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Abstract

We propose an iterative method for the recovery
of the projective structure and motion from multiple
images. It has been recently noted [10, 13] that by
scaling the measurement matrix by the true projective
depths, recovery of the structure and motion is possi-
ble by factorization. The reliable determination of the
projective depths is cructal to the success of this ap-
proach. The previous approach recovers these projec-
tive depths using pairwise constraints among images.
We first discuss a few important drawbacks with this
approach. We then propose an iterative method where
we simultaneously recover both the projective depths as
well as the structure and motion that avoids some of
these drawbacks by utilizing all of the available data
uniformly. The new approach makes use of a subspace
constraint on the projections of a 3D point onto an
arbitrary number of images. The projective depths are
readily determined by solving a generalized eigenvalue
problem derwed from the subspace constraint. We also
formulate a dual subspace constraint on all the points
in a gwen tmage, which can be used for verifying the
projective geometry of a scene or object that was mod-
eled. We prove the monotonic convergence of the it-
erative scheme to a local mazximum. We show the ro-
bustness of the approach on both synthetic and real
data despite large perspective distortions and varying
wnitializations.

1 Introduction

Many approaches exist in the literature for the re-
covery of structure and motion from a set of images of
a rigid scene. One popular approach is the “stratified”
approach [3, 4] where one first recovers structure and
motion in a space that embeds the original euclidean
space and then imposes appropriate metric constraints
to recover the actual euclidean structure and motion.
For example, assuming a perspective projection model
for the camera, we can recover the projective struc-
ture and motion. Assuming calibrated cameras, we
can then impose metric constraints to recover a eu-

clidean reconstruction. If calibration parameters of
the cameras are not known, one might be able to use
self-calibration techniques for first recovering the cal-
ibration parameters of the camera before imposing
metric constraints [3, 8]. The alternative is to sim-
ulatneously impose metric constraints during recon-
struction assuming calibrated cameras (which we call
the “direct” approach). A good critique of vaeious ap-
proaches is given by [7]. They note that if we restrict
ourselves to the common case of an image sequence
with fixed (perhaps with varying focal) and approxi-
mately known camera calibration, there might be no
real advantage of using the “stratified” approach over
other approaches as far as accuracy and performance
is concerned. However, they do make the observation
that in practice, the stratified approach tends to get
stuck in local minima less often than the direct ap-
proach. We also feel that the “stratified” approach
allows us to design hopefully simpler algorithms since
we can treat each stage quite independently of the
others.

When many images of the scene are available, ide-
ally one should utilize all of the available data uni-
formly for recovering the structure and motion reli-
ably. For approximate camera models like weak- or
para-perspective, methods based on factorization have
been presented in the literature [11]. Recently an ele-
gant extension of this approach for the case of a projec-
tive camera model was suggested in [10, 13]. It is based
on the insight that when the measurement matrix is
scaled by the correct “projective depths”. then the
resulting scaled matrix has rank 4 and consequently
the projective structure and motion can be recovered
using a factorization based method. Their approach
first recovers the projective depths from pair-wise con-
straints. While the factorization step does use all of
the data uniformly, the procedure for recovering the
projective depths does not treat the data uniformly, in
order to keep the computations tractable. We propose
an alternate iterative approach that recovers the pro-
jective depths simultaneously with the structure and



motion and treats the data uniformly. In effect the
new approach iteratively finds the projective depths
that make the scaled measurement matrix globally
“coherent” .

In § 2, we review the technique of using the scaled
measurement matrix for recovering the structure and
motion. We then describe a few important drawbacks
of the approach in [10, 13]. In § 4, we describe the
new approach for iteratively recovering the projec-
tive depth along with the structure and motion while
treating all of the available data uniformly. The ap-
proach utilizes a subspace constraint that is satisfied
by all of the image projections corresponding to a 3D
point. Solving a generalized eigen-problem resulting
from this subspace constraint gives us the projective
depths. We prove monotonic convergence to a local
maximum for our iterative method. In § 3.1, a dual
subspace constraint is presented for the projections of
all the 3D points of the scene onto a given image. The
dual constraint is useful for the run-time verification
of the projective geometry of previously unseen images
of the scene or object. In § 5 we report good results
on both synthetic and real data despite large perspec-
tive distortions and varying initializations. We close
with a disussion on extending the algorithm to handle
missing data.

We have recently learned that our approach is sim-
ilar in spirit to that of [1]. However, we note some
important differences. The subspace constraint used
there is dual to the one used here. More importantly,
the objective function that the subspace constraints
lead to are normalized differently. The normalization
we use is arguably the more natural one but leads to a
slightly more difficult optimization problem (requiring
the solution of generalized eigenproblems), whereas
the normalization in [1] is less intuitive but which
makes the optimization more straightforward. Also,
[1] does not provide a convergence proof (monotonic
or not). Finally, we demonstrate the effectiveness of
our method on scenes with significant perspective dis-
tortions compared with the ones reported in [1].

2 Scaled Measurement Matrix

Assume that we have m views of n 3D points. We
wish to recover the projective structure of the n points
along with the camera projection (or “motion”) for
each of the m views. Let P; be the 3 x 4 projection
matrix for image ¢, and let @; be the j'th 3D point
of the scene in homogeneous coordinates. Then the
projection equation for point j onto image ¢ can be
written as :

Aijgi; = PiQ; (1)

where q;; = [;5,vij,1]7 is the homogeneous image
coordinate for point j in image 7, and A;; is a scaling
factor known as the “projective depth”.

For m images and n points, let W be the 3m x n
measurement matrix W = [g;;]. It is clear from equa-
tion 1 that the “scaled” measurement matrix W, =
[Aijgi;] has a rank 4 factorization W, = P(Q where
P is the 3m x 4 stack of projection matrices for all
images (the “motion”) and @ is the 4 x n matrix of
homogeneous coordinates for all points (the “struc-
ture”). Thus if we know the correct projective depths
Aij’s, we can recover the structure and motion upto an
unknown projective transformation [10, 13] using an
SVD based factorization similar to that used in [11].

This approach is attractive since once the projective
depths are known, all the data is utilized uniformly in
recovering the structure and motion. However, recov-
ering the projective depths reliably is crucial to the
success of this approach. In [10, 13], they are recov-
ered using pair-wise constraints among the projective
depths. Briefly, there exists a pairwise constraint be-
tween the projective depths corresponding to the same
point in two images through the fundamental matrix
and epipoles of the two images. See [10, 13] for details.

There are a few important drawbacks to their ap-
proach for recovering the projective depths :

e The explicit recovery of the fundamental matrices
and epipoles is required.

e Ideally, we would like to consider all the pair-wise
constraints. However, for efficiency we can only
consider a subset of all pair-wise constraints. The
issue then is the choice of an appropriate subset of
constraints. For images that come from a linear
sequence, it might be sufficient to restrict our-
selves to pairwise constraints of adjacent images.
However with a sequence of constraints, errors
in any given constraint can accumulate down the
chain even if the rest of the constraints are accu-
rate. For the more general case where the images
need not come from a linear sequence, the choice
of a good subset of pairwise constraints may not
be obvious.

e The fundamental matrices and epipoles can only
be recovered upto an unknown scale. If we wish to
determine a reliable solution for the set of projec-
tive depths by using a redundant number of pair-
wise constraints, then we need a self-consistent
scaling for the different fundamental matrices and
epipoles. The suggestion in [10, 13] is to use
quadratic identities among matching tensors, but
this adds to the complexity of the approach.



We feel that the above approach for recovering the
projective depths does not utilize all of the available
data uniformly, thus diminishing the original attrac-
tiveness of the approach. We propose a simpler ap-
proach that iteratively finds the projective depths si-
multaneously with the structure and motion. Intu-
itively, we are searching for the projective depths that
make the scaled measurement matrix globally “coher-
ent”, where coherence is measured by how well the the
scaled matrix can be factorized into a rank 4 struc-
ture and motion. It will be seen that this “coherence”
is attained precisely when the projections of each 3D
point satisfy a a subspace constraint presented in the
next section. In section § 4, we will use the deviations
from the subspace constraints to iteratively recover
the structure and motion.

3 The Subspace Constraint

The projections of a 3D point onto the m views sat-
isfy a subspace constraint (this is related to the joint
image of [12]). This section formulates the subspace
constraint and shows that if the projective motion is
known, then the projective depths for all the projec-
tions of a 3D point can be determined from the so-
lution to an eigen-problem derived from the subspace
constraint.

Consider the projection of a point ¢}; onto the m
images through the stack of projection matrices P :

sj = [Nijgi] = PQ;

where s; is the column vector of the m homogeneous
image coordinates scaled by the respective projective
depths. Assume for now that P is known. It is clear
from this equation that s; lies in the subspace spanned
by the columns of P with coefficients };. Thus if we
knew P, we can verify whether or not a set of im-
age coordinates ¢;; could have possibly come from the
projection of some 3D point, if we can determine both
a set of projective depths A;; and a projective point
Q; such that the column of scaled image coordinates
s; is spanned by the columns of P with combining
coefficients given by ;. This is the subspace con-
straint that needs to be satisfied by any set of image
projections that is assumed to be the projections of
some 3D point. At this point, it might seem that
apart from the knowledge of P one also needs to know
the projective depths A;; before we can verify if a set
of image coordinates satisfy the subspace constraint.
As we shall see below, it is actually possible to verify
the subspace constraint without first recovering A;; by
solving for the largest eigenvalue for a corresponding
eigen-problem.

The scaled image coordinates s; lie on the subspace
spanned by P if the residue of the projection of s; onto
P is zero :
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where A; = [A1j -+ Anj ] is the set of all m projective
depths for the projections of point j, and P¥ is the
pseudo-inverse of P. Note that we need to normalize
the residue since otherwise we have the trivial solution
s; = 0 that we get from setting A;; = 0. We can sim-
plify the expression for the residue above if we choose
an orthonormal basis for the columns of P. Let U be
a 3m x 4 matrix whose 4 columns are a set of some
orthonormal basis that spans the columns of P. Due
to the normalization, it can be verified that the above

condition simplifies to the following condition (using
the fact that Ut = UT for the orthonormal basis U) :
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By separating out the unknown A;;’s from the known
quantities ¢;; and U, we have SJTU = /\]TAj where the
t’th row of the m x4 matrix A; is given by qiTj U; where
U; is the 3 x 4 matrix formed from the (37, 341, 3i+2)
triplet of rows of U. By also performing the same
separation in the denominator of the ratio in the above
condition we get :

GO )\TA].AJT/\ 5

J( J) - W - ( )
where B; is a diagonal matrix with the sth diagonal
entry set to qiTj qij. We list the important properties of
G;(A;) as a function of A; :

e Since the normalized residue R;(A;) = 1 —
G(A;) > 0, it follows that the maximum value
of G(A;) is L.

o The maximum value of 1 is attained for some
value of A; iff the set of image coordinates g;;
indeed corresponds to the projection of some pro-
jective 3D point onto the m views.

e Since AjAJT and B; are symmetric matrices, a
standard result from linear algebra [6] states that
the maximum of G;(};) is equal to the largest
eigenvalue p for the following generalized eigen-
value problem :

AjATX = puBjA (3)



Hence, to verify that a set of image coordinates g¢;;
corresponds to the projection of some 3D point j, we
only need to verify that the largest eigenvalue of the
above eigen-problem is 1 (neglecting noise). Specifi-
cally, we do not need to know the actual projective
depths A; for the verification. Nevertheless we can
recover the actual A; (as will be required in the it-
erative algorithm presented next) by solving for the
eigenvector corresponding to the largest eigenvalue.
3.1 Dual Subspace Constraint

If we assume that we know the projective structure
@, there is a dual constraint on all the image coordi-
nates from the same image 7 :

si = [Aijaij] = Pi@Q

where s; is the 3 x n matrix whose column j contains
the scaled image coordinate A;;q;;. F; is the projection
matrix for image ¢ and @ is the known 4 x n structure
matrix. In exactly the same manner as above (with
different manipulation of the algebra), we can show
that the dual subspace constraint is satisfied when
the largest eigenvalue of a corresponding generalized
eigen-problem is 1. The matrices of this eigen-problem
are constructed from the image coordinates ¢;; and the
structure Q).

The dual subspace constraint is useful in cases
where we need to verify that the projective structure
of the points from a given test image are in fact gener-
ated from the recovered structure. Since we only need
to determine if the largest eigenvalue is 1 (or close to
1 in case of noise), we note that in principle, we do not
need to recover the projective depths explicitly as an
intermediate step before the verification. Thus verifi-
cation is in principle as direct as is the case for affine
or euclidean structure. Nevertheless, since the residue
is measured in projective space, it may not correspond
very well to the actual metric error. For this reason,
we will also have to compute the projective depths and
compute the residue in the image plane of the repro-
jection of the projective structure.

4 Iterative Algorithm for Projective
Structure and Motion

We now return to the problem of recovering the
projective structure and motion. We require the pro-
Jjective depths A;; to construct the scaled measurement
matrix W, = [Ai;¢;;] which can then be factorized as
W, = PQ to determine the projective structure ) and
motion P. How do we determine the projective depths
given only the image coordinates ¢;; 7

We know that if we were also provided with P we
could recover the projective depths A;; using the sub-
space constraint. Conversely, if we were provided with

the projective depths, we can recover P by factorizing
the scaled measurement matrix W,. But neither P
nor A;; are known. However, the circular dependence
between P and A;; suggests the following iterative al-
gorithm. Start with an initial guess for A;;, recover
P from the scaled measurement matrix, then find the
new JA;; that satisfies the subspace constraint as “best”
as possible and iterate till convergence. Here we list
the important issues involved :

e What should be the initial values for A;; 7 In
most of our experiments, we set A;; = 1 which
effectively means that we start with a weak-
perspective approximation for the camera projec-
tion. However, we have confirmed that the per-
formance of the algorithm is robust w.r.t. widely
varying initializations. See § 5.

e Unless the iteration has converged to the right
value for P, the current estimate P* will not al-
low us to satisfy the subspace constraint exactly.
Instead we should satisfy the subspace constraint
as well as possible by finding the projective depths
A;; and a projective point (); that will mini-
mize the normalized residue between the vector
of scaled image coordinates s; and P¥. That is
we should minimize :

R(/\jr Q]) =

where U* is the orthonormal basis set spanning
the columns of P*. Note that we have to simulta-
neously solve for both @); and the A;; to minimize
the above residue. It can be shown that the op-
timal values for @); takes the form : Q; = UkTs;»
where s} 1s the optimal value for s; I
e With the above observation, we can again show
that due to the normalization, minimizing the
residue R(};, Q;) is the same as maximizing the
objective function :

AT Ak ART )
GE ) = i
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where A*, B* are the same as in § 3, but con-
structed from the current estimate U¥.

The new projective depths at iteration k are deter-
mined by solving each of the eigen-problem A?A’;»T/\ =
,uBf)\ corresponding to each of the G;’s. These are

! This can be verified by imposing the necessary condition at
the minimum : §R/8Q,|, _.+ = 0 and simplifying the resulting
7

expression.
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used to scale the measurement matrix whose rank 4
factorization gives us the next estimate U**+! 2 for the
orthonormal basis. There is one complication how-
ever : it will turn out that in order to guarantee the
monotonic convergence of the algorithm, we also need
to normalize each column j of the scaled matrix W¥.
It can be verified from the projection equation 1 that
normalizing a column j of the scaled matrix has the
effect of changing the the scale of the corresponding
homogenous point j. Arbitrary scaling of columns
(and similarly of each triplet of rows) of the scaled
matrix does not change the factorization of the ma-
trix. These invariances to column-wise scalings are a
degree of freedom that we exploit to gaurantee mono-
tonic convergence (see the proof of the convergence
theorem for details).
4.1 Convergence

Here we ask if we can say anything about the con-
vergence of the algorithm presented in the previous
section 7 Will it always converge 7 If so, will it con-
verge to the global or a local maximum ? Will the
convergence be strictly monotonic or on average 7 We
characterize the convergence property of the algorithm
through an objective function whose maximum is 1 iff
the subspace constraint is satisfied for the projections
of all points in all views.

Definition 1 Let A be the set of all projective depths
Aij. Define the following objective function :

=Ly )

where the matrices A; and B; in G? are constructed

from the current estimate for the basis U. G*(\) < 1
since G’;»(/\) <1 for each j.

We note that G*()\) attains the maximum of 1 (ne-
glecting noise) for some value of A iff the set of image
coordinates corresponding to a 3D point j satisfy the
subspace constraint for all j 3. We now have the fol-
lowing convergence result.

Theorem 1 (Convergence) Let A* be the value of
A at iteration k. Then G*(\) converges monotonically

Gk+1()\k+1) Z Gk()\k)
to a local maximum.

Proof. See the appendix.

2Employing SVD for the factorization directly gives us U*t1
as the first 4 left singular vectors.
3 Again use the fact that G;‘(/\) < 1 for each j

5 Experimental Results
5.1 Numerical considerations

As also noted in [10], we have found that the proper
normalization of the image coordinates that was sug-
gested in [5] is essential for good numerical condition-
ing of the factorization stage. For each image, all the
image coordinates are translated so that they are cen-
tered at the origin of the image coordinate system and
uniformly scaled so that the mean distance from the
origin is /2. This does not affect the rank of the fac-
torization since the above normalizing transformation,
say 1; for image ¢ simply transforms the correspond-
ing projection matrix P; to 7;FP;. Once the structure
has been recovered, they can be un-normalized to re-
cover the structure corresponding to the original co-
ordinate system. Note that in addition to this nor-
malization, the objective function being maximized
implicitly also normalizes each column of the scaled
measurement matrix at each iteration (see the proof
of the convergence theorem). This is similar to the
explicit normalization of each column in [10].
5.2 Evaluation Procedure

For each experiment, the available image data is
divided into two sets : a “training” set from which
we determine the structure and motion, and a “test-
ing” set which is used to evaluate the accuracy of the
recovered structure. It is important to evaluate the
algorithm with a testing set that is different from the
training set. It is not advisable to report the accu-
racy of the recovered structure on the training set it-
self since the algorithm could have “over-fitted” on
the training set. Over-fitting is especially a concern
for projective structure since there are more param-
eters to fit compared with the the actual underlying
euclidean structure. For synthetic examples, we also
report the errors after aligning the recovered structure
with the 3D ground truth.
5.3 Synthetic examples

Many synthetic experiments were conducted to
study the behavior of the algorithm w.r.t two issues :
(a) the presence of large perspective distortions and
varying noise, (b) varying initializations.
(a) Large perspective distortions : 30 points were
selected at random within a sphere of radius 100 units.
10 training views of these points were taken from a
camera whose origin was located at random points on
a surface patch that was located at a distance of 150
units from the origin and projecting an angle of 30
degrees on the origin. The optical axis of the camera
pointed towards the origin. The relatively small size
of the patch on which the camera translates was cho-
sen to make the task of recovery difficult since most



of the information about the structure is embedded
in the translations. Also, the relatively large size of
the scene produces large perpective distortions. Note
that since the camera positions were chosen anywhere
on the 2D surface patch, there is no simple way to
sequence the images that is required for applying the
minimal number of pairwise constraints of [10]. An
additional 10 views were taken from anywhere on a
sphere of radius 150 units to serve as test images. Thus
the test views were not confined to the small patch as
the training views were. The parameters for the cam-
era were (512,512, 1). Varying gaussian noise levels of
0.0,0.5,1.0,1.5,2.0 pixels were added. All the statis-
tics reported below are averaged over 20 trials with
different initial seeds.

Figure 1 shows the pixel errors for a sample run

where the pixel noise was set to 1.0. The range of
the pixel errors are shown for each iteration. As can
be seen from the range of pixel errors at iteration 0,
the initial weak-perspective approximation (set with
A = 1) is quite poor. Nevertheless, by iteration 15,
the average pixel error has dropped from around 20
to 0.7. Figure 2 shows the average 2D pixel error
against the 10 test images after 20 iterations, while
varying the noise level. By iteration 20 the algorithm
converged despite the fact that the iterations start off
with large average pixel errors in the range of around
15-40 pixels. Figure 3 shows the average 3D error
after 20 iterations as a percentage of the scene width
(the diameter of the sphere from which the points were
sampled) after aligning the recovered projective struc-
ture with the 3D ground truth. None of the 20 trials
converged to a local minimum (verified by measuring
the distance of the minimum found to the true mini-
mum from the ground truth).
(b) Varying initializations : In the previous experi-
ments, the iterative algorithm was always started with
the weak-perspective approximation, i.e., A;; = 1.
We next explored the effect of random initializations
where the initial value of each of the A;; was set to a
random value in the range [0.5,2.0]. A gaussian noise
of 1.0 pixels was added. In 20 trials, none of the trials
converged to a local minimum despite the fact that
the average pixel error at the start of the iterations
was in the wide range of 42-856 pixels for the vary-
ing initializations. The final error after 20 iterations
averaged over 20 trials was 1.46 pixels.

5.4 Real Sequence

30 features were picked and manually tracked with
41 pixel error across 20 images of a building. In one
experiment (called “alternate”), alternate images in
the sequence were used as training and testing data.
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Figure 1: Sample run for a synthetic scene with noise set
to 1.0 pixels. See text for the other parameters. Shown are
the range of pixel errors over 10 test images vs iteration
number. The average pixel error is around 0.7 pixels by
iteration 15.
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Figure 2: Average pixel error for the 10 test images of
the synthetic scene after 20 iterations with varying noise
levels. See text for details.
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Figure 3: Average 3D error of the recovered structure of
the synthetic scene after 20 iterations, after aligning the
structure with the 3D ground truth.



T
max error (alternate)
max error (inner) -------
average error (alternate) --------
8 average error (inner)

Figure 4: (a) First and last training images from the real
image sequence. (b) Pixel errors for the separate set of
test images. Shown are the range of pixel errors over 10
test images vs iteration number. The average pixel error
is sub-pixel by iteration 15.

In a second experiment (called “inner”) the middle 10
images of the sequence was used as the training set
and the extreme 10 images were used as the testing
set. The second experiment was designed to test the
accuracy of the recovered structure despite restricting
the overall range of translations of the camera.

Figure 4 shows the maximum as well as the average
pixel error vs iteration number for both experiments.
The maximum pixel error has dropped from around §
pixels to around 2 pixels. The average pixel error con-
verges to sub-pixel error in both experiments. Note
that compared with the synthetic examples, the per-
spective distortions present in the scene are less for
the real image sequence that we have.

6 Discussion

We have proved the monotonic convergence of the
iterative algorithm to a local maximum. In [2], an
iterative algorithm was presented for the case where
camera calibration was assumed. No proof of conver-
gence was presented there. It would be interesting to
see if some of the analysis of our work can be applied
to their algorithm. Alternatively, we can apply metric
constraints to the projective structure recovered from
our algorithm after taking into account the known cal-

ibration of the camera. The advantage is that we have
a proof of convergence to a local maximum where there
was none previously. This approach highlights one of
the advantages of using a stratified approach to recov-
ering structure and motion. Since each of the stages
are usually simpler than the direct approach, they are
hopefully more amenable to analysis.

In the future we plan to extend the algorithm to
the case with missing data. As discussed in § 4.1, it
is possible to modify the objective function for the
projective depths to account for missing data. For
all the image points corresponding to a 3D point j,
we modify the corresponding term G; by restricting
the subspace considered to only that which is visible.
Also the weight for each term should be proportional
to the number of visible image points. One complica-
tion with missing data is that we can’t resort to simple
SVD-based factorization of the scaled matrix. Bilin-
ear iterations are a possible candidate for factorization
in the presence of missing data. These iterations will
have to be done in a manner that will guarantee con-
vergence.
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Appendix

Proof of the Convergence Theorem. At the start of it-
eration k, we have estimates A* ™! and U*~! from iteration
k — 1. During iteration k, we first fix U¥~! and maximize
GF=Y(A) w.r.t. A to get the new estimate A*. This implies
G*=1(AFy > GF7H(AF1), hence the value of G does not
decrease. If it remains the same., we report convergence.
If G increases we find the best 4-dimensional subspace U*
that spans a new measurement matrix W* that is scaled

by the new projective depths A* and whose column j is
normalized by (A7 B,A%). ie. :

Wiy = Mo /(AT B)A))

Note that the rescaling of each column is a degree of free-
dom afforded by the task whose utilization is crucial for
proving monotonic improvement of G. Once we form W,
we compute the SVD of W* and pick the left singular
vectors U* corresponding to the top 4 singular values.
What remains to be shown is that G¥(A*) > G*~'(AF)
which coupled with the above inequality implies Gk()\k) >
Gk_l(/\k_l) by transitivity and we are done.

To prove G*(AF) > GF=1()\*), we use the Poincare Ex-
tension Lemma [6] which tells us the linear subspace that
maximizes the projection of a matrix onto it (this is a
generalization of the corresponding theorem for the well-
known Rayleigh-Ritz ratio). The projection of a matrix
W onto a subspace U is given by tr(UTWWTU). The
Poincare Extension Lemma states that for a given r, the
projection of W* onto any r-dimensional orthogonal sub-
space U is maximum when the subspace is the first r left



singular vectors U* of W. More formally,

max to(UTWWTU) = te(U*"WWTU)

vTu=1
We can verify that the projection of W* onto U = U*F™!
is nothing but G¥=!(A\¥). Now let r = 4 in the Extension
Lemma. U*~! is some 4-dimensional orthogonal subspace
possibly different from U*. Also by design U* = U* in our
algorithm, whence G¥(A*) > GF~'(A¥) as needed. Finally
note that from the test for convergence, the derivative of
GF w.r.t. Mis O after convergence. Also from the Poincare
Extension Lemma, U* is chosen such that the derivative
of G* w.r.t. Uis 0 at U*. Hence, we have convergence to
a local minimum.
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