
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

REVIEW for MIDTERM 1

THURSDAY Feb 6

Midterm 1 will cover everything we
have seen so far

It will be Closed-Book,
Closed-Everything

The PROBLEMS will be from Sipser,

Chapters 1, 2, 3

• 1. Deterministic Finite Automata and Regular
Languages

• 2. Non-Deterministic Finite Automata
• 3. Pumping Lemma for Regular Languages;

Regular Expressions
• 4. Minimizing DFAs
• 5. PDAs, CFGs;

Pumping Lemma for CFLs
• 6. Equivalence of PDAs and CFGs
• 7. Chomsky Normal Form
• 8. Turing Machines

DFAs

NFAs Regular
Expressions

PDAs Context-Free
Grammars

Machines Syntactic Rules

THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w ∈ Σ* | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }

REGULAR EXPRESSIONS
 σ is a regexp representing {σ}

ε is a regexp representing {ε}

∅ is a regexp representing ∅

If R1 and R2 are regular expressions
representing L1 and L2 then:

(R1R2) represents L1 ⋅ L2
(R1 ∪ R2) represents L1 ∪ L2
(R1)* represents L1*

How can we test if two regular
expressions are the same?

R1

N1

M1

M1 MIN

R2

N2

M2

M2 MIN

Length n

O(n) states

O(2n) states

?=

How can we test if two regular
expressions are the same?

Another way???

THEOREMS
and

CONSTRUCTIONS

THE PUMPING LEMMA
(for Regular Languages)

Let L be a regular language with |L| = ∞
Then there is an integer P such that

1. |y| > 0
2. |xy| ≤ P
3. xyiz ∈ L for any i ≥ 0

if w ∈ L and |w| ≥ P
 then can write w = xyz, where:

x

y
z

THE PUMPING LEMMA
(for Context Free Grammars)

Let L be a context-free language with |L| = ∞
Then there is an integer P such that
if w ∈ L and |w| ≥ P

1. |vy| > 0

then can write w = uvxyz, where:

3. uvixyiz ∈ L,
 for any i ≥ 0

2. |vxy| ≤ P
T
R
R

u v x z y

T

u z

R
R

v y

R
R

v x y

Q′ = 2Q

δ′ : Q′ × Σ → Q′

δ′(R,σ) = ∪ ε(δ(r,σ))
r∈R

q0′ = ε(Q0)

F′ = { R ∈ Q′ | f ∈ R for some f ∈ F }

CONVERTING NFAs TO DFAs
Input: NFA N = (Q, Σ, δ, Q0, F)

Output: DFA M = (Q′, Σ, δ′, q0′, F′)

*

 For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached
from some r ∈ R by traveling along zero or more ε arrows}

*

a

a , b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: Equivalent DFA M

ε({1}) = {1,3}

N
M = (2{1,2,3}, {a,b}, δ′, {1,3}, …)

{1,3}

a

b

{2} a {2,3}

b

{3}

a

{1,2,3}

a b

b

a
∅

a,b

{1}, {1,2} ?

b

L can be represented by a regexp
⇔

L is a regular language

EQUIVALENCE

Base Cases (R has length 1):

R = σ
σ

R = ε

R = ∅

L can be represented by a regexp
⇒

L is a regular language

Induction on the length of R:



Inductive Step:

Assume R has length k > 1,
and that every regexp of length < k

represents a regular language

Three possibilities for what R can be:

R = R1 ∪ R2

R = R1 R2

R = (R1)*

(Closure under Union)
(Closure under Concat.)

(Closure under Star)

Therefore: L can be represented by a regexp
⇒ L is regular

Transform (1(0 ∪ 1))* to an NFA

1 ε 1,0

ε

L is a regular language ⇒
L can be represented by a regexp

Proof idea: Transform an NFA for L into a
regular expression by removing states and re-
labeling the arrows with regular expressions



Add unique and distinct start and accept states

ε
ε

ε

ε

ε

NFA
ε
ε

ε

ε

ε

While machine has more than 2 states:

0

1

0

01*0

Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for the missing state

q1
b

a

ε q2

a,b

ε

a*b

(a*b)(a∪b)*

q0 q3

R(q0,q3) = (a*b)(a∪b)*

THEOREM
For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)

minimal DFA M such that L = L(M)

EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F), extend δ
to δ : Q × Σ* → Q as follows:

δ(q, ε) =

δ(q, σ) =
δ(q, w1 …wk+1) = δ(δ(q, w1 …wk), wk+1)

^

^

^

^ ^

q

δ(q, σ)

Note: δ(q0, w) ∈ F ⇔ M accepts w

String w ∈ Σ* distinguishes states q1 and q2 iff

exactly ONE of δ(q1, w), δ(q2, w) is a final state ^ ^

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

Definition:
p ~ q iff p is indistinguishable from q
p ~ q iff p is distinguishable from q /

Proposition: ~ is an equivalence relation
p ~ p (reflexive)
p ~ q ⇒ q ~ p (symmetric)
p ~ q and q ~ r ⇒ p ~ r (transitive)

q

[q] = { p | p ~ q }

so ~ partitions the set of states of M into
disjoint equivalence classes

Proposition: ~ is an equivalence relation

1 1
1

1

0

0

0 0

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } /

• We know how to find those pairs of
states that ε distinguishes…

• Use this and recursion to find those
pairs distinguishable with longer strings

• Pairs left over will be indistinguishable

IDEA:

Output:

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)
Output:

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } /

q0
q1

qi

qn
q0 q1 qi qn

Recursion: if there is σ ∈ Σ
and states p′, q′ satisfying D D

D
δ (p, σ) =

p′

δ (q, σ) = q′
~ / ⇒ p ~ q /

Base Case: p accepts
 and q rejects ⇒ p ~ q /

Repeat until no more new D’s

Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get
EM = { [q] | q is an accessible state of M }

MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q],σ) = [δ(q,σ)]
Claim: MMIN ≡ M

A Language L is generated by a CFG
⇔

L is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ, R, S)
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L

ε,ε → S$

ε,$ → ε

For each rule 'A → w’ ∈ R:

For each terminal a ∈ Σ:
ε,A → w

a,a → ε

S → aTb
T → Ta | ε

ε,ε → $

ε,$ → ε

ε,ε → S

ε,ε → T

ε,ε → a

ε,ε → T

ε,T → ε
a,a → ε
b,b → ε

A Language L is generated by a CFG

L is recognized by a PDA

Given PDA P = (Q, Σ, Γ, δ, q, F)

Construct a CFG G = (V, Σ, R, S) such that
L(G) = L(P)

First, simplify P to have the following form:

(1) It has a single accept state, qaccept

(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or
pops a symbol, but not both at the same time

⇐

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2 q3

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2 q3

ε,0 → ε

q4

q5

ε,ε → 0

ε,ε → 0

V = {Apq | p,q∈Q }

S = Aq0qacc

Idea For Our Grammar G:
For every pair of states p and q in PDA P,

G will have a variable Apq which generates all
strings x that can take:

 P from p with an empty stack
 to q with an empty stack

stack
height

input
string p q

Apq → aArsb

r s

1. The symbol t popped at the end is exactly
the one pushed at the beginning

b a push t pop t

x = ayb takes p with empty stack to q with empty stack

δ(p, a, ε) → (r, t)

δ(s, b, t) → (q, ε)

─ ─ ─ ─ x ─ ─ ─ ─

stack
height

input
string

p r q

Apq → AprArq

2. The symbol popped at the end is not
the one pushed at the beginning

V = {Apq | p, q∈Q }
S = Aq0qacc

Formally:

For every p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε

If (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t)
Then add the rule Apq → aArsb

For every p, q, r ∈ Q,
add the rule Apq → AprArq

For every p ∈ Q,
add the rule App → ε

THE CHOMSKY NORMAL FORM
A context-free grammar is in Chomsky normal
form if every rule is of the form:

A → BC

A → a

S → ε

B, C are variables (not the start var)
a is a terminal

S is the start variable

S → 0S1
S → TT
T → ε S → TU

T → 0
U → SV | 1

S0 → TU | ε

V → 1

Theorem: Any context-free language
can be generated by a context-free
grammar in Chomsky normal form

“Can transform any CFG into
Chomsky normal form”

Theorem: If G is in CNF, w ∈ L(G) and |w| > 0,
then any derivation of w in G has length 2|w| - 1

Theorem: Any CFL can be generated
by a CFG in Chomsky normal form

Algorithm:
1. Add a new start variable (S0S)
2. Eliminate all Aε rules:
 For each occurrence of A on the RHS of a rule,
 add a new rule that removes that occurrence
 (unless this new rule was previously removed)
3. Eliminate all AB rules:
 For each rule with B on LHS of a rule,
 add a new rule that puts A on the LHS instead
 (unless this new rule was previously removed)
4. Convert Au1u2... uk to A u1A1, A1u2A2, ...
If ui is a terminal, replace ui with Ui and add Uiui

Convert the following into Chomsky normal form:
A → BAB | B | ε
B → 00 | ε

A → BAB | B | ε
B → 00 | ε

S0 → A
A → BAB | B | BB | AB | BA
B → 00

S0 → A | ε

A → BAB | 00 | BB | AB | BA
B → 00

S0 → BAB | 00 | BB | AB | BA | ε

S0 → BC | DD | BB | AB | BA | ε, C → AB,
A → BC | DD | BB | AB | BA , B → DD, D → 0

FORMAL DEFINITIONS

Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)
deterministic DFA

Let w1, ... , wn ∈ Σ and w = w1... wn ∈ Σ*
Then M accepts w if there are r0, r1, ..., rn ∈ Q, s.t.
1. r0=q0
2. δ(ri, wi+1) = ri+1, for i = 0, ..., n-1, and
3. rn ∈ F

Q is the set of states

Σ is the alphabet

δ : Q × Σε → 2Q is the transition function

Q0 ⊆ Q is the set of start states

F ⊆ Q is the set of accept states

A non-deterministic finite automaton (NFA)
is a 5-tuple N = (Q, Σ, δ, Q0, F)

2Q is the set of all possible subsets of Q
Σε = Σ ∪ {ε}

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (ε = empty string)

Then N accepts w if there are r0, r1, ..., rn ∈ Q
such that

1. r0 ∈ Q0
2. ri+1 ∈ δ(ri, wi+1) for i = 0, ..., n-1, and
3. rn ∈ F

A language L is recognized by an NFA N
if L = L(N).

L(N) = the language recognized by N
 = set of all strings machine N accepts

Definition: A (non-deterministic) PDA is a
tuple P = (Q, Σ, Γ, δ, q0, F), where:

Q is a finite set of states

Γ is the stack alphabet

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

Σ is the input alphabet

δ : Q × Σε × Γε → 2 Q × Γε

2Q is the set of subsets of Q and Σε = Σ ∪ {ε}

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (recall Σε = Σ ∪ {ε})

Then P accepts w if there are
 r0, r1, ..., rn ∈ Q and
 s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that

1. r0 = q0 and s0 = ε (P starts in q0 with empty stack)

2. For i = 0, ..., n-1:
(ri+1 , b)∈ δ(ri, wi+1, a), where si =at and si+1 = bt for

some a, b ∈ Γε and t ∈ Γ*
(P moves correctly according to state, stack and symbol read)

3. rn ∈ F (P is in an accept state at the end of its input)

CONTEXT-FREE GRAMMARS
A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

L(G) = {w ∈ Σ* | S ⇒* w} Strings Generated by G

Definition: A Turing Machine is a 7-tuple
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

Q is a finite set of states

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where  ∉ Σ

δ : Q × Γ → Q × Γ × {L,R}

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

A Turing Machine M accepts input w if there is a

sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

3. Ck is an accepting configuration, ie the state

of the configuration is qaccept

Accepting and rejecting configurations are halting
configurations and do not yield further configurations

TMs VERSUS FINITE AUTOMATA

TM can both write to and read from the tape

The head can move left and right

The input doesn’t have to be read entirely,

Accept and Reject take immediate effect

and the computation can continue after all
the input has been read

A language is called Turing-recognizable or
recursively enumerable (r.e.) or semi-
decidable if some TM recognizes it

A language is called decidable or recursive
if some TM decides it

recursive
languages

r.e.
languages

Theorem: If A and ¬A are r.e. then A is recursive

ADFA = { (B, w) | B is a DFA that accepts string w }

ANFA = { (B, w) | B is an NFA that accepts string w }

ACFG = { (G, w) | G is a CFG that generates string w
}

Theorem: ADFA is decidable
Proof Idea: Simulate B on w

Theorem: ANFA is decidable

Theorem: ACFG is decidable
Proof Idea: Transform G into Chomsky Normal
Form. Try all derivations of length up to 2|w|-1

WWW.FLAC.WS
Happy studying!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	THEOREMS �and �CONSTRUCTIONS
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56

