
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

How can we prove that two
DFAs are equivalent?

One way: Minimize

Another way: Let C = (¬A ∩ B) ∪ (A ∩ ¬B)

Then, A = B ⇔ C = ∅

C is the “disjoint union”

CONTEXT-FREE GRAMMARS
AND PUSH-DOWN AUTOMATA

TUESDAY Jan 28

Σ = {0, 1}, L = { 0n1n | n ≥ 0 }

Σ = {a, b, c, …, z}, L = { w | w = wR }

Σ = { (,) }, L = { balanced strings of parens }

NONE OF THESE ARE REGULAR

(), ()(), (()()) are in L, (, ()), ())(() are not in L

Path of w

The Pumping Lemma (for Regular Languages)

i< j<p

PUSHDOWN AUTOMATA (PDA)

FINITE
STATE

CONTROL

STACK
(Last in,
first out)

INPUT

PUSHDOWN AUTOMATA (PDA)

FINITE
STATE

CONTROL

STACK
(Last in,
first out)

INPUT

Newell, A., Shaw, J.C., & Simon, H.A. ”Report on a general problem-solving
program in Information Processing”, Proc. International Conference,
UNESCO Paris 1959

PUSHDOWN AUTOMATA (PDA)

FINITE
STATE

CONTROL

STACK
(Last in,
first out)

INPUT

A brief history of the stack, Sten Henriksson,
Computer Science Department, Lund University, Lund, Sweden.

Turing ‘47

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

input pop push

0011

$ $ 0 $ 0 Non-deterministic

Non-deterministic

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

input pop push

0011

STACK $

0011 011

$ 0

11

$ 0

1

PDA that recognizes L = { 0n1n | n ≥ 0 }

Definition: A (non-deterministic) PDA is a 6-tuple
P = (Q, Σ, Γ, δ, q0, F), where:

Q is a finite set of states

Γ is the stack alphabet

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

Σ is the input alphabet

δ : Q × Σε × Γε → 2 Q × Γε

2Q × Γε is the set of subsets of Q × Γε
 Σε = Σ ∪ {ε}, Γε= Γ∪ {ε}

push
pop

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (recall Σε = Σ ∪ {ε})

Then P accepts w if there are
 r0, r1, ..., rn ∈ Q and
 s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that

1. r0 = q0 and s0 = ε (P starts in q0 with empty stack)

2. For i = 0, ..., n-1:
(ri+1 , b) ∈ δ(ri, wi+1, a), where si =at and si+1 = bt for

some a, b ∈ Γε and t ∈ Γ*
(P moves correctly according to state, stack and symbol read)

3. rn ∈ F (P is in an accept state at the end of its input)

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

q0 q1

q2 q3

Q = {q0, q1, q2, q3} Γ = Σ =

δ : Q × Σε × Γε → 2 Q × Γε

{0,1} {$,0,1}

δ(q1,1,0) = { (q2,ε) } δ(q2,1,1) = ∅

EVEN-LENGTH PALINDROMES

Σ = {a, b, c, …, z}

ε,ε → $

ε,ε → ε

σ,σ → ε
ε,$ → ε

q0 q1

q2 q3

σ,ε → σ

zeus sees suez
Madamimadam ?

(PDA to recognize odd length palindromes?)

Build a PDA to recognize
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

q0

q1

a,ε → a

choose i=j

choose i=k

ε,ε → ε

Build a PDA to recognize
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

b,a → ε

ε,$ → ε q0

q1

q3

a,ε → a

q2

c,ε → ε

choose i=j

choose i=k

ε,ε → ε

Build a PDA to recognize
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

b,a → ε

ε,$ → ε q0

q5 q1

q3

a,ε → a

q2

q4 q6 ε,ε → ε ε,ε → ε ε,$ → ε

b,ε → ε c,a → ε

c,ε → ε

choose i=j

choose i=k

CONTEXT-FREE GRAMMARS

“Colorless green ideas sleep furiously.”

CONTEXT-FREE GRAMMARS

A → 0A1
A → B
B → #

A → 0A1 | B
B → #

A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A
variables

terminals

production
rules start variable

⇒ 0A1
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

Non-deterministic

A ⇒* 00#11
(derives)

Derivation

We say: 00#11 is
generated by the

Grammar

<PHRASE> → <START WORD><END WORD>DUDE
<PHRASE> → <FILLER><PHRASE>

<FILLER> → LIKE
<FILLER> → UMM
<START WORD> → FO

<END WORD> → SHO
<START WORD> → FA

<END WORD> → SHAZZY
<END WORD> → SHEEZY

SNOOP’S GRAMMAR
(courtesy of Luis von Ahn)

<END WORD> → SHIZZLE

Generate:
Umm Like Umm Umm Fa Shizzle Dude

SNOOP’S GRAMMAR
(courtesy of Luis von Ahn)

CONTEXT-FREE GRAMMARS
A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

CONTEXT-FREE LANGUAGES
A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

L(G) = {w ∈ Σ* | S ⇒* w} Strings Generated by G

 A Language L is context-free if there is a CFG
that generates precisely the string in L

A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε }

L(G) =

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε }

L(G) = { 0n1n | n ≥ 0 } Strings Generated by G

CONTEXT-FREE LANGUAGES

WRITE A CFG FOR EVEN-LENGTH
PALINDROMES

WRITE A CFG FOR EVEN-LENGTH
PALINDROMES

S → σSσ for all σ ∈ Σ
S → ε

WRITE A CFG FOR THE EMPTY SET

WRITE A CFG FOR THE EMPTY SET

G = { {S}, Σ, ∅, S }

PARSE TREES

A ⇒ 0A1

A

0 1

A → 0A1
A → B
B → #

A

PARSE TREES

A ⇒ 0A1 ⇒ 00A11

A

0 1

A

0 1

A → 0A1
A → B
B → #

PARSE TREES

A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11

A

B

0 1

A

A

0 1

A → 0A1
A → B
B → #

PARSE TREES

A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A

B

0 1 #

A

A

0 1

A → 0A1
A → B
B → #

<EXPR> → <EXPR> + <EXPR>
<EXPR> → <EXPR> x <EXPR>
<EXPR> → (<EXPR>)
<EXPR> → a
Build a parse tree for a + a x a

<EXPR>

a x + a

<EXPR>
<EXPR>

a

<EXPR> <EXPR>

<EXPR>

a + x a

<EXPR>
<EXPR>

a

<EXPR> <EXPR>

Definition: a string is derived ambiguously
in a context-free grammar if it has more
than one parse tree

Definition: a grammar is ambiguous if it
generates some string ambiguously

See G4 for unambiguous standard
arithmetic precedence [adds parens (,)]

L = { aibjck | i, j, k ≥ 0 and (i = j or j = k) }
is inherently ambiguous (xtra credit)

Undecidable to tell if a language has
unambiguous parse trees (Post’s problem)

Σ = {0, 1}, L = { 0n1n | n ≥ 0 }

WHAT ABOUT?

But L is CONTEXT FREE

NOT REGULAR

Σ = {0, 1}, L1 = { 0n1n 0m| m,n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m,n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

A → 0A1
A → ε

WHAT ABOUT?

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

WHAT ABOUT?

S -> AB
A -> 0A1 | ε
B -> 0B | ε

S -> 0S0 | A
A -> 1A | ε

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

THE PUMPING LEMMA FOR CFGs

Let L be a context-free language

Then there is a P such that
if w ∈ L and |w| ≥ P

1. |vy| > 0
then can write w = uvxyz, where:

3. For every i ≥ 0, uvixyiz ∈ L
2. |vxy| ≤ P

WHAT ABOUT?

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

Choose w = 0P 1P 0P.

By the Pumping Lemma, we can write
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v
together with y will produce another word in L3
Since |vxy| ≤ P, vxy = 0a1b, or vxy = 1a 0b.

WHAT ABOUT?

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

Pumping in the first case will unbalance with the 0’s at
the end; in the second case, will unbalance with the
0’s at the beginning. Contradiction.

Choose w = 0P 1P 0P.

By the Pumping Lemma, we can write
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v
together with y will produce another word in L3
Since |vxy| ≤ P, vxy = 0a1b, or vxy = 1a 0b.

THE PUMPING LEMMA FOR CFGs

Let L be a context-free language

Then there is a P such that
if w ∈ L and |w| ≥ P

1. |vy| > 0
then can write w = uvxyz, where:

3. For every i ≥ 0, uvixyiz ∈ L
2. |vxy| ≤ P

Idea of Proof: If w is long enough, then
any parse tree for w must have a path that
contains a variable more than once

T

R

R

u v x z y

T

u z

R

R

v y

R

R

v x y

If the height of a parse tree is h, the length of the
string generated by that tree is at most:

Formal Proof:

Let b be the maximum number of symbols
(length) on the right-hand side of any rule

bh

Let | V | be the number of variables in G
Define P = b|V|+1
Let w be a string of length at least P

Let T be a parse tree for w with a minimum
number of nodes.
b|V|+1 = P ≤ |w| ≤ bh

T must have height h at least |V|+1

The longest path in T must have ≥ |V|+1 variables

Select R to be a variable in T that repeats,
among the lowest |V|+1 variables in the tree

T

R

R

u v x z y

T

u z

R

R

v y

R

R

v x y

1. |vy| > 0
2. |vxy| ≤ P

since T has minimun # nodes
since |vxy| ≤ b|V|+1 = P

A Language L is generated by a CFG
⇔

L is recognized by a PDA

EQUIVALENCE OF CFGs and PDAs

Next Time

WWW.FLAC.WS
Read the rest of Chapter 2 for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 11
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

