
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

DFA NFA

Regular
Language

Regular
Expression

 DEFINITION

How can we prove that two regular
expressions are equivalent?

How can we prove that two DFAs
(or two NFAs) are equivalent?

How can we prove that two regular
languages are equivalent?

(Does this question make sense?)

How can we prove that two DFAs
(or two NFAs) are equivalent?

MINIMIZING DFAs
THURSDAY Jan 23

IS THIS MINIMAL?

1 1
1

1

0

0

0 0

IS THIS MINIMAL?

0

1

0 1

THEOREM

For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)

minimal DFA M such that L = L(M)

THEOREM

For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)

minimal DFA M such that L = L(M)

Given a specification for L, via DFA, NFA or
regex,this theorem is constructive.

Minimal means wrt number of states

NOT TRUE FOR NFAs

0

0

0

0

0

0

0

0

NOT TRUE FOR RegExp

EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F) extend δ to
δ : Q × Σ* → Q as follows:

δ(q, ε) =

δ(q, σ) =
δ(q, σ1 …σk+1) = δ(δ(q, σ1 …σk), σk+1)

^

^

^

^ ^

String w ∈ Σ* distinguishes states p and q iff
δ(p, w) ∈ F ⇔ δ(q, w) ∉ F ^ ^

q

δ(q, σ)

^ Note: δ(q0, w) ∈ F ⇔ M accepts w

EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F) extend δ to
δ : Q × Σ* → Q as follows:

δ(q, ε) =

δ(q, σ) =
δ(q, σ1 …σk+1) = δ(δ(q, σ1 …σk), σk+1)

^

^

^

^ ^

String w ∈ Σ* distinguishes states p and q iff

q

δ(q, σ)

^ Note: δ(q0, w) ∈ F ⇔ M accepts w

exactly ONE of δ(p, w), δ(q, w) is a final state ^ ^

Fix M = (Q, Σ, δ, q0, F) and let p, q ∈ Q

DEFINITION:
p is distinguishable from q
 iff
there is a w ∈ Σ* that distinguishes p and q

p is indistinguishable from q
 iff
p is not distinguishable from q
 iff
for all w ∈ Σ*, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ^ ^

Fix M = (Q, Σ, δ, q0, F) and let p, q ∈ Q

DEFINITION:
p is distinguishable from q
 iff
there is a w ∈ Σ* that distinguishes p and q

p is indistinguishable from q
 iff
p is not distinguishable from q
 iff
for all w ∈ Σ*, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ^ ^

0
0,1

0 0

1

1

1

q0

q1

q2

q3

ε distinguishes accept from non-accept states

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

Define relation ~ :
p ~ q iff p is indistinguishable from q
p ~ q iff p is distinguishable from q /

Proposition: ~ is an equivalence relation

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

Define relation ~ :
p ~ q iff p is indistinguishable from q
p ~ q iff p is distinguishable from q /

Proposition: ~ is an equivalence relation

p ~ p (reflexive)
p ~ q ⇒ q ~ p (symmetric)
p ~ q and q ~ r ⇒ p ~ r (transitive)

Proof (of transitivity): for all w, we have:
 δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ⇔ δ(r, w) ∈ F

^ ^ ^

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

p ~ p (reflexive)
p ~ q ⇒ q ~ p (symmetric)
p ~ q and q ~ r ⇒ p ~ r (transitive)

Proof (of transitivity): for all w, we have:
 δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ⇔ δ(r, w) ∈ F

^ ^ ^

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into
disjoint equivalence classes

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

q0

Q

q

[q] = { p | p ~ q }
Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into
disjoint equivalence classes

1 1
1

1

0

0

0 0

Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN such that:

M ≡ MMIN (that is, L(M) = L(MMIN))

MMIN has no inaccessible
states

MMIN is irreducible

all states of MMIN are pairwise distinguishable
||

Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN such that:

M ≡ MMIN (that is, L(M) = L(MMIN))

MMIN has no inaccessible states
MMIN is irreducible

all states of MMIN are pairwise distinguishable
||

Theorem: MMIN is the unique minimum DFA
equivalent to M

NOTE: Theorem not true for NFAs

0

0

0

0

What does this say about Regexs?

Intuition: States of MMIN will be
blocks of equivalent states of M

We’ll find these equivalent states with
a “Table-Filling” Algorithm

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } / Output:

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q } /

• We know how to find those pairs of
states that ε distinguishes…

• Use this and recursion to find those
pairs distinguishable with longer strings

• Pairs left over will be indistinguishable

IDEA:

Output:

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)
Output:

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }

q0
q1

qi

qn
q0 q1 qi qn

Base Case: p accepts
 and q rejects ⇒ p ~ q /

/

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)
Output:

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }

q0
q1

qi

qn
q0 q1 qi qn

Recursion: if there is σ ∈ Σ
and states p′, q′ satisfying D D

D
δ (p, σ) =

p′

δ (q, σ) = q′
~ / ⇒ p ~ q /

Base Case: p accepts
 and q rejects ⇒ p ~ q /

Repeat until no more new D’s

/

1 0

1

0 1

0,1

0

q0

q0 q1

q1

q2

q2 q3

q3

q0 q1 q2 q3

1 0

1

0 1

0,1

0

q0

q0 q1

q1

q2

q2 q3

q3

q0 q1 q2 q3

D D D

1 0

1

0 1

0,1

0

q0

q0 q1

q1

q2

q2 q3

q3

q0 q1 q2 q3

D D D

1 0

1

0 1

0,1

0

q0

q0 q1

q1

q2

q2 q3

q3

q0 q1 q2 q3

D D D

D

1 0

1

0 1

0,1

0

q0

q0 q1

q1

q2

q2 q3

q3

q0 q1 q2 q3

D D D

D D

D

1 1
1

1

0

0

0 0

q0

q0 q1

q1

q2

q2 q3

q3 D D

D

D

q0 q1

q2 q3

1 1
1

1

0

0

0 0

q0

q0 q1

q1

q2

q2 q3

q3 D D

D

D

q0 q1

q2 q3

1 1
1

1

0

0

0 0

q0

q0 q1

q1

q2

q2 q3

q3 D D

D

D

q0 q1

q2 q3

0
1

0 1

Claim: If p, q are distinguished by Table-Filling
algorithm (ie pair labelled by D), then p ~ q

Proof: By induction on the stage of the algorithm

/

Claim: If p, q are not distinguished by Table-Filling
algorithm, then p ~ q

Proof (by contradiction):

If (p, q) is marked D at the start, then one’s in F
and one isn’t, so ε distinguishes p and q

Claim: If p, q are distinguished by Table-Filling
algorithm (ie pair labelled by D), then p ~ q /

Proof: By induction on the stage of the algorithm

If (p, q) is marked D at the start, then one’s in F
and one isn’t, so ε distinguishes p and q

Then there are states p′, q′, string w ∈ Σ*
and σ ∈ Σ such that:

δ(p′, w) ∈ F and δ(q′, w) ∉ F ^ ^

2. p′ = δ(p,σ) and q′ = δ(q,σ)
The string σw distinguishes p and q!

Suppose (p, q) is marked D at stage n+1

1. (p′, q′) are marked D ⇒ p′ ~ q′ (by induction)
⇒

/

Claim: If p, q are distinguished by Table-Filling
algorithm (ie pair labelled by D), then p ~ q /

Proof: By induction on the stage of the algorithm

Claim: If p, q are not distinguished by Table-Filling
algorithm, then p ~ q

Proof (by contradiction):

Claim: If p, q are not distinguished by Table-Filling
algorithm, then p ~ q

Proof (by contradiction):
Suppose the pair (p, q) is not marked D by the
algorithm, yet p ~ q (a “bad pair”) /

δ(p, w) ∈ F and δ(q, w) ∉ F ^ ^

So, w = σw′, where σ ∈ Σ
(Why is |w| >0 ?)

Suppose (p,q) is a bad pair with the shortest w.

Claim: If p, q are not distinguished by Table-Filling
algorithm, then p ~ q

Proof (by contradiction):
Suppose the pair (p, q) is not marked D by the
algorithm, yet p ~ q (a “bad pair”) /

δ(p, w) ∈ F and δ(q, w) ∉ F ^ ^

So, w = σw′, where σ ∈ Σ
Let p′ = δ(p,σ) and q′ = δ(q,σ)

Then (p′, q′) cannnot be marked D (Why?)
But (p′, q′) is distinguished by w′ !
So (p′, q′) is also a bad pair, but with a SHORTER w′ !

(Why is |w| >0 ?)

Suppose (p,q) is a bad pair with the shortest w.

Contradiction!

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)]

Must show δMIN is well defined!

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)]

Algorithm MINIMIZE

Claim: δMIN([q], w) = [δ(q, w)], w ∈ Σ* ^ ^

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)]

Algorithm MINIMIZE

So: δMIN([q0], w) = [δ(q0, w)], w ∈ Σ* ^ ^

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)]

Follows: MMIN ≡ M

Algorithm MINIMIZE

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

q2

0,1

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

1 0

1

0

1

0,1

0

q0 q1

q5

q4

0

1

q0

q0 q1

q1

q3

q3 q4

q4

q5

q5

q3

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

q0

q0 q1

q1

q3

q3 q4

q4

D D D D
q5

q5

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

q0

q0 q1

q1

q3

q3 q4

q4

D D D D
q5

q5

D

D

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

q0

q0 q1

q1

q3

q3 q4

q4

D

D D

D

D D
q5

q5

D

D

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

q0

q0 q1

q1

q3

q3 q4

q4

D

D D

D

D D
q5

q5

D

D

D

1 0

1

0
0,1

0

q0 q1

q3

q5

q4

0

1

q0

q0 q1

q1

q3

q3 q4

q4

D

D D

D

D D
q5

q5

D

D

D

1 0
1

0

1

0 q0 q1

q2

MINIMIZE

1

0

1 0 1 0
1

0

1

0 q0 q1

q2

MINIMIZE

PROPOSITION. Suppose M′≡ M and M′ has no
inaccessible states and is irreducible

 Then, there exists a 1-1 onto correspondence
between MMIN and M’ (preserving transitions)

 i.e., MMIN and M’ are“Isomorphic”

PROPOSITION. Suppose M′≡ M and M′ has no
inaccessible states and is irreducible

 Then, there exists a 1-1 onto correspondence
between MMIN and M’ (preserving transitions)

COR: MMIN is unique minimal DFA ≡ M

 i.e., MMIN and M’ are“Isomorphic”

PROPOSITION. Suppose M′≡ M and M′ has no
inaccessible states and is irreducible

Proof of Prop: We will construct a map recursively
Base Case: q0 MIN → q0′
Recursive Step: If p → p′

q
σ σ

q′
Then q → q′

 Then, there exists a 1-1 onto correspondence
between MMIN and M’ (preserving transitions)

 i.e., MMIN and M’ are“Isomorphic”

COR: MMIN is unique minimal DFA ≡ M

PROPOSITION. Suppose M′≡ M and M′ has no
inaccessible states and is irreducible

Proof of Prop: We will construct a map recursively
Base Case: q0 MIN → q0′
Recursive Step: If p → p′

Then q → q′

 Then, there exists a 1-1 onto correspondence
between MMIN and M’ (preserving transitions)

 i.e., MMIN and M’ are“Isomorphic”

COR: MMIN is unique minimal DFA ≡ M

and δ(p, σ) = q and δ(p’,σ) = q’

We need to show:

• The map is everywhere defined

• The map is well defined

• The map is a bijection (1-1 and onto)

• The map preserves transitions

Base Case: q0 MIN → q0′
Recursive Step: If p → p′

q
σ σ

q′
Then q → q′

The map is everywhere defined:
That is, for all q ∈ MMIN
there is a q′ ∈ M′ such that q → q′

If q ∈ MMIN, there is a string w such that
 δMIN(q0 MIN,w) = q (WHY?) ^

Let q′ = δ′(q0′,w). q will map to q′ (by induction) ^

Base Case: q0 MIN → q0′
Recursive Step: If p → p′

q
σ σ

q′
Then q → q′

The map is well defined

Suppose there exist q′ and q′′ such that
q → q′ and q → q′′
We show that q′ and q′′ are indistinguishable,
so it must be that q′ = q′′ (Why?)

That is, for all q ∈ MMIN
there is at most one q′ ∈ M′ such that q → q′

MMIN M′

Suppose there exist q′ and q′′ such that
q → q′ and q → q′′

q′
u

q0′

q′′
v

q0′

q
u

q0 MIN

q
v

q0 MIN

Suppose q′ and q′′ are distinguishable

w

A
ccept

w R
eject

w R
eject

w

A
ccept

Contradiction!

MMIN M′

Suppose there are distinct p and q such that
p → q′ and q → q′

q′
u

q0′

q′
v

q0′

p
u

q0 MIN

q
v

q0 MIN

p and q are distinguishable (why?)

w

A
ccept

w R
eject

w R
eject

w

A
ccept

The map is 1-1

Contradiction!

Base Case: q0 MIN → q0′
Recursive Step: If p → p′

q
σ σ

q′
Then q → q′

The map is onto

That is, for all q′ ∈ M′ there is a q ∈ MMIN
such that q → q′

If q′ ∈ M′, there is w such that
 δ′(q0′,w) = q′ ^

Let q = δMIN(q0 MIN,w). ^ q will map to q′ (why?)

Base Case: q0 MIN → q0′
Recursive Step: If p → p′

q
σ σ

q′
Then q → q′

The map preserves transitions

That is, if δ(p, σ) = q and p → p′ and q → q′
then, δ’(p’, σ) = q’

(Why?)

How can we prove that two
regular expressions are

equivalent?

WWW.FLAC.WS
Read Chapters 2.1 & 2.2 for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 77

