15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

How can we prove that two DFAs are equivalent?

One way: Minimize

Another way: Let
$$C = (\neg A \cap B) \cup (A \cap \neg B)$$

Then, $A = B \Leftrightarrow C = \emptyset$

C is the "disjoint union"

CONTEXT-FREE GRAMMARS AND PUSH-DOWN AUTOMATA

TUESDAY Jan 28

NONE OF THESE ARE REGULAR

$$\Sigma = \{0, 1\}, L = \{0^n1^n \mid n \ge 0\}$$

$$\Sigma = \{a, b, c, ..., z\}, L = \{w \mid w = w^R\}$$

$$\Sigma = \{(,)\}, L = \{balanced strings of parens\}$$

$$(), ()(), (()()) are in L, (, ()), ())(() are not in L$$

The Pumping Lemma (for Regular Languages)

PUSHDOWN AUTOMATA (PDA)

PUSHDOWN AUTOMATA (PDA)

Newell, A., Shaw, J.C., & Simon, H.A. "Report on a general problem-solving program in Information Processing", Proc. International Conference, UNESCO Paris 1959

PUSHDOWN AUTOMATA (PDA)

A brief history of the stack, Sten Henriksson, Computer Science Department, Lund University, Lund, Sweden.

Non-deterministic

Non-deterministic

PDA that recognizes $L = \{ 0^n1^n \mid n \ge 0 \}$

Definition: A (non-deterministic) PDA is a 6-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

push

Q is a finite set of states

\(\Sigma is the input alphabet \(\text{pop} \)

□ is the stack alphabet

$$\delta: \mathbb{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow 2^{\mathbb{Q} \times \Gamma_{\varepsilon}}$$

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

 $2^{Q \times \Gamma_{\epsilon}}$ is the set of subsets of $Q \times \Gamma_{\epsilon}$ $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}, \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$

Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\epsilon}$ (recall $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$)

Then P accepts w if there are

```
\mathbf{r_0}, \mathbf{r_1}, ..., \mathbf{r_n} \in \mathbf{Q} and \mathbf{s_0}, \mathbf{s_1}, ..., \mathbf{s_n} \in \mathbf{\Gamma}^* (sequence of stacks) such that
```

- 1. $r_0 = q_0$ and $s_0 = \varepsilon$ (P starts in q_0 with empty stack)
- 2. For i = 0, ..., n-1:
 (r_{i+1}, b) ∈ δ(r_i, w_{i+1}, a), where s_i =at and s_{i+1} = bt for some a, b ∈ Γ_ε and t ∈ Γ*
 (P moves correctly according to state, stack and symbol read)
- **3.** $\mathbf{r_n} \in \mathbf{F}$ (P is in an accept state at the end of its input)

$$Q = \{q_0, q_1, q_2, q_3\}$$
 $\Sigma = \{0,1\}$ $\Gamma = \{\$,0,1\}$

$$\delta$$
 : Q × Σ_ϵ × Γ_ϵ \rightarrow 2 $^{Q \times \Gamma_\epsilon}$

$$\delta(q_1,1,0) = \{ (q_2,\epsilon) \} \qquad \delta(q_2,1,1) = \emptyset$$

EVEN-LENGTH PALINDROMES

$$\Sigma = \{a, b, c, ..., z\}$$

zeus sees suez

Madamimadam ?

(PDA to recognize odd length palindromes?)

Build a PDA to recognize $L = \{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and } (i = j \text{ or } i = k) \}$

Build a PDA to recognize $L = \{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and } (i = j \text{ or } i = k) \}$

Build a PDA to recognize $L = \{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and } (i = j \text{ or } i = k) \}$

"Colorless green ideas sleep furiously."

$$A \rightarrow 0A1$$
 $A \rightarrow B$
 $B \rightarrow \#$
 $A \rightarrow 0A1 \mid B$
 $B \rightarrow \#$

 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$

⇒(yields)

Derivation

A ⇒* 00#11 (derives)

Non-deterministic

We say: 00#11 is generated by the Grammar

SNOOP'S GRAMMAR

(courtesy of Luis von Ahn)

SNOOP'S GRAMMAR

(courtesy of Luis von Ahn)

Generate:
Umm Like Umm Umm Fa Shizzle Dude

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

\(\Sigma\) is a finite set of terminals (disjoint from \(\mathbf{V} \))

R is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

S ∈ **V** is the start variable

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

\(\Sigma\) is a finite set of terminals (disjoint from \(\mathbf{V} \))

R is set of production rules of the form $A \to W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

S ∈ **V** is the start variable

 $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$ Strings Generated by G

A Language L is context-free if there is a CFG that generates precisely the string in L

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

\(\Sigma\) is a finite set of terminals (disjoint from \(\mathbb{V} \)

R is set of production rules of the form $A \to W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

S ∈ **V** is the start variable

$$\label{eq:G} \textbf{G} = \{\,\{S\},\,\{0,1\},\,R,\,S\,\,\} \qquad R = \{\,S \rightarrow 0S1,\,S \rightarrow \epsilon\,\,\}$$

$$\label{eq:L(G)} \textbf{L(G)} =$$

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

\(\Sigma\) is a finite set of terminals (disjoint from \(\mathbb{V} \)

R is set of production rules of the form $A \to W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

S ∈ V is the start variable

$$G = \{ \{S\}, \{0,1\}, R, S \}$$
 $R = \{ S \rightarrow 0S1, S \rightarrow \epsilon \}$

 $L(G) = \{ 0^n1^n \mid n \ge 0 \}$ Strings Generated by G

WRITE A CFG FOR EVEN-LENGTH PALINDROMES

WRITE A CFG FOR EVEN-LENGTH PALINDROMES

 $S \rightarrow \sigma S \sigma$ for all $\sigma \in \Sigma$

 $S \to \epsilon$

WRITE A CFG FOR THE EMPTY SET

WRITE A CFG FOR THE EMPTY SET

$$G = \{ \{S\}, \Sigma, \emptyset, S \}$$

$$A \Rightarrow 0A1$$

$$A \Rightarrow 0A1 \Rightarrow 00A11$$

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11$$

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

$$<$$
EXPR> → $<$ EXPR> + $<$ EXPR> $<$ EXPR> → $<$ EXPR> × $<$ EXPR> $<$ EXPR> → ($<$ EXPR>) $<$ EXPR> → a

Build a parse tree for a + a x a

Definition: a string is derived ambiguously in a context-free grammar if it has more than one parse tree

Definition: a grammar is ambiguous if it generates some string ambiguously

See G₄ for unambiguous standard arithmetic precedence [adds parens (,)]

L = { $a^ib^jc^k | i, j, k \ge 0$ and (i = j or j = k) } is inherently ambiguous (xtra credit)

Undecidable to tell if a language has unambiguous parse trees (Post's problem)

NOT REGULAR

$$\Sigma = \{0, 1\}, L = \{0^n1^n \mid n \ge 0\}$$

But L is CONTEXT FREE

$$A \rightarrow 0A1$$
 $A \rightarrow \epsilon$

WHAT ABOUT?

$$\Sigma = \{0, 1\}, L_1 = \{0^n1^n 0^m | m, n \ge 0\}$$

$$\Sigma = \{0, 1\}, L_2 = \{0^n1^m 0^n | m, n \ge 0\}$$

$$\Sigma = \{0, 1\}, L_3 = \{0^m1^n 0^n | m = n \ge 0\}$$

$$\Sigma = \{0, 1\}, L_1 = \{0^n1^n 0^m | m, n \ge 0\}$$

$$\Sigma = \{0, 1\}, L_2 = \{0^n1^m 0^n | m, n \ge 0\}$$

$$\Sigma = \{0, 1\}, L_3 = \{0^m1^n 0^n | m=n \ge 0\}$$

$$\begin{split} \Sigma &= \{0,\,1\},\, L_1 = \{\,0^n1^n\,0^m|\,\,m,\,n \geq 0\,\,\} \\ &\quad S -> AB \\ &\quad A -> \,0A1 \mid \epsilon \\ &\quad B -> \,0B \mid \epsilon \end{split}$$

$$\Sigma &= \{0,\,1\},\, L_2 = \{\,0^n1^m\,0^n|\,\,m,\,n \geq 0\,\,\} \\ &\quad S -> \,0S0 \mid A \\ &\quad A -> \,1A \mid \epsilon \end{split}$$

$$\Sigma &= \{0,\,1\},\, L_3 = \{\,0^m1^n\,0^n|\,\,m = n \geq 0\,\,\} \end{split}$$

THE PUMPING LEMMA FOR CFGs

Let L be a context-free language

Then there is a P such that
if w ∈ L and |w| ≥ P
then can write w = uvxyz, where:

- 1. |vy| > 0
- 2. |vxy| ≤ P
- 3. For every i ≥ 0, uvixyiz ∈ L

$$\Sigma = \{0, 1\}, L_3 = \{0^m1^n 0^n | m=n \ge 0\}$$

Choose $w = 0^P 1^P 0^P$.

By the Pumping Lemma, we can write w = uvxyz with |vy| > 0, $|vxy| \le P$ such that pumping v together with y will produce another word in L_3 Since $|vxy| \le P$, $vxy = 0^a1^b$, or $vxy = 1^a0^b$.

$$\Sigma = \{0, 1\}, L_3 = \{0^m1^n 0^n | m=n \ge 0\}$$

Choose $\mathbf{w} = 0^{\mathsf{P}} 1^{\mathsf{P}} 0^{\mathsf{P}}$.

By the Pumping Lemma, we can write w = uvxyz with |vy| > 0, $|vxy| \le P$ such that pumping v together with y will produce another word in L_3 Since $|vxy| \le P$, $vxy = 0^a1^b$, or $vxy = 1^a0^b$.

Pumping in the first case will unbalance with the 0's at the end; in the second case, will unbalance with the 0's at the beginning. Contradiction.

THE PUMPING LEMMA FOR CFGs

Let L be a context-free language

Then there is a P such that
if w ∈ L and |w| ≥ P
then can write w = uvxyz, where:

- 1. |vy| > 0
- 2. |vxy| ≤ P
- 3. For every i ≥ 0, uvixyiz ∈ L

Idea of Proof: If w is long enough, then any parse tree for w must have a path that contains a variable more than once

Formal Proof:

Let b be the maximum number of symbols (length) on the right-hand side of any rule

If the height of a parse tree is h, the length of the string generated by that tree is at most: bh

Let | V | be the number of variables in G

Define $P = b^{|V|+1}$

Let w be a string of length at least P

Let T be a parse tree for w with a *minimum* number of nodes.

 $b^{|V|+1} = P \le |w| \le b^h$

T must have height h at least V+1

The longest path in T must have ≥ |V|+1 variables

Select R to be a variable in T that repeats, among the lowest |V|+1 variables in the tree

- 1. |vy| > 0 since T has minimun # nodes
- 2. $|vxy| \le P$ since $|vxy| \le b^{|V|+1} = P$

EQUIVALENCE OF CFGs and PDAs

A Language L is generated by a CFG

L is recognized by a PDA

Next Time

WWW.FLAC.WS

Read the rest of Chapter 2 for next time