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FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY



NON-DETERMINISM and
REGULAR OPERATIONS

THURSDAY JAN 16



UNION THEOREM

The union of two regular languages
IS also aregular language

“Regular Languages Are Closed Under Union”

INTERSECTION THEOREM

The intersection of two regular
languages is also aregular language



Complement THEOREM

The complement of aregular
language Is also a regular language

In other words,
If L Is regular than so is —L,

where mL={w e 2*|w ¢ L}

Proof ?
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L(M)={w | w begins with 1}
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L(M)={w | w begins with 1}

Suppose our machine reads strings from right to left...
What language would be recognized then?
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L(M) ={ w | w begins with 1}

Suppose our machine reads strings from right to left...
What language would be recognized then?

L(M) = {w | wends with 1} Is L(M) regular?




0 1

ANEA
_.Q_;

L(M) = {w | wends with 1} Is L(M) regular?



THE REVERSE OF A LANGUAGE

Reverse: LR={w,..w, |w,..w, e L,w, € Z}

If L Is recognized by a normal DFA,
Then LR is recognized by a DFA reading from right to left!

Can every “Right-to-Left DFA” be replaced
by a normal DFA??



REVERSE THEOREM

The reverse of aregular language is
also aregular language

“"Regular Languages Are Closed Under Reverse”

If a language can be recognized by a DFA
that reads strings from right to left,
then there is an “normal” DFA that accepts
the same language



REVERSING DFAs

Assume L Is a regular language.
Let M be a DFA that recognizes L

Task: Build a DFA MR that accepts LR

If M accepts w, then w describes a
directed path in M from start to an accept
state.



REVERSING DFAs

Assume L Is a regular language.
Let M be a DFA that recognizes L

Task: Build a DFA MR that accepts LR

If M accepts w, then w describes a
directed path in M from start to an accept
state.

First Attempt:
Try to define MR as M with the arrows reversed.
Turn start state into a final state.
Turn final states into start states.




MR IS NOT ALWAYS A DFA!

It could have many start states

Some states may have too many outgoing
edges,

or none at all!






REVERSE

1 0 0,1

0=0-8-0

What happens with 100?



REVERSE
0,1

0=0-8-0

What happens with 100?

We will say that this machine accepts a string if
thereis that reaches an accept state
from a start state.



NONDETERMINISM is BORN!
0,1

0=0-8-0

What happens with 100?

We will say that this machine accepts a string if
thereis that reaches an accept state
from a start state.
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Finite Automata and Their Decision Problemsi

Abstract: Finite automata are considered in this paper as instruments for classifying finite tapes. Each one-

tape automaton defines a set of tapes, a two-tape auvtomaton defines a set of pairs of tapes, et cetera. The
structure of the defined sets is studied. Various generalizations of the notien of an automaton are introduced

and their relation to the classical automata is determined. Some decision problems concerning automata are
shown to be solvable by effective algorithms; others turn out to be unsolvable by algorithms.

Introduction

Turing machines are widely considered to be the abstract
prototype of digital computers; workers in the field, how-
ever, have felt more and more that the notion of a Turing
machine is too general to serve as an accurate model of
actual computers, Tt is well known that even for simple
calculations it is impossible to give an a priori upper
bound on the amount of tape a Turing machine will need
for any given computation, It is precisely this feature that
renders Turing's concept unrealistic.

In the last few years the idea of a finite auromaton has
appeared in the literature, These are machines having

a method of viewing automata but have retained through-
out a machine-like formalism that permits direct com-
parison with Turing machines. A neat form of the defini-
tion of automata has been used by Burks and Wang!
and by E. F. Moore,* and our point of view is closer to
theirs than it is to the formalism of nerve-nets. However,
we have adopted an even simpler form of the definition
by doing away with a complicated output function and
having our machines simply give “yes™ or “no” answers.
This was also used by Myhill, but our generalizations to
the “nondeterministic,” “two-way,” and “many-tape”
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whether the set of tapes definable by a iwo-tape, iwo-
way aulomaion is empty or nol.

An argument similar to the above one will show that
the class of sets of pairs of tapes definable by two-way,
iwo-tape automata is closed under Boolean operations.
In view of Theorem 17, this implies that there are sets
definable by two-way automata which are not definable
by any one-way automaton; thus no analogue to Theo-

holds
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NFA EXAMPLES

At each state, we can have any number of
out arrows for each letterc € 2, = Z U {€}



NFA EXAMPLES

1 1 01

~O~©~O
—’O L(M) ={0'1i | i e {0,1}, ] 2 O}

Possibly many start states



NFA EXAMPLES

_ O L(M)={1,00}



A non-deterministic finite automaton (NFA)
IS a 5-tuple N = (Q, Z, 9, Q,, F)

Q Is the set of states

2 Is the alphabet

0: QxZ — 29 is the transition function
Q, < Q Is the set of start states

Fc Qs the set of accept states

29 is the set of all possible subsets of Q
2. =2 U {¢g}




Let we 2* and suppose w can be written as
W,... W, where w; € 2_ (€ = empty string)

Then N w If there arery, rqy, ..., 1, € Q
such that

1. roe Qq

2. 1i,,€0(r;, w,,)fori=0,..,n-1, and

w

. r,eF

L(N) =the language recognized by N
= set of all strings machine N accepts

A language L Is by an NFA N
If L =L(N).



Deterministic
Computation

0 ¢ @ G @ G @ G @ G @ G @

accept or reject

Non-Deterministic
Computation



Deterministic
Computation

0 ¢ @ G @ G @ G @ G @ G @

accept or reject

Non-Deterministic
Computation
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N =(Q, Z, 8, Qqp, F)
Q ={d1, A2 03, A4}
¥ ={0,1}

Qo = {01, d}

F ={0,} =Q
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N =(Q, Z, 8, Qqp, F)
Q ={d1, A2 03, A4}
¥ ={0,1}
= {41, 92}
F ={a,4cQ
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MULTIPLE START STATES

We allow multiple start states for NFAs,
and Sipser allows only one

Can easily convert NFA with many start
states Iinto one with a single start state:

}
O\f
C00

000 ™ :




UNION THEOREM FOR NFAS?

e
N A O
—0=0Q =
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UNION THEOREM FOR NFAS?




NFAs ARE SIMPLER THAN DFAs

A DFA that recognizes
the language {1}: 0,1



NFAs ARE SIMPLER THAN DFAs
An NFA that recognizes the language {1}:

_.Q_l.©

A DFA that recognizes
the language {1}: 0,1



BUT DFAs CAN SIMULATE NFASs!

Theorem: Every NFA has an equivalent*
DFA

Corollary: A language is regular iff

It Is recognized by an NFA

Corollary: L is regular iff LR is regular

* N is equivalent to M if L(N) = L (M)



FROM NFA TO DFA
Input: NFAN =(Q, Z, 8, Q,, F)
Output: DFAM = (Q', £, 8, q,, F)

/'\ To learn if NFA accepts, we
could do the computation

./!\ 1\ In parallel, maintaining the

| | 7 \ set of all possible states
* 0 that can be reached
reject

/ \‘ ldea:
Q’ = 20

— @ @

Q—-

accept



FROM NFA TO DFA
Input: NFAN =(Q, Z, 8, Q,, F)
Output: DFAM = (Q', £, 8, q,, F)
Q’ = 2Q
O :Q'xx—-Q

O'(R,0) = U €(o(r,0))
reR

o' = €(Qo)
FF={ReQ'|feRforsomefekF}

For R c Q, the e-closure of R, &(R) = {g that can be reached
from some r € R by traveling along zero or more € arrows}



EXAMPLE OF e-CLOSURE

0,1 O 1

€({do}) =
€({04}) =
£({02}) =



EXAMPLE OF e-CLOSURE

0,1 01

€({do}) ={do, a1, Ay}
£({q.}) = {a1, 92}
£({g,}) = {a,}



Given: NFA N =({1,2,3}, {a,b}, &, {1}, {1})

Construct: Equivalent DFA M
M = (2123 {a,b}, &', {1,3}, ...)

e({1}) = {13}



Given: NFA N =({1,2,3}, {a,b}, &, {1}, {1})

Construct: Equivalent DFA M
M = (2123 {a,b}, &', {1,3}, ...)

e({1}) = {13}



Given: NFA N =({1,2,3}, {a,b}, &, {1}, {1})

Construct: Equivalent DFA M
M = (2123 {a,b}, &', {1,3}, ...)

e({1}) = {13}



N=(Q, Z 8 Qp F)

Given: NFA N = ({1,2,3}, {a,b}, &, {1}, {1} )
Construct: equivalent DFA M =(Q’, 2, 9", q,', F)

N N = b
NoW
{1}
. a
) / £ \ {2}
( I {3}
b {1,2}
(D) i3
do =€({1}) ={1,3} / Elzzcz




N:(Q1 21 81 QO1F)

Given: NFA N =({1,2,3}, {a,b}, §, {1}, {1})
Construct: equivalent DFA M =(Q', Z, 9", q,, F)

a |b




N:(Q1 21 81 QO1F)

Given: NFA N =({1,2,3}, {a,b}, §, {1}, {1})
Construct: equivalent DFA M =(Q', Z, 9", q,, F)

a |b

D D

D {2}

233}

(13} | &

{2,3} [ {2,3}

(1.3 {2}

{1,2,3} {3}

3} 123 | {2,3}




Pd — ( (31 2:1 EL (gCH F:)

Given: NFA N =({1,2,3}, {a,b}, §, {1}, {1})

Construct: equivalent DFA M = (Q', Z, 8, q,', F')

b

%)

R, O

12,3}

13}

1,3}

{2.3}

l{213}llll

1,3}

12}

{1,2,3}

13}

| ‘ylzs}

12,3}




NFAs CAN MAKE
PROOFS MUCH
EASIER!

Remember this on your Homework!



REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Concatenation: A-B={vw|veAandw e B}
Given DFAs M; and M,, connect accept
states in M, to start states in M,

R ON Oy

QD NN

O 0 @ O\ &@
O L(N) = L(M,) - L(My) O



REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Concatenation: A-B={vw|veAandw e B}
Given DFAs M; and M,, connect accept
states in M, to start states in M,

€
1
1
€ 0 0
O @ \Oé'
L(N) =L(M) - L(M,)




REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Concatenation: A-B={vw|veAandw e B}
Given DFAs M; and M,, connect accept
states in M, to start states in M,,

0 o~ @)
o € w %
O L(N) = L(M,) - L(M,) O



RLs ARE CLOSED UNDER STAR

Star: A*={s;...s,|k20and each s, € A}
Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

&@\6
P/
‘\O/;



RLs ARE CLOSED UNDER STAR

Star: A*={s;...s,|k20and each s, € A}
Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*
. O
0 1
(aOxa
- @
¥

9



RLs ARE CLOSED UNDER STAR

Star: A*={s;...s,|k20and each s, € A}
Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*



Formally:
Input: M =(Q, £, 8, q,, F)
Output: N =(Q", £, &, {q,}, F")

Q"' =Q U {do}

F' =Fu{de}
{6(q,a)} ifgeQanda#e¢
{q.} ifqeFanda=¢
5'(g,a) = § 104} ifq=q,anda=¢
% ifqg=qg,anda#¢

% else



Show: L(N) =L* where L =L(M)
1. L(N) D L*

2. L(N) C L*



1. L(N) o L* (where L = L(M))

Assume w = w,...w, Is In L*, where wy,...,.w, € L
We show N accepts w by induction on k

Base Cases:
Y k=0 (w=¢)
v k=1 (wel)



1. L(N) o L* (where L =L(M))

Assume w = w,...w, Is In L*, where wy,...,.w, € L
We show N accepts w by induction on k

Base Cases:
Y k=0 (w=¢¥)
v k=1 (w e L)

Inductive Step:

Assume N accepts all stringsv =v,...vp e L*, v, e L
and letv=v;..v, v,,; € L* ,uje L

Since N accepts v,...v, (by induction) and
M accepts v,,,, N must accept v



2.L(N)C L* (wherelL =L(M))

Assume w Is accepted by N, we show w € L*
fw=¢gorwel,thenw e lL*



2.L(N)C L* (wherelL =L(M))

Assume w Is accepted by N, we show w € L*
fw=¢gorwel,thenw e lL*

fw#egor weglL
write w as w=uyv,
where v IS the
substring read
after the last
g-transition



2.L(N)C L* (wherelL =L(M))

Assume w Is accepted by N, we show w € L*
fw=¢gorwel,thenw e lL*

fw#eor welL !E

write w as w=uv, L

where v is the 1
I\

substring read

after the last /./1\

e-transition /



2.L(N)C L* (wherelL =L(M))

Assume w Is accepted by N, we show w € L*
fw=¢gorwel,thenw e lL*

fw#eor welL 1£

write w as w=uv, .\
/

!

where v Is the
substring read
after the last

g-transition €

accept



2.L(N)C L* (wherelL =L(M))

Assume w Is accepted by N, we show w € L*
fw=¢gorwel,thenw e lL*

fw#egor weglL !F’
write w as w=uyv,

where v Is the

substring read

after the last

g-transition I,_



2.L(N)C L* (wherelL =L(M))

Assume w Is accepted by N, we show w € L*
fw=¢gorwel,thenw e lL*

fw#eor weglL !E

write w as w=uyv,

where v IS the @
substring read

after the last By induction
g-transition 1

D @

accept



2.L(N)C L* (wherelL =L(M))

Assume w Is accepted by N, we show w € L*
fw=¢gorwel,thenw e lL*

fw#eor weglL !E

write w as w=uyv,

where v IS the @
substring read

after the last By induction
g-transition 1

D @

accept SO, W=UV e L*




REGULAR LANGUAGES ARE CLOSED
UNDER THE REGULAR OPERATIONS

=> UniontAuB={w|weAorweB}

—> |ntersection: AnB={w|weAandw e B}
= Negation: =A={we2*|wegA}

— Reverse: AR={w,..w, |w,..w;, e A}

= Concatenation: A-B={vw|veAandw e B}

= Star: A*={w,..w, | k20 and eachw, € A}
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Read Chapters 1.3 and 1.4 of the book for next time
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