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How can we prove that two regular 
expressions are equivalent? 

How can we prove that two DFAs 
(or two NFAs) are equivalent? 

How can we prove that two regular 
languages are equivalent? 

(Does this question make sense?) 



How can we prove that two DFAs 
(or two NFAs) are equivalent? 
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THEOREM 

For every regular language L, there exists 
a UNIQUE (up to re-labeling of the states) 

minimal DFA M such that L = L(M) 



THEOREM 

For every regular language L, there exists 
a UNIQUE (up to re-labeling of the states) 

minimal DFA M such that L = L(M) 

Given a specification for L, via DFA, NFA  or 
regex,this theorem is constructive. 

Minimal means wrt number of states 



NOT TRUE FOR NFAs 
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NOT TRUE FOR RegExp 



EXTENDING δ 
Given DFA M = (Q, Σ, δ, q0, F) extend δ to 
δ : Q × Σ* → Q as follows:  

δ(q, ε) =  

δ(q, σ) = 
δ(q, σ1 …σk+1 ) = δ( δ(q, σ1 …σk ), σk+1 )  

^ 

^ 

^ 

^ ^ 

String w ∈ Σ* distinguishes  states p and q  iff  
δ(p, w) ∈ F  ⇔  δ(q, w) ∉ F  ^ ^ 

q 

δ(q, σ) 

^ Note: δ(q0, w) ∈ F  ⇔  M accepts w 



EXTENDING δ 
Given DFA M = (Q, Σ, δ, q0, F) extend δ to 
δ : Q × Σ* → Q as follows:  

δ(q, ε) =  

δ(q, σ) = 
δ(q, σ1 …σk+1 ) = δ( δ(q, σ1 …σk ), σk+1 )  

^ 

^ 

^ 

^ ^ 

String w ∈ Σ* distinguishes  states p and q  iff  

q 

δ(q, σ) 

^ Note: δ(q0, w) ∈ F  ⇔  M accepts w 

exactly ONE of δ(p, w), δ(q, w) is a final state ^ ^ 



Fix M = (Q, Σ, δ, q0, F) and let p, q ∈ Q  

DEFINITION: 
p is distinguishable from q   
  iff  
there is a w ∈ Σ*  that distinguishes p and q  
 
p is indistinguishable from q   
  iff  
p is not distinguishable from q 
  iff 
for all w ∈ Σ*, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ^ ^ 



Fix M = (Q, Σ, δ, q0, F) and let p, q ∈ Q  

DEFINITION: 
p is distinguishable from q   
  iff  
there is a w ∈ Σ*  that distinguishes p and q  
 
p is indistinguishable from q   
  iff  
p is not distinguishable from q 
  iff 
for all w ∈ Σ*, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ^ ^ 
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ε distinguishes accept from non-accept states 



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q  

Define relation ~ : 
p ~ q  iff  p is indistinguishable from q  
p ~ q  iff  p is distinguishable from q  / 

Proposition: ~ is an equivalence relation 



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q  

Define relation ~ : 
p ~ q  iff  p is indistinguishable from q  
p ~ q  iff  p is distinguishable from q  / 

Proposition: ~ is an equivalence relation 

p ~ p   (reflexive) 
p ~ q  ⇒  q ~ p   (symmetric) 
p ~ q  and  q ~ r  ⇒  p ~ r   (transitive) 

Proof (of transitivity): for all w, we have: 
            δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ⇔  δ(r, w) ∈ F 
  

^ ^ ^ 



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q  

p ~ p   (reflexive) 
p ~ q  ⇒  q ~ p   (symmetric) 
p ~ q  and  q ~ r  ⇒  p ~ r   (transitive) 

Proof (of transitivity): for all w, we have: 
            δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ⇔  δ(r, w) ∈ F 
  

^ ^ ^ 

Proposition: ~ is an equivalence relation 

so ~ partitions the set of states of M into 
disjoint equivalence classes 



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q  

q0 

Q 

q 

[q] = { p | p ~ q } 
Proposition: ~ is an equivalence relation 

so ~ partitions the set of states of M into 
disjoint equivalence classes 
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Algorithm MINIMIZE 

Input: DFA M 

Output: DFA MMIN such that: 

M ≡ MMIN  (that is, L(M) = L(MMIN)) 

MMIN has no inaccessible 
states 

MMIN is irreducible 

all states of MMIN are pairwise distinguishable 
|| 



Algorithm MINIMIZE 

Input: DFA M 

Output: DFA MMIN such that: 

M ≡ MMIN  (that is, L(M) = L(MMIN)) 

MMIN has no inaccessible states 
MMIN is irreducible 

all states of MMIN are pairwise distinguishable 
|| 

Theorem:  MMIN is the unique minimum DFA  
equivalent to M 



NOTE: Theorem not true for NFAs 
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What does this say about Regexs? 



Intuition: States of MMIN will be  
blocks of equivalent states of M 

We’ll find these equivalent states with 
a “Table-Filling” Algorithm 



TABLE-FILLING ALGORITHM 
Input: DFA M = (Q, Σ, δ, q0, F)  

(2) EM = { [q] | q ∈ Q } 

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } / Output: 



TABLE-FILLING ALGORITHM 
Input: DFA M = (Q, Σ, δ, q0, F)  

(2) EM = { [q] | q ∈ Q } 

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } / 

 

• We know how to find those pairs of 
states that ε distinguishes… 

• Use this and recursion to find those 
pairs distinguishable with longer strings 

• Pairs left over will be indistinguishable 

IDEA: 

Output: 



TABLE-FILLING ALGORITHM 
Input: DFA M = (Q, Σ, δ, q0, F)  
Output: 

(2) EM = { [q] | q ∈ Q } 

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } 

q0 
q1 

qi 

qn 
q0 q1 qi qn 

Base Case: p accepts 
   and q rejects ⇒ p ~ q / 

/ 



TABLE-FILLING ALGORITHM 
Input: DFA M = (Q, Σ, δ, q0, F)  
Output: 

(2) EM = { [q] | q ∈ Q } 

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } 

q0 
q1 

qi 

qn 
q0 q1 qi qn 

Recursion: if there is σ ∈ Σ 
and states p′, q′ satisfying  D D 

D 
δ (p, σ) = 
  

p′ 

δ (q, σ) = q′ 
~ / ⇒ p ~ q / 

Base Case: p accepts 
   and q rejects ⇒ p ~ q / 

Repeat until no more new D’s 

/ 
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Claim: If p, q are distinguished by Table-Filling 
algorithm (ie pair labelled by D), then p ~ q 

Proof: By induction on the stage of the algorithm 
 

/ 

Claim: If p, q are not distinguished by Table-Filling 
algorithm, then p ~ q 

Proof (by contradiction): 



If (p, q) is marked D at the start, then one’s in F 
and one isn’t, so ε distinguishes p and q 

Claim: If p, q are distinguished by Table-Filling 
algorithm (ie pair labelled by D), then p ~ q / 

Proof: By induction on the stage of the algorithm 
 



If (p, q) is marked D at the start, then one’s in F 
and one isn’t, so ε distinguishes p and q 

Then there are states p′, q′, string w ∈ Σ*     
and σ ∈ Σ such that: 

δ(p′, w) ∈ F  and  δ(q′, w) ∉ F  ^ ^ 

2. p′ = δ(p,σ) and q′ = δ(q,σ) 
The string σw distinguishes p and q! 

Suppose (p, q) is marked D at stage n+1 

1. (p′, q′) are marked D  ⇒  p′ ~ q′ (by induction) 
⇒ 

/ 

Claim: If p, q are distinguished by Table-Filling 
algorithm (ie pair labelled by D), then p ~ q / 

Proof: By induction on the stage of the algorithm 
 



Claim: If p, q are not distinguished by Table-Filling 
algorithm, then p ~ q 

Proof (by contradiction): 



Claim: If p, q are not distinguished by Table-Filling 
algorithm, then p ~ q 

Proof (by contradiction): 
Suppose the pair (p, q) is not marked D by the 
algorithm, yet p ~ q (a “bad pair”)  / 

δ(p, w) ∈ F  and  δ(q, w) ∉ F  ^ ^ 

So, w = σw′, where  σ ∈ Σ 
(Why is |w| >0 ?) 

Suppose (p,q) is a bad pair with the shortest w. 



Claim: If p, q are not distinguished by Table-Filling 
algorithm, then p ~ q 

Proof (by contradiction): 
Suppose the pair (p, q) is not marked D by the 
algorithm, yet p ~ q (a “bad pair”)  / 

δ(p, w) ∈ F  and  δ(q, w) ∉ F  ^ ^ 

So, w = σw′, where  σ ∈ Σ 
Let p′ = δ(p,σ) and q′ = δ(q,σ) 

Then (p′, q′) cannnot be marked D  (Why?) 
But  (p′, q′) is distinguished by w′ ! 
So (p′, q′) is also a bad pair, but with a SHORTER w′ ! 

(Why is |w| >0 ?) 

Suppose (p,q) is a bad pair with the shortest w. 

Contradiction! 



Input: DFA M 

Output: DFA MMIN 

(1) Remove all inaccessible states from M 

(2) Apply Table-Filling algorithm to get: 
EM = { [q] | q is an accessible state of M } 

Algorithm MINIMIZE 



Input: DFA M 

Output: DFA MMIN 

(1) Remove all inaccessible states from M 

(2) Apply Table-Filling algorithm to get: 
EM = { [q] | q is an accessible state of M } 

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F } 

δMIN( [q], σ ) = [ δ( q, σ ) ] 

Must show δMIN  is well defined! 

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN) 

Algorithm MINIMIZE 



Input: DFA M 

Output: DFA MMIN 

(1) Remove all inaccessible states from M 

(2) Apply Table-Filling algorithm to get:  
EM = { [q] | q is an accessible state of M } 

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN) 

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F } 

δMIN( [q], σ ) = [ δ( q, σ ) ] 

Algorithm MINIMIZE 

Claim: δMIN( [q], w ) = [ δ( q, w) ], w ∈ Σ* ^ ^ 



Input: DFA M 

Output: DFA MMIN 

(1) Remove all inaccessible states from M 

(2) Apply Table-Filling algorithm to get:  
EM = { [q] | q is an accessible state of M } 

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN) 

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F } 

δMIN( [q], σ ) = [ δ( q, σ ) ] 

Algorithm MINIMIZE 

So:   δMIN( [q0], w ) = [ δ( q0, w) ], w ∈ Σ* ^ ^ 



Input: DFA M 

Output: DFA MMIN 

(1) Remove all inaccessible states from M 

(2) Apply Table-Filling algorithm to get:  
EM = { [q] | q is an accessible state of M } 

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN) 

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F } 

δMIN( [q], σ ) = [ δ( q, σ ) ] 

Follows:  MMIN ≡ M 

Algorithm MINIMIZE 
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PROPOSITION. Suppose M′≡ M and M′ has no 
inaccessible states and is irreducible  

 Then, there exists a 1-1 onto correspondence 
between MMIN and M’ (preserving transitions)  

 i.e., MMIN and M’  are“Isomorphic” 



PROPOSITION. Suppose M′≡ M and M′ has no 
inaccessible states and is irreducible  

 Then, there exists a 1-1 onto correspondence 
between MMIN and M’ (preserving transitions)  

COR: MMIN  is unique minimal DFA  ≡  M 
   

 i.e., MMIN and M’  are“Isomorphic” 



PROPOSITION. Suppose M′≡ M and M′ has no 
inaccessible states and is irreducible  

Proof of Prop: We will construct a map recursively 
Base Case: q0 MIN → q0′ 
Recursive Step: If p → p′ 

q 
σ σ 

q′ 
Then q → q′ 

 Then, there exists a 1-1 onto correspondence 
between MMIN and M’ (preserving transitions)  

 i.e., MMIN and M’  are“Isomorphic” 

COR: MMIN  is unique minimal DFA  ≡  M 
   



PROPOSITION. Suppose M′≡ M and M′ has no 
inaccessible states and is irreducible  

Proof of Prop: We will construct a map recursively 
Base Case: q0 MIN → q0′ 
Recursive Step: If p → p′ 

Then q → q′ 

 Then, there exists a 1-1 onto correspondence 
between MMIN and M’ (preserving transitions)  

 i.e., MMIN and M’  are“Isomorphic” 

COR: MMIN  is unique minimal DFA  ≡  M 
   

and  δ(p, σ) = q and δ(p’,σ) = q’ 
 



We need to show: 

• The map is everywhere defined 

• The map is well defined 

• The map is a bijection ( 1-1 and onto) 

• The map preserves transitions 



Base Case: q0 MIN → q0′ 
Recursive Step: If p → p′ 

q 
σ σ 

q′ 
Then q → q′ 

The map is everywhere defined: 
That is, for all q ∈ MMIN  
there is a q′ ∈ M′ such that q → q′ 

If q ∈ MMIN, there is a string w such that 
 δMIN(q0 MIN,w) = q  (WHY?) ^ 

Let q′ = δ′(q0′,w).  q will map to q′ (by induction)  ^ 



Base Case: q0 MIN → q0′ 
Recursive Step: If p → p′ 

q 
σ σ 

q′ 
Then q → q′ 

The map is well defined 

Suppose there exist q′ and q′′ such that  
q → q′ and q → q′′ 
We show that q′ and q′′ are indistinguishable,  
so it must be that q′ = q′′  (Why?) 

That is, for all q ∈ MMIN  
there is at most one q′ ∈ M′ such that q → q′ 



MMIN M′ 

Suppose there exist q′ and q′′ such that  
q → q′ and q → q′′ 

q′ 
u 

q0′ 

q′′ 
v 

q0′ 

q 
u 

q0 MIN 

q 
v 

q0 MIN 

Suppose q′ and q′′ are distinguishable 

w 

A
ccept 

w R
eject 

w R
eject 

w 

A
ccept 

Contradiction! 



MMIN M′ 

Suppose there are distinct p and q such that  
p → q′ and q → q′ 

q′ 
u 

q0′ 

q′ 
v 

q0′ 

p 
u 

q0 MIN 

q 
v 

q0 MIN 

p and q are distinguishable  (why?) 

w 

A
ccept 

w R
eject 

w R
eject 

w 

A
ccept 

The map is 1-1 

Contradiction! 



Base Case: q0 MIN → q0′ 
Recursive Step: If p → p′ 

q 
σ σ 

q′ 
Then q → q′ 

The map is onto 

That is, for all q′ ∈ M′ there is a q ∈ MMIN  
such that q → q′ 

If q′ ∈ M′, there is w such that 
 δ′(q0′,w) = q′ ^ 

Let q = δMIN(q0 MIN,w).  ^ q will map to q′ (why?)  



Base Case: q0 MIN → q0′ 
Recursive Step: If p → p′ 

q 
σ σ 

q′ 
Then q → q′ 

The map preserves transitions 

That is, if δ(p, σ) = q and p → p′ and q → q′ 
then, δ’(p’, σ) = q’ 

(Why?) 



How can we prove that two 
regular expressions are 

equivalent? 



WWW.FLAC.WS 
Read Chapters 2.1 & 2.2 for next time 
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