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PUSHDOWN AUTOMATA (PDA) 

FINITE 
STATE 

CONTROL 

STACK 
(Last in,  
first out) 

INPUT 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 
ε,$ → ε 

string pop push 

PUSHDOWN AUTOMATA (PDA) 



A → 0A1 
A → ε 

CONTEXT-FREE GRAMMARS 

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000111 

variable terminals 

∈ (V∪Σ)* 

(yields) 
A  ⇒* 000111 

(derives)        

Production rules 



A Language L is generated by a CFG  
⇔  

L is recognized by a PDA 



A Language L is generated by a CFG  
⇒  

L is recognized by a PDA 

Suppose L is generated by a CFG G = (V, Σ, R, S)  
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L 



Suppose L is generated by a CFG G = (V, Σ, R, S)  
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L 

ε,ε →S$ 

ε,$ → ε 

For each rule 'A → w’ ∈ R: 

For each terminal a ∈ Σ: 
ε,A → w 

a,a → ε 



S → aTb 
T → Ta | ε 

ε,ε → $ 

ε,$ → ε 

ε,ε → S 

ε,ε → T 

ε,ε → a 

ε,ε → T 

ε,T → ε 
a,a → ε 
b,b → ε 



Suppose L is generated by a CFG G = (V, Σ, R, S)  
Describe P = (Q, Σ, Γ, δ, q, F) that recognizes L  
(via pseudocode): 

(1) Push $ and then S on the stack 
(2) Repeat the following steps forever: 

(b) If x is a variable A, guess a rule for A and push 
yield (in reverse) into the stack and Go to (a). 
(c) If x is a terminal, read next symbol from input 
and compare it to x. If they’re different, reject.  
If same, pop x and Go to (a). 
(d) If x is $: then accept iff no more input 

(a) Suppose x is now on top of stack 



A Language L is generated by a CFG  
<=  L is recognized by a PDA 

Given PDA P = (Q, Σ, Γ, δ, q, F) 

Construct a CFG G = (V, Σ, R, S) such that  
L(G) = L(P)  

First, simplify P to have the following form: 

(1) It has a unique accept state, qacc 

(2) It empties the stack before accepting 

(3) Each transition either pushes a symbol or 
pops a symbol, but not both at the same time 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 

SIMPLIFY 

q0 q1 

q2 q3 
ε,$ → ε 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 
ε,$ → ε 

SIMPLIFY 

q0 q1 

q2 q3 

ε,0 → ε 

q4 

q5 

ε,ε → 0 

ε,ε → 0 



V = {Apq | p,q∈Q } 

S = Aq0qacc 

Our task is to construct Grammar G to generate 
exactly the words that PDA P accepts. 
 
Idea For Our Grammar G:  
For every pair of states p and q in PDA P, 
  
G will have a variable Apq whose production 
rules will generate all strings x that can take: 
 
 P from p with an empty stack  
         to q with an empty stack 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 
ε,$ → ε 

q0 q1 

q2 q3 

ε,ε → ε 

ε,ε → ε 

ε,0 → ε 

ε,ε → 0 

ε,ε → 0 

q4 

q5 

Aq0q1  generates? 
Aq1q2  generates? 
Aq1q3  generates? 



WANT:  Apq generates all strings that take p 
with an empty stack to q with empty stack 

Let x be such a string 
• P’s first move on x must be a push  (why?) 
• P’s last move on x must be a pop 

Two possibilities: 
1. The symbol popped at the end is the one 

pushed at the beginning 

2. The symbol popped at the end is not the 
one pushed at the beginning 

(so P must empty stack somewhere in the middle, 
and then start pushing symbols on it again)      



stack 
height 

input 
string p q 

Apq → aArsb 

r s 

1. The symbol t popped at the end is exactly 
the one pushed at the beginning 

push t pop t 

x = ayb   takes p with empty stack to q with empty stack 

δ(p, a, ε) → (r, t) 

δ(s, b, t) → (q, ε) 

─ ─ ─ ─ x ─ ─ ─ ─ - - 
b a 



stack 
height 

input 
string 

p r q 

Apq → AprArq 

2. The symbol popped at the end is not 
the one pushed at the beginning 



V = {Apq | p, q ∈ Q } 
S = Aq0qacc 

Formally: 

For every p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε 

If (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t)  
Then add the rule Apq → aArsb 

For every p, q, r ∈ Q, 
add the rule Apq → AprArq  

For every p ∈ Q, 
add the rule App → ε  



Apq generates x  
⇔  

x can bring P from p with an empty stack  
to q with an empty stack 

Show, for all x, 



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack 

Proof (by induction on the number of steps in 
the derivation of x from Apq): 
Base Case: The derivation has 1 step: App ⇒* ε 

Show, for all x, 



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack 

Proof (by induction on the number of steps in 
the derivation of x from Apq): 

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1: 

or  Apq → aArsb Apq → AprArq  First step in derivation: 
Apq ⇒* x   in   k+1 steps 

Show, for all x, 

Inductive Step: 



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack 

Proof (by induction on the number of steps in 
the derivation of x from Apq): 

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1: 

Apq → AprArq  First step in derivation: 
Apq ⇒* x   in   k+1 steps 

Inductive Step: 

Then, x = yz with Apr ⇒* y , Arq ⇒* z   
By IH, y can take p with empty stack to r with 
empty stack; similarly for z from  r to q. So, … 

Show, for all x, 



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack 

Proof (by induction on the number of steps in 
the derivation of x from Apq): 

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1: 

First step in derivation: 
Apq ⇒* x   in   k+1 steps 

Inductive Step: 

Then x = ayb with Ars ⇒* y.  
By IH, y can take r with empty stack to s with empty 
stack 

Show, for all x, 

or  Apq → aArsb 



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack 

Proof (by induction on the number of steps in 
the derivation of x from Apq): 

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1: 

First step in derivation: 
Apq ⇒* x   in   k+1 steps 

Inductive Step: 

(r,t) ∈ δ(p,a,ε) and (q, ε) ∈ δ(s,b,t)  

state push state alphabet pop 

By def of rules of G, 

Show, for all x, 

or  Apq → aArsb 



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack 

Proof (by induction on the number of steps in 
the derivation of x from Apq): 

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1: 

First step in derivation: 
Apq ⇒* x   in   k+1 steps 

Inductive Step: 

So if P starts in p then after reading a, it can go to r and push t. 
By IH, y can bring P from r to s, with t at the top of the stack. 
Then from s reading b, it can pop t and end in state q. 

Show, for all x, 

or  Apq → aArsb 



Apq generates x  
⇔ 

x can bring P from p with an empty stack to 
q with an empty stack 

⇐ 

Proof (by induction on the number of steps in 
the computation of P from p to q with empty 
stacks on input x): 

Base Case: The computation has 0 steps 
So it starts and ends in the same state.  

The only string that can do that  in 0 steps is ε. 
 

Since App → ε  is a rule of G, App ⇒* ε  

Show, for all x, 



Inductive Step: 
Assume true for computations of length ≤ k, 
we’ll prove true for computations of length k+1 
Suppose that P has a computation where x 
brings p to q with empty stacks in k+1 steps 

1. The stack is empty only at the beginning 
and the end of this computation 

2. The stack is empty somewhere in the 
middle of the computation 

Two cases:  (idea!) 
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Inductive Step: 
Assume true for computations of length ≤ k, 
we’ll prove true for computations of length k+1 
Suppose that P has a computation where x 
brings p to q with empty stacks in k+1 steps 

1. The stack is empty only at the beginning 
and the end of this computation 

2. The stack is empty somewhere in the 
middle of the computation 

To Show: Can write x as ayb  where Ars ⇒* y 
 and  Apq → aArsb is a rule in G.  So Apq⇒*x 

To Show: Can write x as yz where Apr ⇒* y, Arq ⇒* z   
and Apq → AprArq  is a rule in G. So Apq⇒*x 
 

Two cases:  (idea!) 



Inductive Step: 
1. The stack is empty only at the beginning 
and the end of this computation 

The symbol t pushed at the beginning must be the same 
symbol popped at the end. why?) 
Let a be input symbol read at beginning, b read at end. 
• So x = ayb,  for some y. 
Let r be the state after the first step, let s be the state 
before the last step.  
• y can bring P from r with an empty stack to s with an 

empty stack. (why?)  So by IH, Ars ⇒* y. 
• Also, Apq → aArsb must be a rule in G. (why?) 

 

To Show: Can write x as ayb  where Ars ⇒* y 
 and  Apq → aArsb is a rule in G. So Apq⇒*x 



Inductive Step: 
2. The stack is empty somewhere in the 
middle of the computation 

To Show: Can write x as yz where Apr ⇒* y, Arq ⇒* z   
and Apq → AprArq  is a rule in G. So Apq⇒*x 

Let r be a state in which the stack becomes empty 
in the middle. 
Let y be the input read to that point, z be input 
read after.  So, x = yz where |y|, |z| > 0. 
By IH, both Apr ⇒* y, Arq ⇒* z  
 

By construction of G, Apq → AprArq  is a rule in G 



A Language L is generated by a CFG  
⇔  

L is recognized by a PDA 



Corollary: Every regular 
language is context-free 



WWW.FLAC.WS 
Read Chapters 2 and 3 of the book for next time 
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