
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

THE PUMPING LEMMA FOR
REGULAR LANGUAGES

and
REGULAR EXPRESSIONS

TUESDAY Jan 21

WHICH OF THESE ARE REGULAR ?

D = { w | w has equal number of 1s and 0s}

C = { w | w has equal number of
 occurrences of 01 and 10 }

B = {0n1n | n ≥ 0}

THE PUMPING LEMMA

Let L be a regular language with |L| = ∞

Then there is a positive integer P s.t.

1. |y| > 0 (y isn’t ε)
2. |xy| ≤ P
3. For every i ≥ 0, xyiz ∈ L

if w ∈ L and |w| ≥ P
 then can write w = xyz, where:

Why is it called the pumping lemma? The word w
gets PUMPED into something longer…

Let P be the number of states in M

Assume w ∈ L is such that |w| ≥ P

r0 rj rk r|w|

…

There must be j and k such that
j < k ≤ P, and rj = rk (why?) (Note: k - j > 0)

Proof: Let M be a DFA that recognizes L

1. |y| > 0
2. |xy| ≤ P
3. xyiz ∈ L for all i ≥ 0

We show: w = xyz

Let P be the number of states in M

Assume w ∈ L is such that |w| ≥ P

r0 rj= rk

r|w|
…

There must be j and k such that
j < k ≤ P, and rj = rk

Proof: Let M be a DFA that recognizes L

1. |y| > 0
2. |xy| ≤ P
3. xyiz ∈ L for all i ≥ 0

We show: w = xyz

y

z

Let P be the number of states in M

Assume w ∈ L is such that |w| ≥ P

r0 rj= rk

r|w|
…

There must be j and k such that
j < k ≤ P, and rj = rk

Proof: Let M be a DFA that recognizes L

1. |y| > 0
2. |xy| ≤ P
3. xyiz ∈ L for all i ≥ 0

We show: w = xyz

x

y

USING THE PUMPING LEMMA

Let’s prove that
B = {0n1n | n ≥ 0} is not regular

Assume B is regular. Let w = 0P1P

If B is regular, can write w = xyz, |y| > 0,
|xy| ≤ P, and for any i ≥ 0, xyiz is also in B

y must be all 0s:

xyyz has more 0s than 1s

|xy| ≤ P

Contradiction!

Why?

USING THE PUMPING LEMMA

D = { w | w has equal
 number of 1s and 0s}
 is not regular
Assume D is regular. Let w = 0P1P (w is in D!)

If D is regular, can write w = xyz, |y| > 0,
|xy| ≤ P, where for any i ≥ 0, xyiz is also in D

y must be all 0s:

xyyz has more 0s than 1s

|xy| ≤ P

Contradiction!

Why?

WHAT DOES D LOOK LIKE?

D = { w | w has equal number of
 occurrences of 01 and 10}

WHAT DOES C LOOK LIKE?

1 ∪ 0 ∪ ε ∪ 0(0∪1)*0 ∪ 1(0∪1)*1

C = { w | w has equal number of
 occurrences of 01 and 10}

= { w | w = 1, w = 0, w = ε or
 w starts with a 0 and ends with a 0 or
 w starts with a 1 and ends with a 1 }

REGULAR EXPRESSIONS
(expressions representing languages)

 σ is a regexp representing {σ}

ε is a regexp representing {ε}

∅ is a regexp representing ∅

If R1 and R2 are regular expressions
representing L1 and L2 then:

(R1R2) represents L1 ⋅ L2
(R1 ∪ R2) represents L1 ∪ L2
(R1)* represents L1*

PRECEDENCE

* ⋅ ∪

R2 R1* (

EXAMPLE

R1*R2 ∪ R3 = ()) ∪ R3

{ w | w has exactly a single 1 }

0*10*

 What language does ∅* represent?

 What language does ∅* represent?

{ε}

{ w | w has length ≥ 3 and its 3rd symbol is 0 }

{ w | w has length ≥ 3 and its 3rd symbol is 0 }

(0∪1)(0∪1)0(0∪1)*

{ w | every odd position of w is a 1 }

{ w | every odd position of w is a 1 }

(1(0 ∪ 1))*(1 ∪ ε)

L can be represented by a regexp
⇔ L is regular

EQUIVALENCE

L can be represented by a regexp
⇒ L is regular

1.

L can be represented by a regexp

L is a regular language
⇐

2.

Base Cases (R has length 1):

R = σ
σ

R = ε

R = ∅

Given regular expression R, we show there
exists NFA N such that R represents L(N)

Induction on the length of R:

1.

Inductive Step:

Assume R has length k > 1,
and that every regular expression of length < k
represents a regular language

Three possibilities for R:

R = R1 ∪ R2

R = R1 R2

R = (R1)*

(Union Theorem!)
(Concatenation)

(Star)

Therefore: L can be represented by a regexp
⇒ L is regular

Give an NFA that accepts the
language represented by (1(0 ∪ 1))*

1 ε 1,0

ε

L can be represented by a regexp
⇒

L is a regular language
⇐

Proof idea: Transform an NFA for L into a
regular expression by removing states and
re-labeling arrows with regular expressions

2.

NFA
ε
ε

ε

ε

ε

Add unique and distinct start and accept states
While machine has more than 2 states:
Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for the missing state

0

1

0

NFA
ε
ε

ε

ε

ε

Add unique and distinct start and accept states
While machine has more than 2 states:
Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for the missing state

01*0

NFA
ε
ε

ε

ε

ε

While machine has more than 2 states:

R(q1,q2)

R(q2,q2)

R(q2,q3) q1 q2 q3

G

R(q1,q3)

More generally:

NFA
ε
ε

ε

ε

ε

While machine has more than 2 states:

More generally:

G

R(q1,q2)R(q2,q2)*R(q2,q3)

∪ R(q1,q3)
q1 q3

q1
b

a

ε q2

a,b

ε q0 q3

R(q0,q3) =
represents L(N)

q1
b

a

ε q2

a,b

ε q0 q3

R(q0,q3) =
represents L(N)

R(q0,q3) = (a*b)(a∪b)*

Formally:

Run CONVERT(G): (Outputs a regexp)
If #states = 2

return the expression on the arrow
going from qstart to qaccept

Add qstart and qaccept to create G (GNFA)

Formally: Add qstart and qaccept to create G (GNFA)

If #states > 2
select qrip∈Q different from qstart and qaccept

define Q′ = Q – {qrip}

define R′ as:
R′(qi,qj) = R(qi,qrip)R(qrip,qrip)*R(qrip,qj) ∪ R(qi,qj)

return CONVERT(G′)

Run CONVERT(G): (Outputs a regexp)

} Defines: G′ (GNFA)

(R′ = the regexps for edges in G′)
We note that G and G′ are equivalent

Claim: CONVERT(G) is equivalent to G
Proof by induction on k (number of states in G)

Base Case:
k = 2

Inductive Step:
Assume claim is true for k-1 state GNFAs

Recall that G and G′ are equivalent



But, by the induction hypothesis, G′ is
equivalent to CONVERT(G′)

Thus: CONVERT(G′) equivalent to CONVERT(G)

QED

q3

q2

b

a

b

q1

b

a

a

q3

q2

b

a

b

q1

b

a

a

ε

ε

ε

q2

b

a

b

q1
a

a

ε

ε

ε

bb

bb ∪ (a ∪ ba)b*a

q1

ε

b b ∪ (a ∪ ba)b*

(bb ∪ (a ∪ ba)b*a)* (b ∪ (a ∪ ba)b*)

Convert the NFA to a regular expression

q3

q2

b

b q1

a

a, b

b

DFA NFA

Regular
Language

Regular
Expression

 DEFINITION

WWW.FLAC.WS
Finish Chapter 1 of the book for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

