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WHICH OF THESE  ARE REGULAR ? 

D  =  { w | w has equal number of 1s and 0s} 

C  =  { w | w has equal number of 
                  occurrences of 01 and 10 } 

B = {0n1n | n ≥ 0} 



THE PUMPING LEMMA 

Let L be a regular language with |L| = ∞ 

Then there is a positive integer P s.t. 

1.  |y| > 0 (y isn’t ε) 
2.  |xy| ≤ P 
3.  For every i ≥ 0, xyiz ∈ L 

if  w ∈ L and |w| ≥ P 
 then can write w = xyz, where: 

Why is it called the pumping lemma? The word w 
gets PUMPED into something longer… 



Let P be the number of states in M 

Assume w ∈ L is such that |w| ≥ P 

r0 rj rk r|w| 

… 

There must be j and k such that  
j < k ≤ P, and rj = rk  (why?) (Note: k - j > 0) 

Proof: Let M be a DFA that recognizes L 

1.  |y| > 0 
2.  |xy| ≤ P 
3.  xyiz ∈ L for all i ≥ 0 

We show: w = xyz 



Let P be the number of states in M 
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r0 rj= rk 
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2.  |xy| ≤ P 
3.  xyiz ∈ L for all i ≥ 0 

We show: w = xyz 

y 



z 

Let P be the number of states in M 
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USING THE PUMPING LEMMA 

Let’s prove that  
B = {0n1n | n ≥ 0} is not regular  

Assume B is regular. Let w = 0P1P 

If B is regular, can write w = xyz, |y| > 0,  
|xy| ≤ P, and for any i ≥ 0, xyiz is also in B 

y must be all 0s: 

xyyz has more 0s than 1s 

|xy| ≤ P 

Contradiction! 

Why? 



USING THE PUMPING LEMMA 

D  =  { w | w has equal 
              number of 1s and 0s} 
    is not regular 
Assume D is regular. Let w = 0P1P (w is in D!) 

If D is regular, can write w = xyz, |y| > 0,  
|xy| ≤ P, where for any i ≥ 0, xyiz is also in D 

y must be all 0s: 

xyyz has more 0s than 1s 

|xy| ≤ P 

Contradiction! 

Why? 



WHAT DOES D LOOK LIKE? 

D  =  { w | w has equal number of 
                  occurrences of 01 and 10} 



WHAT DOES C LOOK LIKE? 

1 ∪ 0 ∪ ε ∪ 0(0∪1)*0 ∪ 1(0∪1)*1 

C  =  { w | w has equal number of 
                  occurrences of 01 and 10} 

=  { w | w = 1, w = 0, w = ε  or  
 w starts with a 0 and ends with a 0 or 
 w starts with a 1 and ends with a 1 } 



REGULAR EXPRESSIONS 
(expressions representing languages) 

 σ  is a regexp representing {σ} 

ε  is a regexp representing {ε} 

∅  is a regexp representing ∅ 

If R1 and R2 are regular expressions 
representing L1 and L2 then: 

(R1R2) represents L1 ⋅ L2  
(R1 ∪ R2) represents L1 ∪ L2  
(R1)* represents L1* 



PRECEDENCE 

*  ⋅  ∪ 



R2 R1* ( 

EXAMPLE 

R1*R2 ∪ R3 =  ( ) ) ∪ R3 



{ w | w has exactly a single 1 }  

0*10* 



 What language does ∅* represent? 



 What language does ∅* represent? 

{ε} 



{ w | w has length ≥ 3 and its 3rd symbol is 0 }  



{ w | w has length ≥ 3 and its 3rd symbol is 0 }  

(0∪1)(0∪1)0(0∪1)* 



{ w | every odd position of w is a 1 }  



{ w | every odd position of w is a 1 }  

(1(0 ∪ 1))*(1 ∪ ε) 



L can be represented by a regexp 
⇔   L is regular 

EQUIVALENCE 

L can be represented by a regexp 
⇒   L is regular 

1. 

L can be represented by a regexp 
 

L is a regular language 
⇐ 

2. 



Base Cases (R has length 1): 

R = σ 
σ 

R = ε 

R = ∅ 

Given regular expression R, we show there 
exists NFA N such that R represents L(N) 

Induction on the length of R: 

1. 



Inductive Step: 

Assume R has length k > 1,  
and that every regular expression of length < k 
represents a regular language  

Three possibilities for R: 

R = R1 ∪ R2 

R = R1 R2 

R = (R1)* 

(Union Theorem!) 
(Concatenation) 

(Star) 

Therefore:  L can be represented by a regexp 
⇒ L is regular 



Give an NFA that accepts the 
language represented by (1(0 ∪ 1))* 

1 ε 1,0 

ε 



L can be represented by a regexp 
⇒ 

L is a regular language 
⇐ 

Proof idea: Transform an NFA for L into a 
regular expression by removing states and  
re-labeling arrows with regular expressions  

2. 



NFA 
ε 
ε 

ε 

ε 

ε 

Add unique and distinct start and accept states 
While machine has more than 2 states: 
Pick an internal state, rip it out and  
re-label the arrows with regexps,  
to account for the missing state 

0 

1 

0 



NFA 
ε 
ε 

ε 

ε 

ε 

Add unique and distinct start and accept states 
While machine has more than 2 states: 
Pick an internal state, rip it out and  
re-label the arrows with regexps,  
to account for the missing state 

01*0 



NFA 
ε 
ε 

ε 

ε 

ε 

While machine has more than 2 states: 

R(q1,q2) 

R(q2,q2) 

R(q2,q3) q1 q2 q3 

G 

R(q1,q3) 

More generally: 



NFA 
ε 
ε 

ε 

ε 

ε 

While machine has more than 2 states: 

More generally: 

G 

R(q1,q2)R(q2,q2)*R(q2,q3) 
 

∪ R(q1,q3) 
q1 q3 



q1 
b 

a 

ε q2 

a,b 

ε q0 q3 

R(q0,q3) = 
represents L(N) 



q1 
b 

a 

ε q2 

a,b 

ε q0 q3 

R(q0,q3) = 
represents L(N) 

R(q0,q3) = (a*b)(a∪b)*  



Formally: 

Run CONVERT(G):    (Outputs a regexp) 
If #states = 2 

return the expression on the arrow 
going from qstart to qaccept  

Add qstart and qaccept to create G (GNFA) 
 



Formally: Add qstart and qaccept to create G (GNFA) 

If #states > 2 
select qrip∈Q different from qstart and qaccept 

define Q′ = Q – {qrip} 

define R′ as:  
R′(qi,qj) = R(qi,qrip)R(qrip,qrip)*R(qrip,qj) ∪ R(qi,qj)  

return CONVERT(G′) 

Run CONVERT(G):    (Outputs a regexp) 

} Defines: G′ (GNFA) 

(R′ = the regexps for edges in G′) 
We note that G and G′ are equivalent 



Claim: CONVERT(G) is equivalent to G 
Proof by induction on k (number of states in G) 

Base Case: 
k = 2 

Inductive Step: 
Assume claim is true for k-1 state GNFAs 

Recall that G and G′ are equivalent 

 

But, by the induction hypothesis, G′ is 
equivalent to CONVERT(G′) 

Thus: CONVERT(G′) equivalent to CONVERT(G) 

QED 
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q3 

q2 

b 

a 

b 

q1 

b 

a 

a 

ε 

ε 

ε 



q2 

b 

a 

b 

q1 
a 

a 

ε 

ε 

ε 

bb 



bb ∪ (a ∪ ba)b*a 

q1 

ε 

b b ∪ (a ∪ ba)b* 

(bb ∪ (a ∪ ba)b*a)* (b ∪ (a ∪ ba)b*) 



Convert the NFA to a regular expression 

q3 

q2 

b 

b q1 

a 

a, b 

b 



DFA NFA 

Regular 
Language 

Regular 
Expression 

 DEFINITION 



WWW.FLAC.WS 
Finish Chapter 1 of the book for next time 
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