15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

REVIEW for MIDTERM 1

THURSDAY Feb 6

Midterm 1 will cover everything we have seen so far

The PROBLEMS will be from Sipser,
Chapters 1, 2, 3

It will be Closed-Book, Closed-Everything

- 1. Deterministic Finite Automata and Regular Languages
- 2. Non-Deterministic Finite Automata
- 3. Pumping Lemma for Regular Languages;
 Regular Expressions
- 4. Minimizing DFAs
- 5. PDAs, CFGs;
 Pumping Lemma for CFLs
- 6. Equivalence of PDAs and CFGs
- 7. Chomsky Normal Form
- 8. Turing Machines

Machines

Syntactic Rules

DFAs

Regular

Expressions

PDAs Context-Free Grammars

THE REGULAR OPERATIONS

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Negation: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$

Reverse: $A^{R} = \{ w_{1} ... w_{k} \mid w_{k} ... w_{1} \in A \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

REGULAR EXPRESSIONS

- σ is a regexp representing $\{\sigma\}$
- ε is a regexp representing $\{\varepsilon\}$
- ∅ is a regexp representing ∅

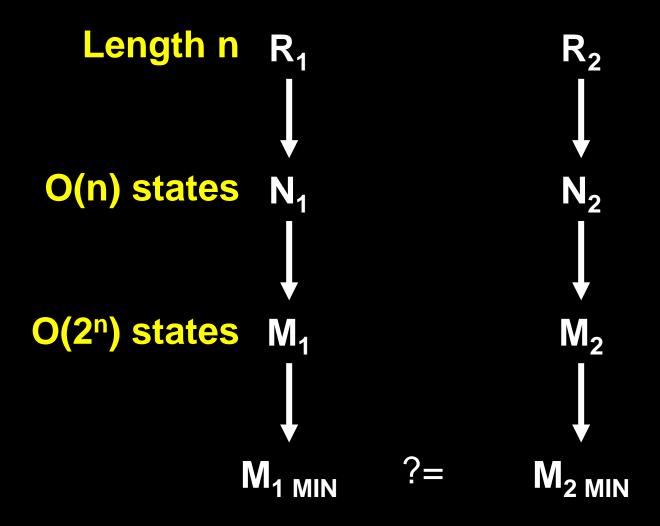
If R₁ and R₂ are regular expressions representing L₁ and L₂ then:

```
(R_1R_2) represents L_1 \cdot L_2
```

$$(R_1 \cup R_2)$$
 represents $L_1 \cup L_2$

(R₁)* represents L₁*

How can we test if two regular expressions are the same?



How can we test if two regular expressions are the same?

Another way???

THEOREMS and CONSTRUCTIONS

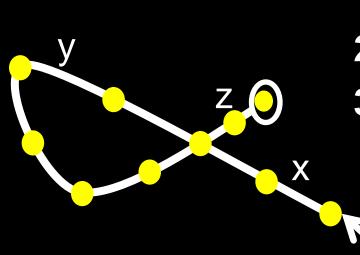
THE PUMPING LEMMA (for Regular Languages)

Let L be a regular language with |L| = ∞

Then there is an integer P such that

if w ∈ L and |w| ≥ P

then can write w = xyz, where:



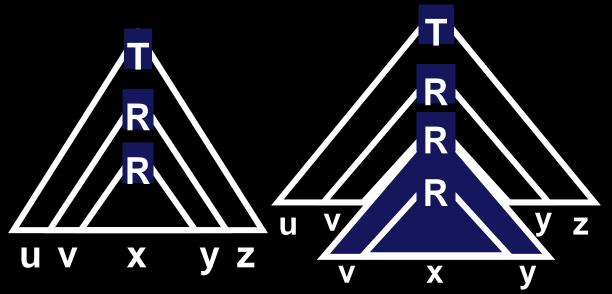
- 1. |y| > 0
- 2. |xy| ≤ P
- 3. xyⁱz ∈ L for any i ≥ 0

THE PUMPING LEMMA (for Context Free Grammars)

Let L be a context-free language with $|L| = \infty$

Then there is an integer P such that if $w \in L$ and $|w| \ge P$

then can write w = uvxyz, where:



- 1. |vy| > 0
- 2. |vxy| ≤ P
- 3. uvⁱxyⁱz ∈ L,for any i ≥ 0

CONVERTING NFAs TO DFAs

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

$$Q' = 2^{Q}$$

$$\delta' : Q' \times \Sigma \to Q'$$

$$\delta'(R,\sigma) = \bigcup_{r \in R} \varepsilon(\delta(r,\sigma)) *$$

$$q_0' = \varepsilon(Q_0)$$

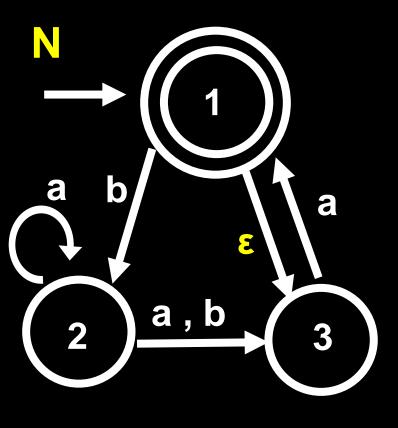
 $F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}$

For $R \subseteq Q$, the ε -closure of R, $\varepsilon(R) = \{q \text{ that can be reached from some } r \in R \text{ by traveling along zero or more } \varepsilon \text{ arrows} \}$

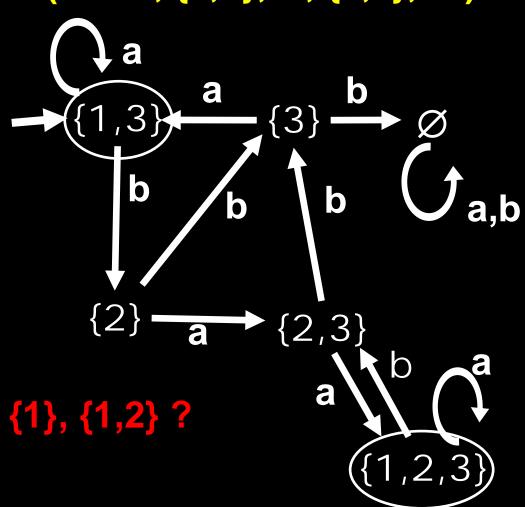
Given: NFA $\mathbb{N} = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: Equivalent DFA M

$$M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, \ldots)$$



$$\varepsilon(\{1\}) = \{1,3\}$$



EQUIVALENCE

L can be represented by a regexp

L is a regular language

L can be represented by a regexp

 \Rightarrow

L is a regular language

Induction on the length of R:

Base Cases (R has length 1):

$$R = \sigma$$

$$R = \epsilon$$

$$R = \emptyset$$

$$\Rightarrow \bigcirc$$

$$\Rightarrow \bigcirc$$

$$\Rightarrow \bigcirc$$

$$\Rightarrow \bigcirc$$

Inductive Step:

Assume R has length k > 1, and that every regexp of length < k represents a regular language

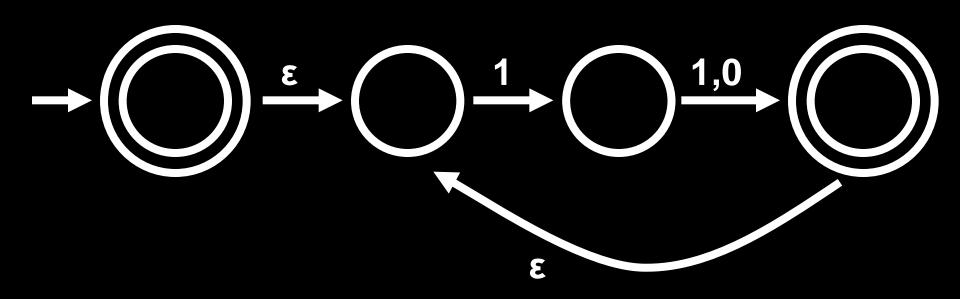
Three possibilities for what R can be:

$$R = R_1 \cup R_2$$
 (Closure under Union)
 $R = R_1 R_2$ (Closure under Concat.)
 $R = (R_1)^*$ (Closure under Star)

Therefore: L can be represented by a regexp

⇒ L is regular

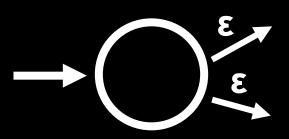
Transform $(1(0 \cup 1))^*$ to an NFA

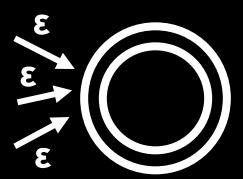


L is a regular language ⇒ L can be represented by a regexp

Proof idea: Transform an NFA for L into a regular expression by removing states and relabeling the arrows with regular expressions

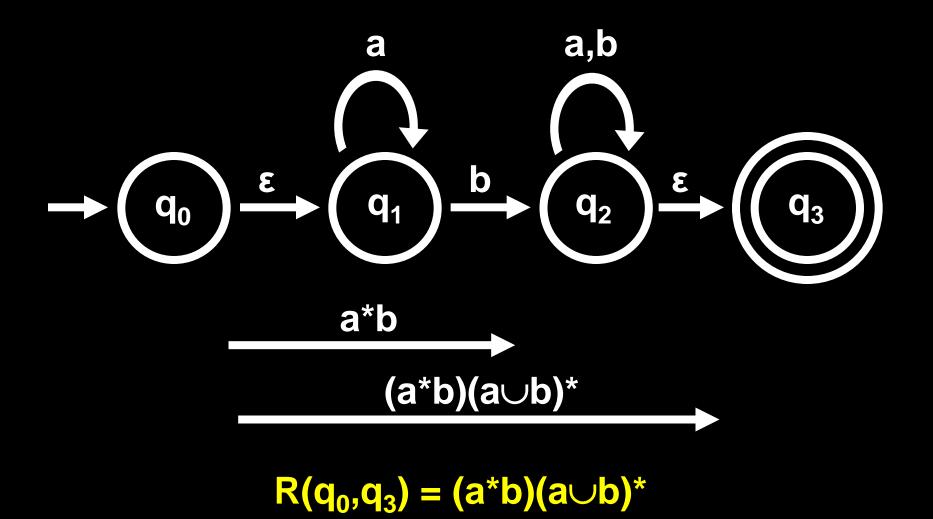
Add unique and distinct start and accept states





While machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for the missing state



THEOREM

For every regular language L, there exists a UNIQUE (up to re-labeling of the states) minimal DFA M such that L = L(M)

EXTENDING δ

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, extend δ to $\delta : Q \times \Sigma^* \to Q$ as follows:

$$\delta(\mathbf{q}, \, \boldsymbol{\varepsilon}) = \mathbf{q}$$

$$\delta(\mathbf{q}, \, \boldsymbol{\sigma}) = \delta(\mathbf{q}, \, \boldsymbol{\sigma})$$

$$\delta(\mathbf{q}, \, \mathbf{w}_1 \dots \mathbf{w}_{k+1}) = \delta(\delta(\mathbf{q}, \, \mathbf{w}_1 \dots \mathbf{w}_k), \, \mathbf{w}_{k+1})$$

Note: $\delta(q_0, w) \in F \Leftrightarrow M$ accepts w

String $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly ONE of $\hat{\delta}(q_1, w)$, $\hat{\delta}(q_2, w)$ is a final state

Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$ Definition:

p ~ q iff p is indistinguishable from qp + q iff p is distinguishable from q

Proposition: ~ is an equivalence relation

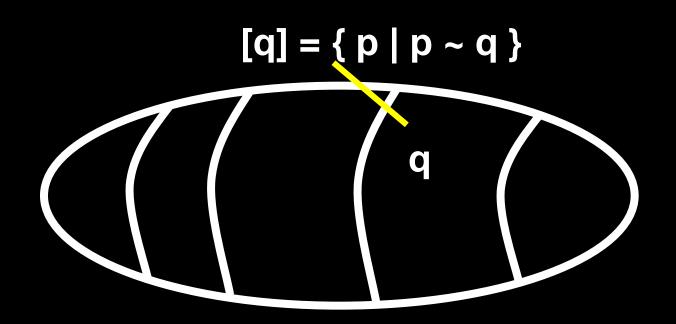
p ~ p (reflexive)

 $p \sim q \Rightarrow q \sim p$ (symmetric)

 $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into disjoint equivalence classes



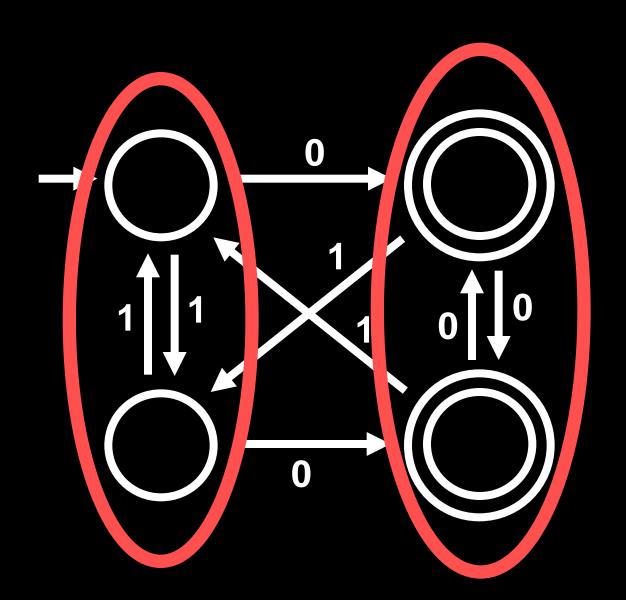


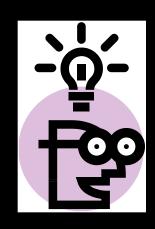
TABLE-FILLING ALGORITHM

Input: DFA M = $(Q, \Sigma, \delta, q_0, F)$

Output: (1) $D_M = \{ (p,q) | p,q \in Q \text{ and } p \neq q \}$

(2) $E_M = \{ [q] | q \in Q \}$

IDEA:



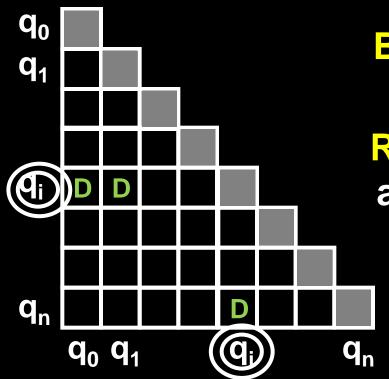
- We know how to find those pairs of states that ε distinguishes...
- Use this and recursion to find those pairs distinguishable with *longer* strings
- Pairs left over will be indistinguishable

TABLE-FILLING ALGORITHM

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1) $D_M = \{ (p,q) | p,q \in Q \text{ and } p \neq q \}$

(2)
$$E_M = \{ [q] | q \in Q \}$$



Base Case: p accepts and q rejects ⇒ p / q

Recursion: if there is $\sigma \in \Sigma$ and states p', q' satisfying

Repeat until no more new D's

Algorithm MINIMIZE

Input: DFA M

Output: DFA M_{MIN}

- (1) Remove all inaccessible states from M
 - (2) Apply Table-Filling algorithm to get $E_M = \{ [q] | q \text{ is an accessible state of M } \}$

$$M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$$

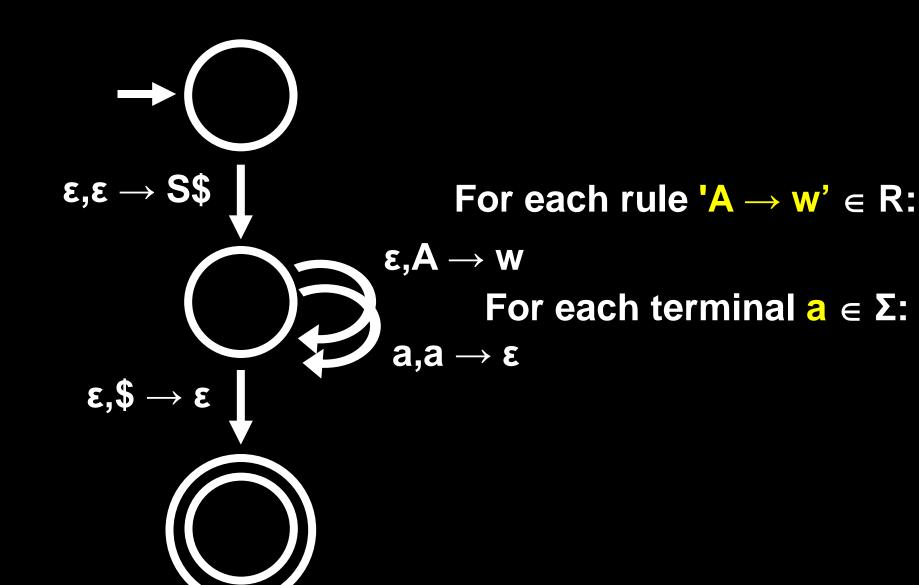
$$Q_{MIN} = E_M, q_{0 MIN} = [q_0], F_{MIN} = \{ [q] | q \in F \}$$

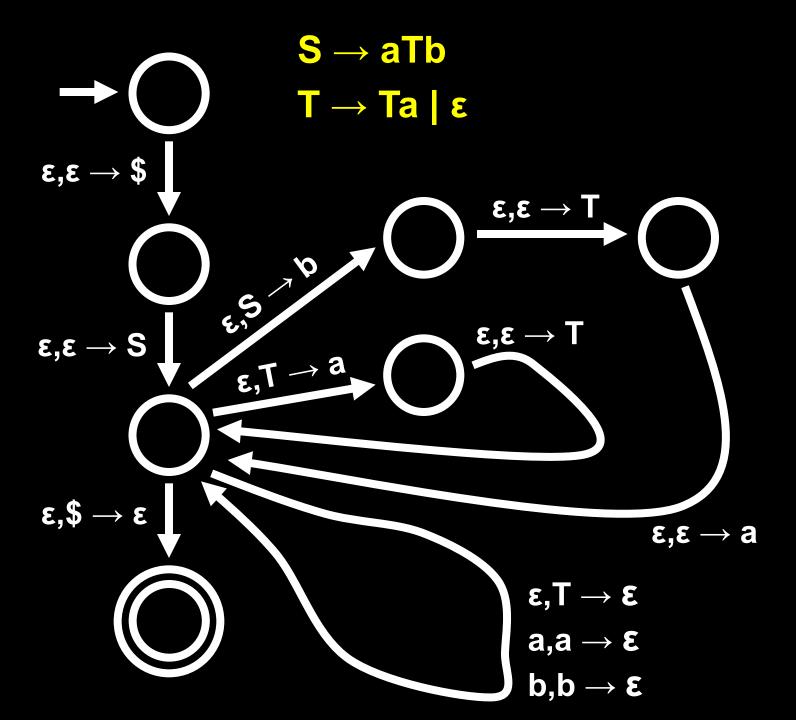
$$\delta_{MIN}([q],\sigma) = [\delta(q,\sigma)]$$

Claim: $M_{MIN} \equiv M$

A Language L is generated by a CFG L is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ , R, S) Construct P = (Q, Σ , Γ , δ , q, F) that recognizes L





A Language L is generated by a CFG

L is recognized by a PDA

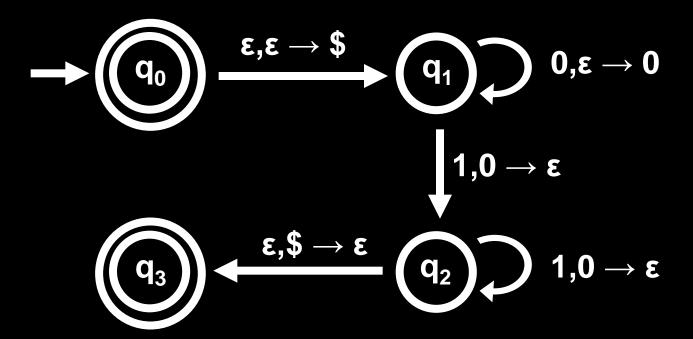
Given PDA P = (Q, Σ , Γ , δ , q, F)

Construct a CFG $G = (V, \Sigma, R, S)$ such that L(G) = L(P)

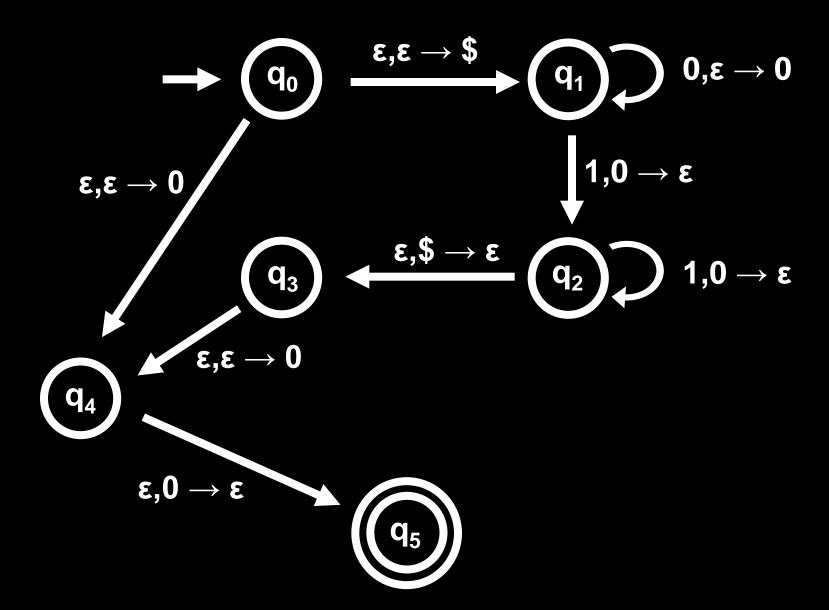
First, simplify P to have the following form:

- (1) It has a single accept state, q_{accept}
- (2) It empties the stack before accepting
- (3) Each transition either pushes a symbol or pops a symbol, but not both at the same time

SIMPLIFY



SIMPLIFY



Idea For Our Grammar G: For every pair of states p and q in PDA P,

G will have a variable A_{pq} which generates all strings x that can take:

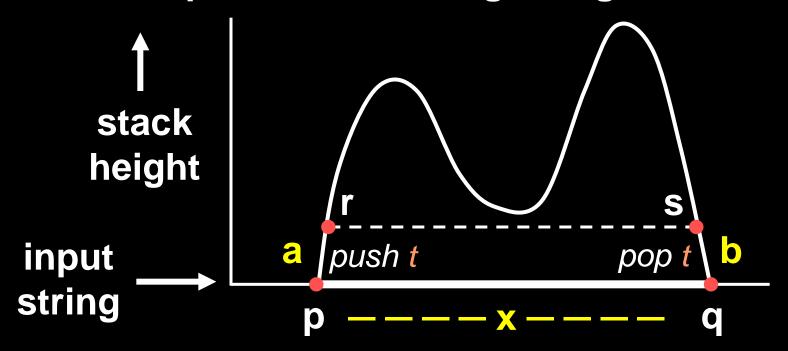
P from p with an empty stack to q with an empty stack

$$V = \{A_{pq} \mid p,q \in Q \}$$

$$S = Aq_0q_{acc}$$

x = ayb takes p with empty stack to q with empty stack

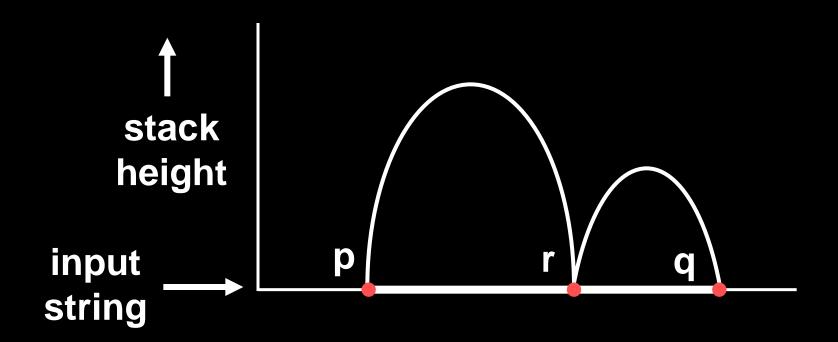
1. The symbol t popped at the end is exactly the one pushed at the beginning



$$\delta(p, a, \epsilon) \rightarrow (r, t)$$

$$\delta(s, b, t) \rightarrow (q, \epsilon) \qquad A_{pq} \rightarrow aA_{rs}b$$

2. The symbol popped at the end is not the one pushed at the beginning



$$A_{pq} \rightarrow A_{pr}A_{rq}$$

Formally:

$$V = \{A_{pq} \mid p, q \in Q \}$$

$$S = A_{q_0q_{acc}}$$

For every p, q, r, s \in Q, t \in Γ and a, b \in Σ_{ϵ} If $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$ Then add the rule $A_{pq} \rightarrow aA_{rs}b$

For every p, q, $r \in Q$, add the rule $A_{pq} \rightarrow A_{pr}A_{rq}$

For every $p \in Q$, add the rule $A_{pp} \rightarrow \epsilon$

THE CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form if every rule is of the form:

 $A \rightarrow BC$ B, C are variables (not the start var)

 $A \rightarrow a$ a is a terminal

 $S \rightarrow \varepsilon$ S is the start variable

 $S \rightarrow 0S1$

 $S \rightarrow TT$

 $T \rightarrow \epsilon$

 $S_0 \rightarrow TU \mid \epsilon$

 $\mathsf{T} o \mathsf{0}$

U → **SV** | **1**

 $S \rightarrow TU$

 $V \rightarrow 1$

Theorem: If G is in CNF, $w \in L(G)$ and |w| > 0, then any derivation of w in G has length 2|w| - 1

Theorem: Any context-free language can be generated by a context-free grammar in Chomsky normal form

"Can transform any CFG into Chomsky normal form"

Theorem: Any CFL can be generated by a CFG in Chomsky normal form

Algorithm:

- 1. Add a new start variable $(S_0 \rightarrow S)$
- 2. Eliminate all $A \rightarrow \epsilon$ rules:

For each occurrence of A on the RHS of a rule, add a new rule that removes that occurrence (unless this new rule was previously removed)

3. Eliminate all A→B rules:

For each rule with B on LHS of a rule, add a new rule that puts A on the LHS instead (unless this new rule was previously removed)

4. Convert $A \rightarrow u_1 u_2 \dots u_k$ to $A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, \dots$ If u_i is a terminal, replace u_i with U_i and add $U_i \rightarrow u_i$

Convert the following into Chomsky normal form:

$$A \rightarrow BAB \mid B \mid \epsilon$$
 $B \rightarrow 00 \mid \epsilon$

$$S_0 \rightarrow A \\ A \rightarrow BAB \mid B \mid \epsilon \\ B \rightarrow 00 \mid \epsilon$$

$$S_0 \rightarrow A \mid \epsilon \\ A \rightarrow BAB \mid B \mid BB \mid AB \mid BA \\ B \rightarrow 00$$

 $S_0 \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA \mid \epsilon$ $A \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA$ $B \rightarrow 00$

$$S_0 \to BC \mid DD \mid BB \mid AB \mid BA \mid \epsilon, \quad C \to AB,$$

$$A \to BC \mid DD \mid BB \mid AB \mid BA , \quad B \to DD, \quad D \to 0$$

FORMAL DEFINITIONS

deterministic DFA

A ^ finite automaton ^ is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Q is the set of states (finite)

\(\Sigma is the alphabet (finite)

 $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

Let $w_1, ..., w_n \in \Sigma$ and $w = w_1... w_n \in \Sigma^*$ Then M accepts w if there are $r_0, r_1, ..., r_n \in Q$, s.t.

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and
- 3. r_n ∈ F

A non-deterministic finite automaton (NFA) is a 5-tuple $N = (Q, \Sigma, \delta, Q_0, F)$

Q is the set of states

E is the alphabet

 $\delta: \mathbb{Q} \times \Sigma_s \to 2^{\mathbb{Q}}$ is the transition function

 $Q_0 \subseteq Q$ is the set of start states

 $F \subseteq Q$ is the set of accept states

2^Q is the set of all possible subsets of Q

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\epsilon}$ ($\epsilon = \epsilon$)

Then N accepts w if there are r₀, r₁, ..., r_n ∈ Q such that

- 1. $r_0 \in Q_0$
- 2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., n-1, and
- 3. r_n ∈ F

```
L(N) = the language recognized by N
= set of all strings machine N accepts
```

A language L is recognized by an NFA N if L = L(N).

Definition: A (non-deterministic) PDA is a tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

Q is a finite set of states

E is the input alphabet

□ is the stack alphabet

$$\delta: \mathbb{Q} \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow 2^{\mathbb{Q} \times \Gamma_{\epsilon}}$$

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

 2^{Q} is the set of subsets of Q and $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\epsilon}$ (recall $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$)

Then P accepts w if there are

```
\mathbf{r_0}, \mathbf{r_1}, ..., \mathbf{r_n} \in \mathbf{Q} and \mathbf{s_0}, \mathbf{s_1}, ..., \mathbf{s_n} \in \mathbf{\Gamma}^* (sequence of stacks) such that
```

- 1. $r_0 = q_0$ and $s_0 = \varepsilon$ (P starts in q_0 with empty stack)
- 2. For i = 0, ..., n-1:
 (r_{i+1}, b)∈ δ(r_i, w_{i+1}, a), where s_i =at and s_{i+1} = bt for some a, b ∈ Γ_ε and t ∈ Γ*
 (P moves correctly according to state, stack and symbol read)
- 3. $\mathbf{r_n} \in \mathbf{F}$ (P is in an accept state at the end of its input)

CONTEXT-FREE GRAMMARS

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

\(\bigce{\bigsig}\) is a finite set of terminals (disjoint from \(\bigce{\bigsig}\))

R is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

S ∈ V is the start variable

 $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$ Strings Generated by G

Definition: A Turing Machine is a 7-tuple

$$T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$
, where:

Q is a finite set of states

 Σ is the input alphabet, where $\square \notin \Sigma$

 Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$

$$\delta: \mathbf{Q} \times \mathbf{\Gamma} \rightarrow \mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L},\mathbf{R}\}$$

 $q_0 \in Q$ is the start state

q_{accept} ∈ **Q** is the accept state

q_{reject} ∈ **Q** is the reject state, and **q**_{reject} ≠ **q**_{accept}

- A Turing Machine M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that
- C₁ is a *start* configuration of M on input w, ie
 C₁ is q₀w
- each C_i yields C_{i+1}, ie M can legally go from C_i
 to C_{i+1} in a single step
- 3. C_k is an *accepting* configuration, ie the state of the configuration is q_{accept}

Accepting and rejecting configurations are halting configurations and do not yield further configurations

TMs VERSUS FINITE AUTOMATA

TM can both write to and read from the tape

The head can move *left and right*

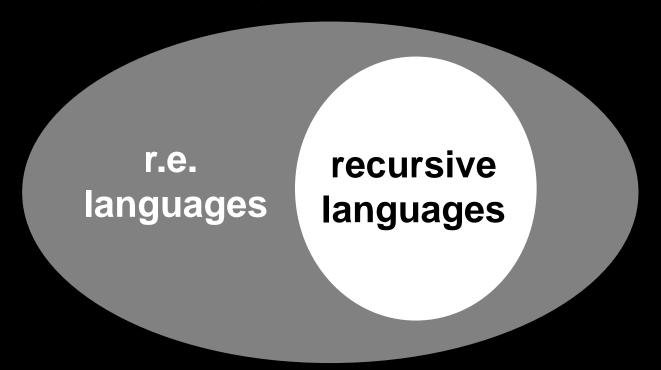
The input doesn't have to be read entirely,

and the computation can continue after all the input has been read

Accept and Reject take immediate effect

A language is called Turing-recognizable or recursively enumerable (r.e.) or semidecidable if some TM recognizes it

A language is called decidable or recursive if some TM decides it



Theorem: If A and ¬A are r.e. then A is recursive

A_{DFA} = { (B, w) | B is a DFA that accepts string w }

Theorem: A_{DFA} is decidable

Proof Idea: Simulate B on w

A_{NFA} = { (B, w) | B is an NFA that accepts string w }

Theorem: A_{NFA} is decidable

A_{CFG} = { (G, w) | G is a CFG that generates string w

Theorem: A_{CFG} is decidable

Proof Idea: Transform G into Chomsky Normal Form. Try all derivations of length up to 2|w|-1

WWW.FLAC.WS

Happy studying!