
FORMAL LANGUAGES, 
AUTOMATA AND 
COMPUTABILITY 
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REVIEW for MIDTERM 1 

THURSDAY Feb 6 



Midterm 1 will cover everything we 
have seen so far 

It will be Closed-Book, 
Closed-Everything 

The PROBLEMS will be from Sipser, 

Chapters 1, 2, 3 



• 1. Deterministic Finite Automata and Regular 
Languages  

• 2. Non-Deterministic Finite Automata 
• 3. Pumping Lemma for Regular Languages;  

Regular Expressions 
• 4. Minimizing DFAs  
• 5. PDAs, CFGs;  

Pumping Lemma for CFLs 
• 6. Equivalence of PDAs and CFGs  
• 7. Chomsky Normal Form 
• 8. Turing Machines 



DFAs 

NFAs Regular 
Expressions 

PDAs Context-Free 
Grammars 

Machines Syntactic Rules 



THE REGULAR OPERATIONS 

Union: A ∪ B = { w | w ∈ A or w ∈ B }  

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }  

Negation: ¬A = { w ∈ Σ* | w ∉ A }  

Reverse: AR = { w1 …wk | wk …w1 ∈ A } 

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B } 

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A } 



REGULAR EXPRESSIONS 
 σ  is a regexp representing {σ} 

ε  is a regexp representing {ε} 

∅  is a regexp representing ∅ 

If R1 and R2 are regular expressions 
representing L1 and L2 then: 

(R1R2) represents L1 ⋅ L2  
(R1 ∪ R2) represents L1 ∪ L2  
(R1)* represents L1* 



How can we test if two regular 
expressions are the same? 

R1 

N1 

M1 

M1 MIN 

R2 

N2 

M2 

M2 MIN 

Length n 

O(n) states 

O(2n) states 

?= 



How can we test if two regular 
expressions are the same? 

Another way??? 



THEOREMS  
and  

CONSTRUCTIONS 



THE PUMPING LEMMA 
(for Regular Languages) 

Let L be a regular language with |L| = ∞ 
Then there is an integer P such that  

1.  |y| > 0 
2.  |xy| ≤ P 
3.  xyiz ∈ L for any i ≥ 0 

if  w ∈ L and |w| ≥ P 
 then can write w = xyz, where: 

x 

y 
z 



THE PUMPING LEMMA 
(for Context Free Grammars) 

Let L be a context-free language with |L| = ∞ 
Then there is an integer P such that  
if  w ∈ L and |w| ≥ P 

1.  |vy| > 0 

then can write w = uvxyz, where: 

3.  uvixyiz ∈ L, 
 for any i ≥ 0 

2.  |vxy| ≤ P 
T 
R 
R 

u v x z y 

T 

u z 

R 
R 

v y 

R 
R 

v x y 



Q′ = 2Q 

δ′ : Q′ × Σ → Q′ 

δ′(R,σ) =  ∪ ε( δ(r,σ) ) 
r∈R 

q0′ = ε(Q0) 

F′ = { R ∈ Q′ | f ∈ R for some f ∈ F } 

CONVERTING NFAs TO DFAs 
Input: NFA N = (Q, Σ, δ, Q0, F)  

Output: DFA M = (Q′, Σ, δ′, q0′, F′)  

* 

  For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached 
from some r ∈ R by traveling along zero or more ε arrows}  

* 



a 

a , b 

a 

2  3 

1 

b 
ε 

Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: Equivalent DFA M 

ε({1}) = {1,3} 

N 
M = (2{1,2,3}, {a,b}, δ′, {1,3}, …) 

{1,3} 

a 

b 

{2} a {2,3} 

b 

{3} 

a 

{1,2,3} 

a b 

b 

a 
∅ 

a,b 

{1}, {1,2} ? 

b 



L can be represented by a regexp 
⇔ 

L is a regular language 

EQUIVALENCE 



Base Cases (R has length 1): 

R = σ 
σ 

R = ε 

R = ∅ 

L can be represented by a regexp 
⇒ 

L is a regular language 

Induction on the length of R: 

 



Inductive Step: 

Assume R has length k > 1,  
and that every regexp of length < k  

represents a regular language  

Three possibilities for what R can be: 

R = R1 ∪ R2 

R = R1 R2 

R = (R1)* 

(Closure under Union) 
(Closure under Concat.) 

(Closure under Star) 

Therefore:  L can be represented by a regexp 
⇒ L is regular 



Transform (1(0 ∪ 1))* to an NFA 

1 ε 1,0 

ε 



L is a regular language ⇒ 
L can be represented by a regexp 

Proof idea: Transform an NFA for L into a 
regular expression by removing states and re-
labeling the arrows with regular expressions  

 

Add unique and distinct start and accept states 

ε 
ε 

ε 

ε 

ε 



NFA 
ε 
ε 

ε 

ε 

ε 

While machine has more than 2 states: 

0 

1 

0 

01*0 

Pick an internal state, rip it out and  
re-label the arrows with regexps,  
to account for the missing state 



q1 
b 

a 

ε q2 

a,b 

ε 

a*b 

(a*b)(a∪b)* 

q0 q3 

R(q0,q3) = (a*b)(a∪b)*  



THEOREM 
For every regular language L, there exists 
a UNIQUE (up to re-labeling of the states) 

minimal DFA M such that L = L(M) 



EXTENDING δ 
Given DFA  M = (Q, Σ, δ, q0, F),  extend δ 
to δ : Q × Σ* → Q as follows:  

δ(q, ε) =  

δ(q, σ) = 
δ(q, w1 …wk+1 ) = δ( δ(q, w1 …wk ), wk+1 )  

^ 

^ 

^ 

^ ^ 

q 

δ(q, σ) 

Note: δ(q0, w) ∈ F  ⇔  M accepts w 

String w ∈ Σ* distinguishes states q1 and q2  iff  

exactly ONE of δ(q1, w), δ(q2, w) is a final state ^ ^ 



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q  

Definition: 
p ~ q iff p is indistinguishable from q  
p ~ q iff p is distinguishable from q  / 

Proposition: ~ is an equivalence relation 
p ~ p (reflexive) 
p ~ q  ⇒  q ~ p (symmetric) 
p ~ q  and  q ~ r  ⇒  p ~ r (transitive) 



q 

[q] = { p | p ~ q } 

so ~ partitions the set of states of M into 
disjoint equivalence classes 

Proposition: ~ is an equivalence relation 



1 1 
1 

1 

0 

0 

0 0 



TABLE-FILLING ALGORITHM 
Input: DFA M = (Q, Σ, δ, q0, F)  

(2) EM = { [q] | q ∈ Q } 

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } / 

 

• We know how to find those pairs of 
states that ε distinguishes… 

• Use this and recursion to find those 
pairs distinguishable with longer strings 

• Pairs left over will be indistinguishable 

IDEA: 

Output: 



TABLE-FILLING ALGORITHM 
Input: DFA M = (Q, Σ, δ, q0, F)  
Output: 

(2) EM = { [q] | q ∈ Q } 

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } / 

q0 
q1 

qi 

qn 
q0 q1 qi qn 

Recursion: if there is σ ∈ Σ 
and states p′, q′ satisfying  D D 

D 
δ (p, σ) = 

  
p′ 

δ (q, σ) = q′ 
~ / ⇒ p ~ q / 

Base Case: p accepts 
   and q rejects ⇒ p ~ q / 

Repeat until no more new D’s 



Algorithm MINIMIZE 

Input: DFA M 

Output: DFA MMIN 

(1) Remove all inaccessible states from M 

(2) Apply Table-Filling algorithm to get  
EM = { [q] | q is an accessible state of M } 

MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN) 

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F } 

δMIN( [q],σ ) = [ δ( q,σ ) ] 
Claim: MMIN ≡ M 



A Language L is generated by a CFG  
⇔ 

L is recognized by a PDA 



Suppose L is generated by a CFG G = (V, Σ, R, S)  
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L 

ε,ε → S$ 

ε,$ → ε 

For each rule 'A → w’ ∈ R: 

For each terminal a ∈ Σ: 
ε,A → w 

a,a → ε 



S → aTb 
T → Ta | ε 

ε,ε → $ 

ε,$ → ε 

ε,ε → S 

ε,ε → T 

ε,ε → a 

ε,ε → T 

ε,T → ε 
a,a → ε 
b,b → ε 



A Language L is generated by a CFG  
 

L is recognized by a PDA 

Given PDA P = (Q, Σ, Γ, δ, q, F) 

Construct a CFG G = (V, Σ, R, S) such that  
L(G) = L(P)  

First, simplify P to have the following form: 

(1) It has a single accept state, qaccept 

(2) It empties the stack before accepting 

(3) Each transition either pushes a symbol or 
pops a symbol, but not both at the same time 

⇐ 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 
ε,$ → ε 

SIMPLIFY 

q0 q1 

q2 q3 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 
ε,$ → ε 

SIMPLIFY 

q0 q1 

q2 q3 

ε,0 → ε 

q4 

q5 

ε,ε → 0 

ε,ε → 0 



V = {Apq | p,q∈Q } 

S = Aq0qacc 

Idea For Our Grammar G:  
For every pair of states p and q in PDA P, 
  
G will have a variable Apq which generates all 
strings x that can take: 
 
 P from p with an empty stack  
         to q with an empty stack 



stack 
height 

input 
string p q 

Apq → aArsb 

r s 

1. The symbol t popped at the end is exactly 
the one pushed at the beginning 

b a push t pop t 

x = ayb   takes p with empty stack to q with empty stack 

δ(p, a, ε) → (r, t) 

δ(s, b, t) → (q, ε) 

─ ─ ─ ─ x ─ ─ ─ ─ 



stack 
height 

input 
string 

p r q 

Apq → AprArq 

2. The symbol popped at the end is not 
the one pushed at the beginning 



V = {Apq | p, q∈Q } 
S = Aq0qacc 

Formally: 

For every p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε 

If (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t)  
Then add the rule Apq → aArsb 

For every p, q, r ∈ Q, 
add the rule Apq → AprArq  

For every p ∈ Q, 
add the rule App → ε  



THE CHOMSKY NORMAL FORM 
A context-free grammar is in Chomsky normal 
form if every rule is of the form: 

A → BC  

A → a  

S → ε  

B, C are variables (not the start var) 
a is a terminal 

S is the start variable 

S → 0S1 
S → TT 
T → ε S → TU 

T → 0 
U → SV | 1 

S0 → TU | ε 

V → 1 



Theorem: Any context-free language 
can be generated by a context-free 
grammar in Chomsky normal form 

“Can transform any CFG into 
Chomsky normal form” 

Theorem: If G is in CNF, w ∈ L(G) and |w| > 0, 
then any derivation of w in G has length 2|w| - 1 



Theorem: Any CFL can be generated 
by a CFG in Chomsky normal form 

Algorithm: 
1.  Add a new start variable (S0S) 
2. Eliminate all  Aε  rules: 
 For each occurrence of A on the RHS of a rule, 
  add a new rule that removes that occurrence  
   (unless this new rule was previously removed) 
3. Eliminate all  AB  rules: 
 For each rule with B on LHS of a rule,  
  add a new rule that puts A on the LHS instead 
  (unless this new rule was previously removed) 
4. Convert  Au1u2... uk  to  A u1A1, A1u2A2, ... 
If ui is a terminal, replace ui  with Ui and add Uiui 



Convert the following into Chomsky normal form: 
A → BAB | B | ε  
B → 00 | ε 

A → BAB | B | ε  
B → 00 | ε 

S0 → A 
A → BAB | B | BB | AB | BA  
B → 00 

S0 → A | ε 

A → BAB | 00 | BB | AB | BA  
B → 00 

S0 → BAB | 00 | BB | AB | BA  | ε 

S0 → BC | DD | BB | AB | BA  | ε,     C → AB,  
A → BC | DD | BB | AB | BA ,    B → DD,    D → 0 

 



FORMAL DEFINITIONS 



Q is the set of states (finite) 

Σ is the alphabet (finite) 

δ : Q × Σ → Q  is the transition function 

q0 ∈ Q is the start state 

F ⊆ Q is the set of accept states 

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)  
deterministic  DFA 

Let w1, ... , wn ∈ Σ and  w = w1... wn ∈ Σ*  
Then M accepts w if there are r0, r1, ..., rn ∈ Q, s.t. 
1. r0=q0  
2.  δ(ri, wi+1 ) = ri+1,   for i = 0, ..., n-1, and  
3. rn ∈ F 



Q is the set of states 

Σ is the alphabet 

δ : Q × Σε → 2Q  is the transition function 

Q0 ⊆ Q is the set of start states 

F ⊆ Q is the set of accept states 

A non-deterministic finite automaton (NFA) 
is a 5-tuple N = (Q, Σ, δ, Q0, F)  

2Q is the set of all possible subsets of Q 
Σε = Σ ∪ {ε} 



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε  (ε = empty string) 
 

Then N accepts w if there are r0, r1, ..., rn ∈ Q 
such that 

 

1. r0 ∈ Q0  
2. ri+1 ∈ δ(ri, wi+1 ) for i = 0, ..., n-1, and  
3. rn ∈ F 

A language L is recognized by an NFA N 
if L = L(N). 

L(N)  = the language recognized by N 
 = set of all strings machine N accepts 



Definition: A (non-deterministic) PDA is a 
tuple     P = (Q, Σ, Γ, δ, q0, F), where:   

Q is a finite set of states 

Γ is the stack alphabet 

q0 ∈ Q is the start state 

F ⊆ Q is the set of accept states 

Σ is the input alphabet 

δ : Q × Σε × Γε → 2 Q × Γε 

2Q is the set of subsets of Q and Σε = Σ ∪ {ε} 



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε (recall Σε = Σ ∪ {ε}) 
 

Then P accepts w if there are  
     r0, r1, ..., rn ∈ Q and  
     s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that 
 

1. r0  = q0  and s0 = ε (P starts in q0 with empty stack) 
 

2. For i = 0, ..., n-1: 
(ri+1 , b)∈ δ(ri, wi+1, a), where si =at  and si+1 = bt for  

some a, b ∈ Γε  and t ∈ Γ*  
(P moves correctly according to state, stack and symbol read) 
 
3. rn ∈ F (P is in an accept state at the end of its input) 



CONTEXT-FREE GRAMMARS 
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:   

V is a finite set of variables 

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)* 

S ∈ V is the start variable 

Σ is a finite set of terminals (disjoint from V) 

L(G) = {w ∈ Σ* | S  ⇒* w}  Strings Generated by G 



Definition: A Turing Machine is a 7-tuple  
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:   

Q is a finite set of states 

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ 

q0 ∈ Q is the start state 

Σ is the input alphabet, where  ∉ Σ  

δ : Q × Γ → Q × Γ × {L,R}  

qaccept ∈ Q is the accept state 

qreject ∈ Q is the reject state, and qreject ≠ qaccept 



A Turing Machine M accepts  input w if there is a 

sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  

C1 is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci 

to Ci+1 in a single step  

3.  Ck is an accepting configuration, ie the state 

of the configuration is qaccept 

Accepting and rejecting configurations are halting 
configurations and do not yield  further configurations 



TMs VERSUS FINITE AUTOMATA 

TM can both write to and read from the tape 

The head can move left and right 

The input doesn’t have to be read entirely, 

Accept and Reject take immediate effect 

and the computation can continue after all 
the input has been read 



A language is called Turing-recognizable or 
recursively enumerable (r.e.) or semi-
decidable if some TM recognizes it 

A language is called decidable or recursive 
if some TM decides it 

recursive 
languages 

r.e.  
languages 

Theorem: If A and ¬A are r.e. then A is recursive 



ADFA = { (B, w) | B is a DFA that accepts string w } 

ANFA = { (B, w) | B is an NFA that accepts string w } 

ACFG = { (G, w) | G is a CFG that generates string w 
} 

Theorem:  ADFA is decidable 
Proof Idea: Simulate B on w 

Theorem: ANFA is decidable 

Theorem: ACFG is decidable 
Proof Idea: Transform G into Chomsky Normal 
Form. Try all derivations of length up to 2|w|-1 



WWW.FLAC.WS 
Happy studying! 
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