
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

RANDOMIZED COMPLEXITY
Tuesday April 22

Checking MATRIX MULTIPLICATION
L = { (M1,M2,N) | M1, M2 and N are matrices
 and M1M2 = N }

If M1 and M2 are n x n matrices, multiplying
them takes O(n3) time normally, and
O(n2.3727) time using newer methods.

Checking MATRIX MULTIPLICATION
L = { (M1,M2,N) | M1, M2 and N are matrices
 and M1M2 = N }

If M1 and M2 are n x n matrices, multiplying
them takes O(n3) time normally, and
O(n2.3727) time using newer methods.

Aside: multiplication of complex #s: standard method

(a+ ib)(c + id) = ac + iad +ibc – bd = (ac – bd) + i(ad +bc)
requires 4 (real) multiplications

Checking MATRIX MULTIPLICATION
L = { (M1,M2,N) | M1, M2 and N are matrices
 and M1M2 = N }

If M1 and M2 are n x n matrices, multiplying
them takes O(n3) time normally, and
O(n2.3727) time using newer methods.

Aside: multiplication of complex #s: standard method

(a+ ib)(c + id) = ac + iad +ibc – bd = (ac – bd) + i(ad +bc)
requires 4 (real) multiplications
Another method (if multiplication expensive, addition cheap):
Let A = (a+b)(c+d) = ac+ad+bc+bd ; B = ac, C = bd

Then (a+bi)(c+di) = (B-C) + (A-B-C)i, which only requires 3
multiplications!

Checking MATRIX MULTIPLICATION
L = { (M1,M2,N) | M1, M2 and N are matrices
 and M1M2 = N }

If M1 and M2 are n x n matrices, multiplying
them takes O(n3) time normally, and
O(n2.3727) time using newer methods.
O(n2) randomized algorithm to CHECK:

Checking MATRIX MULTIPLICATION
L = { (M1,M2,N) | M1, M2 and N are matrices
 and M1M2 = N }

If M1 and M2 are n x n matrices, multiplying
them takes O(n3) time normally, and
O(n2.3727) time using newer methods.
O(n2) randomized algorithm to CHECK:

Pick a 0-1 bit vector r at random, test if M1M2r = Nr

Checking MATRIX MULTIPLICATION
L = { (M1,M2,N) | M1, M2 and N are matrices
 and M1M2 = N }

If M1 and M2 are n x n matrices, multiplying
them takes O(n3) time normally, and
O(n2.3727) time using newer methods.
O(n2) randomized algorithm to CHECK:

If M1M2 = N, then Pr [M1M2r = Nr] = 1
If M1M2 ≠ N, then Pr [M1M2r = Nr] ≤ ½ (CLAIM)

Pick a 0-1 bit vector r at random, test if M1M2r = Nr

Checking MATRIX MULTIPLICATION
L = { (M1,M2,N) | M1, M2 and N are matrices
 and M1M2 = N }

If M1 and M2 are n x n matrices, multiplying
them takes O(n3) time normally, and
O(n2.3727) time using newer methods.
O(n2) randomized algorithm to CHECK:

If M1M2 = N, then Pr [M1M2r = Nr] = 1
If M1M2 ≠ N, then Pr [M1M2r = Nr] ≤ ½ (CLAIM)

Pick a 0-1 bit vector r at random, test if M1M2r = Nr

So, if we pick 300 random vectors and test them
all, what is the probability of failing? 1/2300

Checking MATRIX MULTIPLICATION
L = { (M1,M2,N) | M1, M2 and N are matrices
 and M1M2 = N }

If M1 and M2 are n x n matrices, multiplying
them takes O(n3) time normally, and
O(n2.3727) time using newer methods.
O(n2) randomized algorithm to CHECK:

If M1M2 = N, then Pr [M1M2r = Nr] = 1
If M1M2 ≠ N, then Pr [M1M2r = Nr] ≤ ½ (CLAIM)

Proof of CLAIN

Pick a 0-1 bit vector r at random, test if M1M2r = Nr

• Consider the matrix M’ = M1,M2– N.
• Suppose M’ ≠ 0-matrix.
• We want to know Pr[M’ r = 0-vector].

• Consider the matrix M’ = M1,M2– N.
• Suppose M’ ≠ 0-matrix.
• We want to know Pr[M’ r = 0-vector].
• Let i be a row of M’ that has a non-zero entry.
• Think of it as a vector v with v1≠ 0, say.
• Now Pr[M’ r = 0-vector] ≤ Pr[v r = 0].
• Pr[v1 r1 + v2 r2 + … + vn rn = 0] = ?

• Consider the matrix M’ = M1,M2– N.
• Suppose M’ ≠ 0-matrix.
• We want to know Pr[M’ r = 0-vector].
• Let i be a row of M’ that has a non-zero entry.
• Think of it as a vector v with v1≠ 0, say.
• Now Pr[M’ r = 0-vector] ≤ Pr[v r = 0].
• Pr[v1 r1 + v2 r2 + … + vn rn = 0] = ?
• Suppose we’ve already chosen r2,…,rn.
• If v1 r1 + v2 r2 + … + vn rn = 0, then
• we must have r1 = (v2 r2 + … + vn rn)/v1.
• There are two choices for r1 though.
• So the probability we pick r1 to be exactly this

expression is at most ½.

TESTING POLYNOMIALS
Let p be a 1-variable polynomial.

Simply try d+1 distinct values for the variables!

How do we determine if p is always 0?

Let p = a0 + a1x1 + a2x1
2+ … + adx1

d

TESTING POLYNOMIALS
Let p be a 1-variable polynomial.

Simply try d+1 distinct values for the variables!

(A degree d polynomial has at most d roots.)

How do we determine if p is always 0?

Let p = a0 + a1x1 + a2x1
2+ … + adx1

d

TESTING POLYNOMIALS
Let p an n-variable polynomial over a finite
field.

(2332x1 + 4603x2 – 3878x3)(5566x1 + 31x4 – 171)
(677x7-1)(x5 + 7x6 + 3x2 + 1001x1) = 0 (mod 6709)

Not given in standard way.

Simply try random values for the variables!

How do we determine if p is always 0?

Theorem (Schwartz-Zippel): Let F be a finite field
and let p be a NONZERO polynomial on the
variables x1,x2,…,xm, where each variable has
degree at most d. (Generally want: |F| > 2md)

If a1,…, am are selected randomly from F, then:

Pr [p(a1, …, am) = 0] ≤ md/|F|

Theorem (Schwartz-Zippel): Let F be a finite field
and let p be a NONZERO polynomial on the
variables x1,x2,…,xm, where each variable has
degree at most d. (Generally want: |F| > 2md)

If a1,…, am are selected randomly from F, then:

Pr [p(a1, …, am) = 0] ≤ md/|F|
Proof (by induction on m):

Base Case (m = 1):

A polynomial of degree d can have at most d
roots, so at most d elements in F make p = 0

Pr [p(a1) = 0] ≤ d/|F|

Inductive Step (m > 1):
Assume true for m-1 and prove true for m
Let x1 be one of the variables

 Write: p = p0 + x1p1 + x1
2p2 + … + x1

dpd

 where x1 does not occur in any pi

 If p(a1,…,am) = 0, one of two things can happen:

Inductive Step (m > 1):
Assume true for m-1 and prove true for m
Let x1 be one of the variables

 Write: p = p0 + x1p1 + x1
2p2 + … + x1

dpd

 where x1 does not occur in any pi

 If p(a1,…,am) = 0, one of two things can happen:

(1) For all i, pi(a2,…,am) = 0
(2) Some I, pi(a2,…,am) is not 0, and a1 is a root of
the single variable polynomial on x1 that results
from evaluating p0,…,pm with a2,…,am

Inductive Step (m > 1):
Assume true for m-1 and prove true for m
Let x1 be one of the variables

 Write: p = p0 + x1p1 + x1
2p2 + … + x1

dpd

 where x1 does not occur in any pi

 If p(a1,…,am) = 0, one of two things can happen:

(1) For all i, pi(a2,…,am) = 0
(2) Some I, pi(a2,…,am) is not 0, and a1 is a root of
the single variable polynomial on x1 that results
from evaluating p0,…,pm with a2,…,am

Pr [(1)] ≤ (m-1)d/|F| Pr [(2)] ≤ d/|F|

Pr [(1) or (2)] ≤ md/|F|

PROBABILISTIC ALGORITHMS

Why do we study probabilistic algorithms?

1. Can be simpler than deterministic algs

2. Can be more efficient than
 deterministic algorithms

3. Does randomness make problems
 much easier to solve? We don’t know!

PROBABILISTIC TMs

Each non-deterministic
step is called a coin flip
Each non-deterministic
step has only two legal
next moves

A probabilistic TM M is a
non-deterministic TM where:

PROBABILISTIC TMs

Each non-deterministic
step is called a coin flip
Each non-deterministic
step has only two legal
next moves

A probabilistic TM M is a
non-deterministic TM where:

The probability of branch b is:
Pr [b] = 2-k

where k is the number of coin
flips that occur on branch b

Pr [M accepts w] = ∑
b is an accepting

branch

Pr [b]

Definition: M recognizes language A with error ε
if for all strings w:

w ∈ A  Pr [M accepts w] ≥ 1 - ε

w ∉ A  Pr [M doesn’t accept w] ≥ 1 - ε

BPP = { L | L is recognized by a probabilistic
 poly-time TM with error 1/3 }

Why 1/3?

BPP = { L | L is recognized by a probabilistic
 poly-time TM with error 1/3 }

Why 1/3?

Because it doesn’t matter what number we pick
as long as it is smaller than 1/2!

Theorem: Let ε be a constant, 0 < ε < 1/2 and let
p(n) be a polynomial.

If M1 has error ε then there is an equivalent
 M2 with error 2-p(n)

Proof Idea:

M2 simply runs M1 many times and takes
the majority output

ZERO-POLYF = { p | p is a polynomial over F (with
 2md < |F|) that is zero on all points}

ZERO-POLYF ∈ BPP

Let F be a finite field

BPP = { L | L is recognized by a probabilistic
 poly-time TM with error 1/3 }

Is BPP ⊆ NP?

Is BPP ⊆ NP?
Nobody knows for sure!

BPP = { L | L is recognized by a probabilistic
 poly-time TM with error 1/3 }

Is NP ⊆ BPP?

Is NP ⊆ BPP?
Nobody knows for sure!

Is BPP ⊆ PSPACE?

Is BPP ⊆ PSPACE?
Yes! Simply run all branches and
count the number of branches that
accept.

Definition: A language A is in RP (Randomized P)
if there is a nondeterministic polynomial time TM
M such that for all strings x:

x ∉ A  No computation paths accept

x ∈ A  At least half of the paths accept

x ∉ A  M(x) always rejects

x ∈ A  M(x) accepts with
 probability at least 1 – 2k

Theorem: A language A is in RP (Randomized P)
if for each k there is a nondeterministic
polynomial time TM M such that for all strings x:

Is RP ⊆ BPP?

Is RP ⊆ BPP?
Yes!

Is RP ⊆ NP?

Is RP ⊆ NP?
Yes!

PRIMES = { p | p is a prime number}

PRIMES ∈ BPP
COMPOSITES ∈ RP

Used to be:

By an extension of Fermat’s Little Theorem:
p, prime , ap-1 =1 (mod p) for a ≠ 0 (mod p)

PRIMES is in P
Manindra Agrawal, Neeraj Kayal and Nitin Saxena
Source: Ann. of Math. Volume 160, Number 2 (2004),
781-793.
Abstract
We present an unconditional deterministic polynomial-
time algorithm that determines whether an input number
is prime or composite.

PRIMES = { p | p is a prime number}

http://projecteuclid.org/handle/euclid.annm

P RP

BPP

NP

EXPTIME

PSPACE

∆ 1
0

∑ 1
0

∆ 2
0

∑ 2
0

∆ 3
0

WWW.FLAC.WS

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 48
	Slide Number 49

