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How can we prove that two 
DFAs are equivalent? 

One way: Minimize 
 
Another way: Let C = (¬A ∩ B) ∪ (A ∩ ¬B) 

Then,  A = B ⇔ C = ∅  
 

C is the “disjoint union” 
 
 



CONTEXT-FREE GRAMMARS  
AND PUSH-DOWN AUTOMATA 

TUESDAY Jan 28 



Σ = {0, 1}, L = { 0n1n | n ≥ 0 } 

Σ = {a, b, c, …, z}, L = { w | w = wR } 

Σ = { (, ) }, L = { balanced strings of parens } 

NONE OF THESE ARE REGULAR 

(), ()(), (()()) are in L, (, ()), ())(() are not in L 



Path of w 

The Pumping Lemma (for Regular Languages) 

i< j<p 



PUSHDOWN AUTOMATA (PDA) 

FINITE 
STATE 

CONTROL 

STACK 
(Last in,  
first out) 

INPUT 



PUSHDOWN AUTOMATA (PDA) 

FINITE 
STATE 

CONTROL 

STACK 
(Last in,  
first out) 

INPUT 

Newell, A., Shaw, J.C., & Simon, H.A. ”Report on a general problem-solving 
program in Information Processing”, Proc. International Conference, 
UNESCO  Paris 1959 



PUSHDOWN AUTOMATA (PDA) 

FINITE 
STATE 

CONTROL 

STACK 
(Last in,  
first out) 

INPUT 

A brief history of the stack, Sten Henriksson, 
Computer Science Department, Lund University, Lund, Sweden. 

Turing ‘47 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 
ε,$ → ε 

input pop push 

0011 

$ $ 0 $ 0 Non-deterministic 

Non-deterministic 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 
ε,$ → ε 

input pop push 

0011 

STACK $ 

0011 011 

$ 0 

11 

$ 0 

1   

PDA that recognizes L = { 0n1n | n ≥ 0 } 



Definition: A (non-deterministic) PDA is a 6-tuple  
P = (Q, Σ, Γ, δ, q0, F), where:   

Q is a finite set of states 

Γ is the stack alphabet 

q0 ∈ Q is the start state 

F ⊆ Q is the set of accept states 

Σ is the input alphabet 

δ : Q × Σε × Γε → 2 Q × Γε 

2Q × Γε is the set of subsets of Q × Γε 
  Σε = Σ ∪ {ε}, Γε= Γ∪ {ε} 

 

push 
pop 



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε (recall Σε = Σ ∪ {ε}) 
 

Then P accepts w if there are  
     r0, r1, ..., rn ∈ Q and  
     s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that 
 

1. r0  = q0  and s0 = ε (P starts in q0 with empty stack) 
 

2. For i = 0, ..., n-1: 
(ri+1 , b) ∈ δ(ri, wi+1, a), where si =at  and si+1 = bt for  

some a, b ∈ Γε  and t ∈ Γ*  
(P moves correctly according to state, stack and symbol read) 
 
3. rn ∈ F (P is in an accept state at the end of its input) 



ε,ε → $ 0,ε → 0 

1,0 → ε 

1,0 → ε 
ε,$ → ε 

q0 q1 

q2 q3 

Q = {q0, q1, q2, q3} Γ = Σ = 

δ : Q × Σε × Γε → 2 Q × Γε 

{0,1} {$,0,1} 

δ(q1,1,0) =  { (q2,ε) } δ(q2,1,1) =  ∅ 



EVEN-LENGTH PALINDROMES 

Σ = {a, b, c, …, z} 

ε,ε → $ 

ε,ε → ε 

σ,σ → ε 
ε,$ → ε 

q0 q1 

q2 q3 

σ,ε → σ 

zeus sees suez 
Madamimadam ? 

(PDA to recognize odd length palindromes?) 



Build a PDA to recognize  
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) } 

ε,ε → $ 

q0 

q1 

a,ε → a 

choose i=j 

choose i=k 

ε,ε → ε 



Build a PDA to recognize  
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) } 

ε,ε → $ 

b,a → ε 

ε,$ → ε q0 

q1 

q3 

a,ε → a 

q2 

c,ε → ε 

choose i=j 

choose i=k 

ε,ε → ε 



Build a PDA to recognize  
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) } 

ε,ε → $ 

b,a → ε 

ε,$ → ε q0 

q5 q1 

q3 

a,ε → a 

q2 

q4 q6 ε,ε → ε ε,ε → ε ε,$ → ε 

b,ε → ε c,a → ε 

c,ε → ε 

choose i=j 

choose i=k 



CONTEXT-FREE GRAMMARS 

“Colorless green ideas sleep furiously.” 



CONTEXT-FREE GRAMMARS 

A → 0A1 
A → B 
B → # 

A → 0A1 | B 
B → # 



A → 0A1 
A → B 
B → # 

CONTEXT-FREE GRAMMARS 

A 
variables 

terminals 

production 
rules start variable 

⇒ 0A1 
⇒(yields) 

⇒ 00A11 ⇒ 00B11 ⇒ 00#11 

Non-deterministic 

A  ⇒* 00#11 
(derives)        

Derivation 

We say: 00#11 is 
generated by the 

Grammar 



<PHRASE> → <START WORD><END WORD>DUDE 
<PHRASE> → <FILLER><PHRASE> 

<FILLER> → LIKE 
<FILLER> → UMM 
<START WORD> → FO 

<END WORD> → SHO 
<START WORD> → FA 

<END WORD> → SHAZZY 
<END WORD> → SHEEZY 

SNOOP’S GRAMMAR 
(courtesy of Luis von Ahn) 

<END WORD> → SHIZZLE 



Generate: 
Umm Like Umm Umm Fa Shizzle Dude 

SNOOP’S GRAMMAR 
(courtesy of Luis von Ahn) 



CONTEXT-FREE GRAMMARS 
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:   

V is a finite set of variables 

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)* 

S ∈ V is the start variable 

Σ is a finite set of terminals (disjoint from V) 



CONTEXT-FREE LANGUAGES 
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:   

V is a finite set of variables 

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)* 

S ∈ V is the start variable 

Σ is a finite set of terminals (disjoint from V) 

L(G) = {w ∈ Σ* | S  ⇒* w}  Strings Generated by G 
 

 A Language L is context-free if there is a CFG 
that generates precisely the string in L 



A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:   

V is a finite set of variables 

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)* 

S ∈ V is the start variable 

Σ is a finite set of terminals (disjoint from V) 

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε } 

L(G) = 

CONTEXT-FREE LANGUAGES 

 
 
 



A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:   

V is a finite set of variables 

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)* 

S ∈ V is the start variable 

Σ is a finite set of terminals (disjoint from V) 

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε } 

L(G) = { 0n1n | n ≥ 0 }  Strings Generated by G 

CONTEXT-FREE LANGUAGES 

 
 
 



WRITE A CFG FOR EVEN-LENGTH 
PALINDROMES 



WRITE A CFG FOR EVEN-LENGTH 
PALINDROMES 

S → σSσ for all σ ∈ Σ 
S → ε  



WRITE A CFG FOR THE EMPTY SET 



WRITE A CFG FOR THE EMPTY SET 

G = { {S}, Σ, ∅, S } 



PARSE TREES 

A ⇒ 0A1 

A 

0 1 

A → 0A1 
A → B 
B → # 

A 



PARSE TREES 

A ⇒ 0A1 ⇒ 00A11 

A 

0 1 

A 

0 1 

A → 0A1 
A → B 
B → # 



PARSE TREES 

A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 

A 

B 

0 1 

A 

A 

0 1 

A → 0A1 
A → B 
B → # 



PARSE TREES 

A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11 

A 

B 

0 1 # 

A 

A 

0 1 

A → 0A1 
A → B 
B → # 



<EXPR> → <EXPR> + <EXPR> 
<EXPR> → <EXPR> x <EXPR> 
<EXPR> → ( <EXPR> ) 
<EXPR> → a 
Build a parse tree for a + a x a 

<EXPR> 

a x + a 

<EXPR> 
<EXPR> 

a 

<EXPR> <EXPR> 

<EXPR> 

a + x a 

<EXPR> 
<EXPR> 

a 

<EXPR> <EXPR> 



Definition: a string is derived ambiguously 
in a context-free grammar if it has more 
than one parse tree 

Definition: a grammar is ambiguous if it 
generates some string ambiguously 

See G4 for unambiguous standard 
arithmetic precedence [adds parens  (,) ] 

L = { aibjck | i, j, k ≥ 0 and (i = j or j = k) }  
is inherently ambiguous (xtra  credit) 

Undecidable to tell if a language has 
unambiguous parse trees (Post’s problem) 
 



Σ = {0, 1}, L = { 0n1n | n ≥ 0 } 

WHAT ABOUT? 

But L is CONTEXT FREE 

NOT REGULAR 

Σ = {0, 1}, L1 = { 0n1n 0m| m,n ≥ 0 } 

Σ = {0, 1}, L2 = { 0n1m 0n| m,n ≥ 0 } 

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 } 

A → 0A1 
A → ε 



WHAT ABOUT? 

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 } 

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 } 

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 } 



WHAT ABOUT? 

S -> AB 
A -> 0A1 | ε 
B -> 0B | ε 

S -> 0S0 | A  
A -> 1A | ε 

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 } 

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 } 

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 } 



THE PUMPING LEMMA FOR CFGs 

Let L be a context-free language 

Then there is a P such that  
if  w ∈ L and |w| ≥ P 

1.  |vy| > 0 
then can write w = uvxyz, where: 

3. For every i ≥ 0, uvixyiz ∈ L 
2.  |vxy| ≤ P 



WHAT ABOUT? 

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 } 

Choose w = 0P 1P 0P. 
 

By the  Pumping Lemma, we can write 
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v 
together with y will produce another word in  L3  
Since |vxy| ≤ P,  vxy = 0a1b, or vxy = 1a 0b. 



WHAT ABOUT? 

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 } 

 

Pumping in the first case will unbalance with the 0’s at 
the end; in the second case, will unbalance with the 
0’s at the beginning. Contradiction. 

Choose w = 0P 1P 0P. 
 

By the  Pumping Lemma, we can write 
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v 
together with y will produce another word in  L3  
Since |vxy| ≤ P,  vxy = 0a1b, or vxy = 1a 0b. 



THE PUMPING LEMMA FOR CFGs 

Let L be a context-free language 

Then there is a P such that  
if  w ∈ L and |w| ≥ P 

1.  |vy| > 0 
then can write w = uvxyz, where: 

3. For every i ≥ 0, uvixyiz ∈ L 
2.  |vxy| ≤ P 



Idea of Proof: If w is long enough, then  
any parse tree for w must have a path that 
contains a variable more than once 

T 

R 

R 

u v x z y 

T 

u z 

R 

R 

v y 

R 

R 

v x y 



If the height of a parse tree is h, the length of the 
string generated by that tree is at most: 

Formal Proof: 

Let b be the maximum number of symbols 
(length) on the right-hand side of any rule 

bh 

Let | V | be the number of variables in G 
Define P = b|V|+1  
Let w be a string of length at least P 

Let T be a parse tree for w with a minimum 
number of nodes. 
b|V|+1 = P ≤ |w| ≤ bh   

T must have height h at least |V|+1 



The longest path in T must have ≥ |V|+1 variables 

Select R to be a variable in T that repeats, 
among the lowest |V|+1 variables in the tree 

T 

R 

R 

u v x z y 

T 

u z 

R 

R 

v y 

R 

R 

v x y 

1.  |vy| > 0 
2.  |vxy| ≤ P 

since T has minimun # nodes 
since |vxy| ≤ b|V|+1 = P  



A Language L is generated by a CFG  
⇔ 

L is recognized by a PDA 

EQUIVALENCE OF CFGs and PDAs 

Next Time 



WWW.FLAC.WS 
Read the rest of Chapter 2 for next time 
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