately along the
vertical direction) is more on average than variation across
classes (mostly along the horizontal direction). Thus, if we
had not specified the class membership of training examples
through shared indicator variables, the optimal discriminant
found would be almost orthogonal to the one shown in the
figure since that would be the direction which maximizes
the Fisher quotient.
Choosing 5 . Finding the optimal threshold 5 is a one-
dimensional problem along the discriminant hyperplane 4 ,
for which we use a simple brute-force search. The opti-
mal value for 5 is that which minimizes the total loss (2).
The total loss changes only when 5 crosses a vector � � pro-
jected onto 4 . Accordingly, we determine 5 as follows : sort
the projections onto the optimal 4 of all the � � ’s, find the
total loss for each value of 5 that are mid-points (for robust-
ness at run-time) between successive sorted projections, and
choose the 5 that gives the minimum.

2.3 Learning an Efficient Code

Finally, we discuss the details of the energy minimization
framework for learning good codes and present the over-
all scheme. As discussed in 8 1, we select discriminants
that minimize the total loss (2) sequentially. We first dis-



cuss techniques for composing more powerful discrimi-
nants from the simple discriminants presented in the previ-
ous section to achieve better performance in practice. Once
a discriminant )

?
has been chosen, the corresponding

@ ?
needs to be optimized. We discuss the practical issues in-
volved in optimizing

@ ?
in 8 2.3.2. We then summarize the

overall scheme in 8 2.3.3.

2.3.1 Composing Discriminants

The simple discriminants by themselves may not be suffi-
ciently powerful in practice. We can construct more pow-
erful discriminants by composing a set of simple discrimi-
nants. In our work, we compose discriminants in a “tree”.
An input image traverses a path from the root node to a leaf
node in the tree. The branch taken by the image at each
node along the path is determined by the binary response of
the simple discriminant at that node (see figure 4).

Before discussing the details of the composition we use,
we first point out the only relevant information about a sim-
ple discriminant that the energy minimization framework
utilizes (this will also be true at run-time). A discrimi-
nant )

?
only enters the total loss (2) through the corre-

lation term )
? ��� � 
 )

? ��� : 

on pairs of images

� �
and

� :
.

This correlation term indicates whether the pair of im-
ages belong to the same partition induced by the discrim-
inant ( )

? ��� � 
 )
? ��� : 
&< 23'

) or into different partitions
( )
? ����� 
 )

? ���0:�
3< /1'
). Thus we can think of the correla-

tion term as the “partition” function of the corresponding
discriminant.

As mentioned above, we will use trees of discriminants�
?

in place of simple discriminants )
?

to make the scheme
more powerful in practice.

@ ?
will then be a weight associ-

ated with the whole tree
�
?
. Consequently, the role of the

correlation term induced by the simple discriminant )
?

in
the energy minimization framework will be replaced by the
partition function induced by the tree

�
?
.
�
?

partitions the
space of all images into those covered by the leaf nodes of
the tree (see figure 4). Using a slight abuse of notation, we
can denote the partition function induced by the tree

�
?

by� ����� ����:�

, which is

23'
if
�
?

maps both images
���

and
��:

to
the same partition (i.e. same leaf node of

�
?
) and

/1'
oth-

erwise. Using this partition function, we seek to minimize
the following total loss :� < > ��� : � ��� ? @ ? 
 � : � ? ��� � ��� : 
 


2.3.2 Optimizing
@ ?

Both the exponential and logistic loss function result in a
total loss (2) that is convex with a global minimum. Given

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
X

T

Figure 4: Composing simple discriminants into a tree of discrim-
inants. On the right is shown a tree � composed of two discrimi-
nants and on the left the partition induced on the image space � .
Also shown is the path taken in the tree by an example image ( � )
and the corresponding partition that it belongs to.

a set of discriminant trees
�
?

the optimization of such con-
vex loss functions w.r.t.

@ ?
is straight-forward and can be

achieved in practice with Newton-based iterative numerical
techniques [11].

We can get some intuition for the optimal set of
@ ?

given
a set of discriminant trees

�
?
, by deriving closed-form ex-

pressions. By setting the first derivative of the total loss
w.r.t.

@ ?
to � at the optimum, it can be shown [11] that the

optimum
@��?

for each 
 takes the form :

@ �? < '
� �
	 �

�
� �

where � �
is the total loss of all pairs of training examples

that were correctly classified (i.e.

�� : � ? ����� ����:�
C<%23'

) by
the 
 th discriminant and � � is the total loss of all pairs
of training examples that were incorrectly classified (i.e.
�� : � ? ���������0:�
 <A/1'

). The loss for a pair of training exam-
ples in both � �

and � � does not include the contribution
due to the 
 th discriminant and thus is a measure of how
badly the other discriminants do on that pair. Thus the ratio
� � � � � (and hence also

@ ?
) is a measure of the classifi-

cation power of the 
 th discriminant - the higher the ratio,
the better is the discriminant.

In practice, due to limited training data the optimal esti-
mate for

@��?
can be overconfident (i.e. large in value). We

can smooth the estimate (thus preferring smaller values) us-
ing a regularizer. In our work a simple quadratic regularizer� ��@�
1<�
E��� ? @ �? 


was used where



is a constant. This
regularizer when added to the total loss in (2) still ensures a
global minimum.

2.3.3 Summary

We are now in a position to describe the overall scheme. Let�
be a set of continuous feature spaces that will be used for

constructing discriminants. For example, in the experiments
on face discrimination that we report in 8 3, the continuous
feature spaces are the pixel intensities in a localized win-
dow around various feature locations of the face such as the



eyes, nose, etc. At the start of each iteration we have a set
of discriminant trees � <A� � � � � � �	����� �

and the associated
weights

@#<+��@ � ��@ � ���	��� �
that were learned in previous it-

erations. At each iteration we try out various “refinements”�
(to be described shortly) of the discriminant trees in �

and choose the refinement 6 � �
that minimizes the total

loss 2 the most. This process is repeated for a certain num-
ber of iterations.

A refinement of the set � is defined to be the replace-
ment of some leaf node 4 belonging to some tree

�
? � �

by a boosted discriminant constructed in some feature space� � �
. The boosted discriminant is constructed as detailed

in 8 2.2 where the training examples are those that reach
the leaf node 4 . We also construct boosted discriminants
over the complete training set for various choices of feature
spaces

� � �
so that the scheme can choose to start “grow-

ing” a new discriminant tree if needed. For simplicity we
will treat the addition of such a discriminant (constructed
using the complete training set) to the set � as also a refine-
ment of � . If � is the total number of leaf nodes in all the
trees of � , then the number of refinements that we consider
at each iteration is

B � B�< � � 2+'	
 ��B � B . Figure 5 shows the
pseudo-code for the overall scheme.

Initialize :

I. Let
�

be a set of continuous feature spaces.

II. Initialize the set of discriminant trees � <��
.

do for � iterations

I. Construct the set of refinements
�

of � (see text for
details).

II. Update � by the refinement 6 � �
that minimizes

the total loss in (2). Also update the corresponding
weights

@
.

Output the correlation function :

; ���H��
�
=< >�?%@ ? � ? ���H��
�

(9)

At run-time, on input image
�

, report the object label
associated with the training image

� :
that maximizes; ���E����: 


.

Figure 5: Pseudo-code for the sequential selection of discrimi-
nants.

3 Results

We validated our approach on a challenging face discrimi-
nation task based on the FERET database [9]. The training

TestingTraining Parts

Figure 6: The left shows sample training and testing images for
two individuals from the FERET database. The testing images
were taken about a month after the training images. Note the dif-
ference in expression and hair. The right shows the parts used as
features for which discriminants were learned.

images consists of pairs of frontal images of � ' individuals,
while the testing images also consists of pairs of frontal im-
ages of the same individuals but taken around a month apart
from the training images with differences in hair, lighting
and expressions. See figure 6 for sample training and test-
ing images. Such images have been considered challenging
in the literature [8, 9].

For testing purposes, we rigidly aligned all faces using
manually labeled positions of the two eyes. In practice, we
can automate this process using face detection and align-
ment techniques [7, 10]. For our approach, we used the
prominent regions around the eyes, nose and mouth as fea-
tures (see figure 6). The pixel intensities around a local-
ized window around each feature forms a continuous feature
space. Candidate discriminants are constructed from each
of these feature spaces at each iteration as described in 8 2.2.
Note that the same feature space can contribute many dis-
criminants over iterations, where discriminants constructed
in different iterations are in general focused on different
pairs of training images that were found difficult to clas-
sify using the discriminants constructed so far in previous
iterations.

As a baseline, we first determined the performance of a
simple eigenspace based method [13]. For each image, all
the subimages for the different parts were combined to give
one vector. The first � � PCA components of the resulting
vectors for the training data were found to capture over �	��

of the energy in the data. Both training and testing data
were projected onto these PCA components and a search
for the nearest training image for each testing image was
performed. The resulting recognition rate was � ���
� 
 .

Our approach requires a few parameters to be set. The to-



tal number of discriminants needed can in general be set us-
ing cross-validation. However, in our case cross-validation
is quite expensive. Instead of using cross-validation, we use
a simpler scheme in which we determine twice the number
of discriminants that gives a training error of � . This makes
the “code” that is learned more redundant than necessary
to classify the training images. This redundancy should
help the code to be robust at run-time. Also a regulariza-
tion constant of


#< '
was used to smooth the weights

@ ?
(see 8 2.3.2). After training, we classified a test image by
finding the training image that was most correlated with the
test image using the correlation function (9) output by our
scheme. In other words, we found the nearest neighbor in
code-space. The resulting recognition rate was �	� � � 
 . This
compares favorably with the baseline eigenspace technique
above. The performance is also similar to the methods re-
ported in the literature for similar datasets [7, 8, 9]. We plan
to make more thorough comparisons with these methods in
the future. The training time for our approach was around

�
hours, while the run-time was around

�
seconds.

4 Conclusion

We have presented an approach to learning good discrimi-
nators that can be thought of as that of learning good codes.
Good discriminators are determined sequentially that focus
on the currently hard to classify training images. Such dis-
criminators are weighted and combined in an energy mini-
mization scheme.

The work presented in this paper used linear feature
spaces where the distance between the representations � �
and � : in some feature space of two images

� �
and

� :
was

given by the linear kernel
� ��� � ��� : 
 $ 4�� � � � / � : 
 � � � � /

� : 
 4 (see 8 2.2). We can generalize our approach by using
more powerful non-linear kernels that is defined on pairs of
images. Such kernels cannot be decomposed as a simple
product of two terms each of which is a function of only a
single image, as is the case for a linear kernel. Such kernels
enable us to use feature spaces in which distance measures
can be non-linear. For example, the histogram of some fea-
ture like color or gabor filter responses in a localized win-
dow of an image forms a feature space. An appropriate
distance between two histograms is the � -square distance
which is non-linear. It is known that for kernels that satisfy
so-called Mercer conditions [6], we can solve the optimiza-
tion problem in 8 2.2. We plan to investigate such extensions
in the future.
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