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If M1 and M2 are n x n matrices, multiplying 
them takes O(n3) time normally, and  
O(n2.3727) time using newer methods. 
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Aside: multiplication of complex #s: standard method 

(a+ ib)(c + id) = ac + iad +ibc – bd  = (ac – bd) + i(ad +bc) 
requires 4 (real) multiplications 
Another method (if multiplication expensive, addition cheap): 
Let A = (a+b)(c+d) = ac+ad+bc+bd ; B = ac, C = bd  

Then (a+bi)(c+di) = (B-C) + (A-B-C)i, which only requires 3 
multiplications!  
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Checking MATRIX MULTIPLICATION 
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Pick a 0-1 bit vector r at random, test if M1M2r = Nr 

So, if we pick 300 random vectors and test them 
all, what is the probability of failing? 1/2300 



Checking MATRIX MULTIPLICATION 
L = { (M1,M2,N) | M1, M2 and N are matrices  
   and M1M2 = N } 

If M1 and M2 are n x n matrices, multiplying 
them takes O(n3) time normally, and  
O(n2.3727) time using newer methods. 
O(n2) randomized algorithm to CHECK: 

If M1M2 = N, then Pr [M1M2r = Nr ] = 1 
If M1M2 ≠ N, then Pr [M1M2r = Nr ] ≤ ½ (CLAIM) 

Proof of CLAIN 

Pick a 0-1 bit vector r at random, test if M1M2r = Nr 
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• Suppose M’ ≠ 0-matrix.  
• We want to know Pr[M’ r = 0-vector]. 
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• Consider the matrix M’ = M1,M2– N.  
• Suppose M’ ≠ 0-matrix.  
• We want to know Pr[M’ r = 0-vector]. 
• Let i be a row of M’ that has a non-zero entry.  
• Think of it as a vector v with v1≠ 0, say. 
• Now Pr[M’ r = 0-vector] ≤ Pr[v r = 0]. 
• Pr[v1 r1 + v2 r2 + … + vn rn = 0] = ? 
• Suppose we’ve already chosen r2,…,rn. 
• If  v1 r1 + v2 r2 + … + vn rn = 0, then 
• we must have r1 = (v2 r2 + … + vn rn )/v1.  
• There are two choices for r1 though. 
• So the probability we pick r1 to be exactly this 

expression is at most ½.  
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Simply try d+1 distinct values for the variables! 

How do we determine if p is always 0? 

Let p = a0 + a1x1 + a2x1
2+ … + adx1
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TESTING POLYNOMIALS 
Let p be a 1-variable polynomial. 

Simply try d+1 distinct values for the variables! 
 
(A degree d polynomial has at most d roots.) 

How do we determine if p is always 0? 

Let p = a0 + a1x1 + a2x1
2+ … + adx1

d 

 



TESTING POLYNOMIALS 
Let p an n-variable polynomial over a finite 
field. 

(2332x1 + 4603x2 – 3878x3)(5566x1 + 31x4 – 171) 
(677x7-1)(x5 + 7x6 + 3x2 + 1001x1) = 0 (mod 6709) 

Not given in standard way. 
 
Simply try random values for the variables! 

How do we determine if p is always 0? 



Theorem (Schwartz-Zippel): Let F be a finite field 
and let p be a NONZERO polynomial on the 
variables x1,x2,…,xm, where each variable has 
degree at most d.  (Generally want: |F| > 2md) 

If a1,…, am are selected randomly from F, then: 

Pr [ p(a1, …, am) = 0 ] ≤ md/|F| 



Theorem (Schwartz-Zippel): Let F be a finite field 
and let p be a NONZERO polynomial on the 
variables x1,x2,…,xm, where each variable has 
degree at most d.  (Generally want: |F| > 2md) 

If a1,…, am are selected randomly from F, then: 

Pr [ p(a1, …, am) = 0 ] ≤ md/|F| 
Proof (by induction on m): 

Base Case (m = 1): 

A polynomial of degree d can have at most d 
roots, so at most d elements in F make p = 0  

Pr [ p(a1) = 0 ] ≤ d/|F| 



Inductive Step (m > 1): 
Assume true for m-1 and prove true for m 
Let x1 be one of the variables 

 Write: p = p0 + x1p1 + x1
2p2 + … + x1

dpd 

 where x1 does not occur in any pi 

  If p(a1,…,am) = 0, one of two things can happen: 
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Inductive Step (m > 1): 
Assume true for m-1 and prove true for m 
Let x1 be one of the variables 

 Write: p = p0 + x1p1 + x1
2p2 + … + x1

dpd 

 where x1 does not occur in any pi 

  If p(a1,…,am) = 0, one of two things can happen: 

(1) For all i, pi(a2,…,am) = 0 
(2) Some I, pi(a2,…,am) is not 0, and a1 is a root of 
the single variable polynomial on x1 that results 
from evaluating p0,…,pm with a2,…,am 

Pr [ (1) ] ≤ (m-1)d/|F| Pr [ (2) ] ≤ d/|F| 

Pr [ (1) or (2) ] ≤ md/|F| 



PROBABILISTIC ALGORITHMS 

Why do we study probabilistic algorithms? 

1. Can be simpler than deterministic algs 

2. Can be more efficient than  
 deterministic algorithms 

3. Does randomness make problems 
 much easier to solve? We don’t know! 



PROBABILISTIC TMs 

Each non-deterministic 
step is called a coin flip 
Each non-deterministic 
step has only two legal 
next moves 

A probabilistic TM M is a 
non-deterministic TM where: 



PROBABILISTIC TMs 

Each non-deterministic 
step is called a coin flip 
Each non-deterministic 
step has only two legal 
next moves 

A probabilistic TM M is a 
non-deterministic TM where: 

The probability of branch b is: 
Pr [ b ] = 2-k 

where k is the number of coin 
flips that occur on branch b 



Pr [ M accepts w ] = ∑ 
b is an accepting 

branch 

Pr [ b ] 



Definition: M recognizes language A with error ε 
if for all strings w: 

w ∈ A    Pr [ M accepts w ] ≥ 1 - ε  

w ∉ A    Pr [ M doesn’t accept w ] ≥ 1 - ε  



BPP = { L | L is recognized by a probabilistic 
  poly-time TM with error 1/3 } 

Why 1/3? 



BPP = { L | L is recognized by a probabilistic 
  poly-time TM with error 1/3 } 

Why 1/3? 

Because it doesn’t matter what number we pick 
as long as it is smaller than 1/2! 



Theorem: Let ε be a constant, 0 < ε < 1/2 and let 
p(n) be a polynomial. 

If M1 has error ε then there is an equivalent  
   M2 with error 2-p(n) 

Proof Idea: 

M2 simply runs M1 many times and takes 
the majority output 



ZERO-POLYF = { p | p is a polynomial over F (with 
       2md < |F|) that is zero on all points} 

ZERO-POLYF ∈ BPP 

Let F be a finite field 
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Is NP ⊆ BPP? 
Nobody knows for sure! 



Is BPP ⊆ PSPACE? 



Is BPP ⊆ PSPACE? 
Yes! Simply run all branches and 
count the number of branches that 
accept. 



Definition:  A language A is in RP (Randomized P) 
if there is a nondeterministic polynomial time TM 
M such that for all strings x: 

x ∉ A    No computation paths accept 

x ∈ A    At least half of the paths accept 



x ∉ A    M(x) always rejects 

x ∈ A    M(x) accepts with   
         probability at least 1 – 2k 

Theorem:   A language A is in RP (Randomized P) 
if for each k there is a nondeterministic 
polynomial time TM M such that for all strings x: 
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Is RP ⊆ BPP? 
Yes! 
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Is RP ⊆ NP? 
Yes! 



PRIMES = { p | p is a prime number} 

PRIMES ∈ BPP 
COMPOSITES ∈ RP 

Used to be: 

By an extension of Fermat’s Little Theorem: 
p, prime , ap-1 =1 (mod p) for a ≠  0 (mod p) 



PRIMES is in P 
Manindra Agrawal, Neeraj Kayal and Nitin Saxena 
Source: Ann. of Math. Volume 160, Number 2 (2004), 
781-793.  
Abstract  
We present an unconditional deterministic polynomial-
time algorithm that determines whether an input number 
is prime or composite. 

PRIMES = { p | p is a prime number} 

http://projecteuclid.org/handle/euclid.annm


P RP 

BPP 

NP 

EXPTIME 

PSPACE 



∆ 1 
0 

∑ 1 
0 

∆ 2 
0 

∑ 2 
0 

∆ 3 
0 



WWW.FLAC.WS 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 48
	Slide Number 49

