15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

RANDOMIZED COMPLEXITY

Tuesday April 22

L = { $(M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices}$ and $M_1M_2 = N$ }

If M_1 and M_2 are n x n matrices, multiplying them takes $O(n^3)$ time normally, and $O(n^{2.3727})$ time using newer methods.

 $L = \{ (M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices}$ and $M_1M_2 = N \}$

If M_1 and M_2 are n x n matrices, multiplying them takes $O(n^3)$ time normally, and $O(n^{2.3727})$ time using newer methods.

Aside: multiplication of complex #s: standard method

(a+ ib)(c + id) = ac + iad +ibc - bd = (ac - bd) + i(ad +bc) requires 4 (real) multiplications

L = { $(M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices}$ and $M_1M_2 = N$ }

If M_1 and M_2 are n x n matrices, multiplying them takes $O(n^3)$ time normally, and $O(n^{2.3727})$ time using newer methods.

Aside: multiplication of complex #s: standard method

(a+ ib)(c + id) = ac + iad +ibc - bd = (ac - bd) + i(ad +bc) requires 4 (real) multiplications

Another method (if multiplication expensive, addition cheap): Let A = (a+b)(c+d) = ac+ad+bc+bd; B = ac, C = bd

Then (a+bi)(c+di) = (B-C) + (A-B-C)i, which only requires 3 multiplications!

L = { $(M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices}$ and $M_1M_2 = N$ }

If M_1 and M_2 are n x n matrices, multiplying them takes $O(n^3)$ time normally, and $O(n^{2.3727})$ time using newer methods.

O(n²) randomized algorithm to CHECK:

L = { $(M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices}$ and $M_1M_2 = N$ }

If M_1 and M_2 are n x n matrices, multiplying them takes $O(n^3)$ time normally, and $O(n^{2.3727})$ time using newer methods.

O(n²) randomized algorithm to CHECK:

Pick a 0-1 bit vector r at random, test if $M_1M_2r = Nr$

L = { $(M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices}$ and $M_1M_2 = N$ }

If M_1 and M_2 are n x n matrices, multiplying them takes $O(n^3)$ time normally, and $O(n^{2.3727})$ time using newer methods.

O(n²) randomized algorithm to CHECK:

Pick a 0-1 bit vector r at random, test if $M_1M_2r = Nr$

If $M_1M_2 = N$, then $Pr[M_1M_2r = Nr] = 1$ If $M_1M_2 \neq N$, then $Pr[M_1M_2r = Nr] \leq \frac{1}{2}$ (CLAIM)

L = { $(M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices}$ and $M_1M_2 = N$ }

If M_1 and M_2 are n x n matrices, multiplying them takes $O(n^3)$ time normally, and $O(n^{2.3727})$ time using newer methods.

O(n²) randomized algorithm to CHECK:

Pick a 0-1 bit vector r at random, test if $M_1M_2r = Nr$

If $M_1M_2 = N$, then $Pr[M_1M_2r = Nr] = 1$ If $M_1M_2 \neq N$, then $Pr[M_1M_2r = Nr] \leq \frac{1}{2}$ (CLAIM)

So, if we pick 300 random vectors and test them all, what is the probability of failing?

1/2³⁰⁰

L = { $(M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices}$ and $M_1M_2 = N$ }

If M_1 and M_2 are n x n matrices, multiplying them takes $O(n^3)$ time normally, and $O(n^{2.3727})$ time using newer methods.

O(n²) randomized algorithm to CHECK:

Pick a 0-1 bit vector r at random, test if $M_1M_2r = Nr$

If $M_1M_2 = N$, then $Pr[M_1M_2r = Nr] = 1$ If $M_1M_2 \neq N$, then $Pr[M_1M_2r = Nr] \leq \frac{1}{2}$ (CLAIM)

Proof of CLAIN

- Consider the matrix $M' = M_1, M_2 N$.
- Suppose M' ≠ 0-matrix.
- We want to know Pr[M' r = 0-vector].

- Consider the matrix $M' = M_1, M_2 N$.
- Suppose M' ≠ 0-matrix.
- We want to know Pr[M' r = 0-vector].
- Let i be a row of M' that has a non-zero entry.
- Think of it as a vector v with v₁≠ 0, say.
- Now Pr[M' r = 0-vector] ≤ Pr[v r = 0].
- $Pr[v_1 r_1 + v_2 r_2 + ... + v_n r_n = 0] = ?$

- Consider the matrix $M' = M_1, M_2 N$.
- Suppose M' ≠ 0-matrix.
- We want to know Pr[M' r = 0-vector].
- Let i be a row of M' that has a non-zero entry.
- Think of it as a vector v with $v_1 \neq 0$, say.
- Now Pr[M' r = 0-vector] ≤ Pr[v r = 0].
- $Pr[v_1 r_1 + v_2 r_2 + ... + v_n r_n = 0] = ?$
- Suppose we've already chosen $r_2, ..., r_n$.
- If $v_1 r_1 + v_2 r_2 + ... + v_n r_n = 0$, then
- we must have $r_1 = (v_2 r_2 + ... + v_n r_n)/v_1$.
- There are two choices for r₁ though.
- So the probability we pick r₁ to be exactly this expression is at most ½.

TESTING POLYNOMIALS

Let p be a 1-variable polynomial.

How do we determine if p is always 0?

Let
$$p = a_0 + a_1x_1 + a_2x_1^2 + ... + a_dx_1^d$$

Simply try d+1 distinct values for the variables!

TESTING POLYNOMIALS

Let p be a 1-variable polynomial.

How do we determine if p is always 0?

Let
$$p = a_0 + a_1x_1 + a_2x_1^2 + ... + a_dx_1^d$$

Simply try d+1 distinct values for the variables!

(A degree d polynomial has at most d roots.)

TESTING POLYNOMIALS

Let p an n-variable polynomial over a finite field. How do we determine if p is always 0?

$$(2332x_1 + 4603x_2 - 3878x_3)(5566x_1 + 31x_4 - 171)$$

 $(677x_7-1)(x_5 + 7x_6 + 3x_2 + 1001x_1) = 0 \pmod{6709}$

Not given in standard way.

Simply try random values for the variables!

Theorem (Schwartz-Zippel): Let F be a finite field and let p be a NONZERO polynomial on the variables $x_1, x_2, ..., x_m$, where each variable has degree at most d. (Generally want: |F| > 2md)

If a_1, \ldots, a_m are selected randomly from F, then:

$$Pr[p(a_1, ..., a_m) = 0] \le md/|F|$$

Theorem (Schwartz-Zippel): Let F be a finite field and let p be a NONZERO polynomial on the variables $x_1, x_2, ..., x_m$, where each variable has degree at most d. (Generally want: |F| > 2md)

If a_1, \ldots, a_m are selected randomly from F, then:

$$Pr[p(a_1, ..., a_m) = 0] \le md/|F|$$

Proof (by induction on m):

Base Case (m = 1):

$$Pr[p(a_1) = 0] \le d/|F|$$

A polynomial of degree d can have at most d roots, so at most d elements in F make p = 0

Inductive Step (m > 1):

Assume true for m-1 and prove true for mLet x_1 be one of the variables

```
Write: p = p_0 + x_1p_1 + x_1^2p_2 + ... + x_1^dp_d
where x_1 does not occur in any p_i
If p(a_1,...,a_m) = 0, one of two things can happen:
```

Inductive Step (m > 1):

Assume true for m-1 and prove true for mLet x_1 be one of the variables

```
Write: p = p_0 + x_1p_1 + x_1^2p_2 + ... + x_1^dp_d
where x_1 does not occur in any p_i
If p(a_1,...,a_m) = 0, one of two things can happen:
```

- (1) For all i, $p_i(a_2,...,a_m) = 0$
- (2) Some I, $p_i(a_2,...,a_m)$ is not 0, and a_1 is a root of the single variable polynomial on x_1 that results from evaluating $p_0,...,p_m$ with $a_2,...,a_m$

Inductive Step (m > 1):

Assume true for m-1 and prove true for m Let x₁ be one of the variables

```
Write: p = p_0 + x_1p_1 + x_1^2p_2 + ... + x_1^dp_d
where x_1 does not occur in any p_i
If p(a_1,...,a_m) = 0, one of two things can happen:
```

- (1) For all i, $p_i(a_2,...,a_m) = 0$
- (2) Some I, $p_i(a_2,...,a_m)$ is not 0, and a_1 is a root of the single variable polynomial on x_1 that results from evaluating $p_0,...,p_m$ with $a_2,...,a_m$

$$Pr[(1)] \le (m-1)d/|F|$$
 $Pr[(2)] \le d/|F|$ $Pr[(1)] or (2)] \le md/|F|$

PROBABILISTIC ALGORITHMS

Why do we study probabilistic algorithms?

- 1. Can be simpler than deterministic algs
- 2. Can be more efficient than deterministic algorithms
- 3. Does randomness make problems much easier to solve? We don't know!

PROBABILISTIC TMs

A probabilistic TM M is a non-deterministic TM where:

Each non-deterministic step is called a coin flip

Each non-deterministic step has only two legal next moves

PROBABILISTIC TMs

A probabilistic TM M is a non-deterministic TM where:

Each non-deterministic step is called a coin flip

Each non-deterministic step has only two legal next moves

The probability of branch b is:

$$Pr[b] = 2^{-k}$$

where k is the number of coin flips that occur on branch b

$Pr[Maccepts w] = \sum_{i=1}^{n} Pr[b]$

b is an accepting branch

Definition: M recognizes language A with error ε if for all strings w:

 $w \in A \Leftrightarrow Pr[Maccepts w] \ge 1 - \varepsilon$

 $w \notin A \Leftrightarrow Pr[M doesn't accept w] \ge 1 - \varepsilon$

BPP = { L | L is recognized by a probabilistic poly-time TM with error 1/3 }

Why 1/3?

Why 1/3?

Because it doesn't matter what number we pick as long as it is smaller than 1/2!

Theorem: Let ϵ be a constant, $0 < \epsilon < 1/2$ and let p(n) be a polynomial.

If M_1 has error ϵ then there is an equivalent M_2 with error $2^{-p(n)}$

Proof Idea:

M₂ simply runs **M**₁ many times and takes the majority output

Let F be a finite field

ZERO-POLY_F = { p | p is a polynomial over F (with 2md < |F|) that is zero on all points}

 $ZERO-POLY_F \in BPP$

BPP = { L | L is recognized by a probabilistic poly-time TM with error 1/3 }

IS BPP

NP?

BPP = { L | L is recognized by a probabilistic poly-time TM with error 1/3 }

Is BPP

NP?

Nobody knows for sure!

Is NP ⊆ BPP?

Is NP BPP?

Nobody knows for sure!

IS BPP PSPACE?

IS BPP PSPACE?

Yes! Simply run all branches and count the number of branches that accept.

Definition: A language A is in RP (Randomized P) if there is a nondeterministic polynomial time TM M such that for all strings x:

x ∉ A ⇔ No computation paths accept

 $x \in A \Leftrightarrow At least half of the paths accept$

Theorem: A language A is in RP (Randomized P) if for each k there is a nondeterministic polynomial time TM M such that for all strings x:

 $x \notin A \Leftrightarrow M(x)$ always rejects

 $x \in A \Leftrightarrow M(x)$ accepts with probability at least $1 - 2^k$

Is RP ⊆ BPP?

Is RP □ BPP?

Yes!

Is RP ⊆ NP?

Is RP ⊆ NP?

Yes!

PRIMES = { p | p is a prime number}

Used to be:

PRIMES ∈ BPP COMPOSITES ∈ RP

By an extension of Fermat's Little Theorem: p, prime, $a^{p-1} = 1 \pmod{p}$ for $a \neq 0 \pmod{p}$

PRIMES = { p | p is a prime number}

PRIMES is in P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena Source: <u>Ann. of Math.</u> Volume 160, Number 2 (2004), 781-793.

Abstract

We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite.

WWW.FLAC.WS