
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

UNDECIDABLE PROBLEMS
THURSDAY Feb 13

Definition: A Turing Machine is a 7-tuple
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

Q is a finite set of states

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where  ∉ Σ

δ : Q × Γ → Q × Γ × {L,R}

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 0 1 1 1 1

corresponds to:

A Turing Machine M accepts input w if there is a

sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

ua qi bv yields u qj acv if δ (qi, b) = (qj, c, L)
ua qi bv yields uac qj v if δ (qi, b) = (qj, c, R)

A Turing Machine M accepts input w if there is a

sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

3. Ck is an accepting configuration, ie the state

of the configuration is qaccept

A Turing Machine M rejects input w if there is a

sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

3. Ck is a rejecting configuration, ie the state of

the configuration is qreject

A TM recognizes a language if it accepts all
and only those strings in the language

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called Turing-recognizable or
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

A language is called decidable or recursive
if some TM decides it

w ∈ L ?

accept reject

TM

yes no

w ∈ Σ*

L is decidable
(recursive)

w ∈ L ?

accept reject or no output

TM

yes no

w ∈ Σ*

L is semi-decidable
(recursively enumerable,

Turing-recognizable)

Theorem: L is decidable if both L and ¬L
are recursively enumerable

There are languages over {0,1}
that are not decidable

If we believe the Church-Turing Thesis,
this is MAJOR: it means there are things that
computers inherently cannot do

We can prove this using a counting argument. We
will show there is no onto function from the set of
all Turing Machines to the set of all languages
over {0,1}. (Works for any Σ) Hence there are
languages that have no decider.

Then we will prove something stronger:
There are semi-decidable (r.e.) languages that are
NOT decidable

Turing
Machines

Languages
over {0,1}

Let L be any set and 2L be the power set of L
Theorem: There is no onto map from L to 2L

Proof: Assume, for a contradiction, that
there is an onto map f : L → 2L

Let S = { x ∈ L | x ∉ f(x) }

If S = f(y) then y ∈ S if and only if y ∉ S

Let L be any set and 2L be the power set of L
Theorem: There is no onto map from L to 2L

Proof: Assume, for a contradiction, that
there is an onto map f : L → 2L

Let S = { x ∈ L | x ∉ f(x) }

If S = f(y) then y ∈ S if and only if y ∉ S

Can give a more constructive argument!

Theorem: There is no onto function from the
positive integers to the real numbers in (0, 1)

1
2
3
4
5
:

0.28347279…
0.88388384…
0.77635284…
0.11111111…
0.12345678…

:

Proof: Suppose f is any function mapping the
positive integers to the real numbers in
(0, 1:

[n-th digit of r] =

2
8
6
1
5

1 if [n-th digit of f(n)] ≠ 1

 2 otherwise

f(n) ≠ r for all n (Here, r = 11121...) So f is not onto

THE MORAL:
No matter what L is,

2L always has more elements than L

Not all languages over {0,1} are decidable, in fact:
not all languages over {0,1} are semi-decidable

{Turing Machines}

{Strings of 0s and 1s} {Sets of strings
of 0s and 1s}

{Languages over {0,1}}

Set L Set of all subsets of L: 2L

{decidable languages over {0,1}}

{semi-decidable languages over {0,1}}

Let Z+ = {1,2,3,4…}. There exists a bijection
between Z+ and Z+ × Z+

(1,1) (1,2) (1,3) (1,4) (1,5) …

(2,1) (2,2) (2,3) (2,4) (2,5) …

(3,1) (3,2) (3,3) (3,4) (3,5) …

(4,1) (4,2) (4,3) (4,4) (4,5) …

(5,1) (5,2) (5,3) (5,4) (5,5) …

(or Q+)

Let Z+ = {1,2,3,4…}. There exists a bijection
between Z+ and Z+ × Z+

(1,1) (1,2) (1,3) (1,4) (1,5) …

(2,1) (2,2) (2,3) (2,4) (2,5) …

(3,1) (3,2) (3,3) (3,4) (3,5) …

(4,1) (4,2) (4,3) (4,4) (4,5) …

(5,1) (5,2) (5,3) (5,4) (5,5) …

(or Q+)

ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)
but NOT decidable
ATM is r.e. :
Define a TM U as follows:

On input (M, w), U runs M on w. If M ever
accepts, accept. If M ever rejects, reject.

NB. When we write “input (M, w)” we really mean
“input code for (code for M, w)”

ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)
but NOT decidable
ATM is r.e. :
Define a TM U as follows:

On input (M, w), U runs M on w. If M ever
accepts, accept. If M ever rejects, reject.

Therefore,
U accepts (M,w) ⇔ M accepts w ⇔ (M,w) ∈ ATM
Therefore, U recognizes ATM

U is a universal TM

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (proof by contradiction)

Assume machine H decides ATM

H((M,w)) =
Accept if M accepts w

Reject if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output the opposite of H

D(M) =
Reject if M accepts M

Accept if M does not accept M

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (proof by contradiction)

Assume machine H decides ATM

H((M,w)) =
Accept if M accepts w

Reject if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output the opposite of H

D(M) =
Reject if M accepts M

Accept if M does not accept M

D
D D

D D

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (proof by contradiction)

Assume machine H decides ATM

H((M,w)) =
Accept if M accepts w

Reject if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output the opposite of H

D(M) =
Reject if M accepts M

Accept if M does not accept M

D
D D

D D

M1

M2

M3

M4

:

M1 M2 M3 M4 …

accept accept

accept

accept

accept

accept

accept

reject

reject

reject

reject

reject

reject

reject

reject

reject

OUTPUT OF H

accept

accept

accept

reject

M1

M2

M3

M4

:

M1 M2 M3 M4 …

accept accept

accept

accept

accept

accept

accept

reject

reject

reject

reject

reject

reject

reject

reject

reject

OUTPUT OF H

accept

accept

reject

reject

D

D

reject

accept

accept

accept

accept reject

reject

accept ?

Theorem: ATM is r.e. but NOT decidable

Theorem: ¬ATM is not even r.e.!

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable:

Let machine H semi-decides ATM (Such ∃ , why?)

H((M,w)) =
Accept if M accepts w

Reject or
No output if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output

D(M) =
Reject if H (M, M) Accepts
Accept if H (M , M) Rejects
No output if H (M, M) has No output

M
M, M

M, M
M M

A constructive proof:

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable:

Let machine H semi-decides ATM (Such ∃ , why?)

H((M,w)) =
Accept if M accepts w

Reject or
No output if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output

D(M) =
Reject if H (M, M) Accepts
Accept if H (M , M) Rejects
No output if H (M, M) has No output

D
D, D

D, D
D D,

A constructive proof:

H((D,D)) = No output No Contradictions !

We have shown:
Given any machine H for semi-deciding ATM,
we can effectively construct a TM D such that
(D,D) ∉ ATM but H fails to tell us that.

That is, H fails to be a decider on instance (D,D).

In other words,
Given any “good” candidate for deciding the
Acceptance Problem, we can effectively construct
an instance where the candidate fails.

HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE classical HALTING PROBLEM

Proof: Assume, for a contradiction, that TM H
decides HALTTM

We use H to construct a TM D that decides ATM

On input (M,w), D runs H on (M,w):
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts ie halts in an accept state
Otherwise reject

H

(M,w)

(M,w)

M

w

If M doesn’t
halt: REJECT

If M halts
Does M

halt on w?
D

ACCEPT if halts in accept state
REJECT otherwise

In many cases, one can show that a
language L is undecidable by showing

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding
the language in question

ATM ≤ L

We just showed: ATM ≤ HaltTM
Is HaltTM ≤ ATM ?

WWW.FLAC.WS
Read chapter 4 of the book for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

