
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

NON-DETERMINISM and
REGULAR OPERATIONS

THURSDAY JAN 16

UNION THEOREM
The union of two regular languages

is also a regular language

INTERSECTION THEOREM
The intersection of two regular

languages is also a regular language

“Regular Languages Are Closed Under Union”

Complement THEOREM

The complement of a regular
language is also a regular language

In other words,

 if L is regular than so is ¬L,

 where ¬L= { w ∈ Σ* | w ∉ L }

Proof ?

1

0

0,1

0,1

L(M) = { w | w begins with 1}

1

0

0,1

Suppose our machine reads strings from right to left…
What language would be recognized then?

0,1

L(M) = { w | w begins with 1}

1

0

0,1

Suppose our machine reads strings from right to left…
What language would be recognized then?

0,1

L(M) = { w | w begins with 1}

L(M) = { w | w ends with 1} Is L(M) regular?

1

1 0

0

L(M) = { w | w ends with 1} Is L(M) regular?

THE REVERSE OF A LANGUAGE

Reverse: LR = { w1 …wk | wk …w1 ∈ L, wi ∈ Σ}

If L is recognized by a normal DFA,
Then LR is recognized by a DFA reading from right to left!

Can every “Right-to-Left DFA” be replaced
by a normal DFA??

REVERSE THEOREM
The reverse of a regular language is

also a regular language

``Regular Languages Are Closed Under Reverse”

If a language can be recognized by a DFA
that reads strings from right to left,

then there is an “normal” DFA that accepts
the same language

REVERSING DFAs
Assume L is a regular language.
Let M be a DFA that recognizes L

Task: Build a DFA MR that accepts LR

If M accepts w, then w describes a
directed path in M from start to an accept
state.

Assume L is a regular language.
Let M be a DFA that recognizes L

Task: Build a DFA MR that accepts LR

If M accepts w, then w describes a
directed path in M from start to an accept
state.

First Attempt:
Try to define MR as M with the arrows reversed.
Turn start state into a final state.
Turn final states into start states.

REVERSING DFAs

MR IS NOT ALWAYS A DFA!

It could have many start states

Some states may have too many outgoing

edges,

or none at all!

1 0

1

0 1

0,1

0

REVERSE
1 0

1

0 1

0,1

0

What happens with 100?

REVERSE
1 0

1

0 1

0,1

0

What happens with 100?

We will say that this machine accepts a string if
there is some path that reaches an accept state

from a start state.

NONDETERMINISM is BORN!
1 0

1

0 1

0,1

0

What happens with 100?

We will say that this machine accepts a string if
there is some path that reaches an accept state

from a start state.

IBM JOURNAL APRIL 1959
Turing Award winning paper

0,1

0, ε 0

0,1

At each state, we can have any number of
out arrows for each letter σ ∈ Σε = Σ ∪ {ε}

NFA EXAMPLES

1

ε 0

0,1 1

0

Possibly many start states

NFA EXAMPLES

L(M) = {0i1j | i ∈ {0,1}, j ≥ 0}

1

0

0

L(M)={1,00}

NFA EXAMPLES

Q is the set of states

Σ is the alphabet

δ : Q × Σε → 2Q is the transition function

Q0 ⊆ Q is the set of start states

F ⊆ Q is the set of accept states

A non-deterministic finite automaton (NFA)
is a 5-tuple N = (Q, Σ, δ, Q0, F)

2Q is the set of all possible subsets of Q
Σε = Σ ∪ {ε}

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (ε = empty string)

Then N accepts w if there are r0, r1, ..., rn ∈ Q
such that

1. r0 ∈ Q0
2. ri+1 ∈ δ(ri, wi+1) for i = 0, ..., n-1, and
3. rn ∈ F

A language L is recognized by an NFA N
if L = L(N).

L(N) = the language recognized by N
 = set of all strings machine N accepts

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

1

0

0

δ(q3,1) =
q1

q2

q3

q4

δ(q2,1) = {q4}
∅

ε

δ(q1,0) = { q3}
00 ∈ L(N)?

01 ∈ L(N)?

N = (Q, Σ, δ, Q0, F)

Q = {q1, q2, q3, q4}

Σ = {0,1}
Q0 = {q1, q2}

F = {q4} ⊆ Q

δ(q3, ε) = { q2}

1

0

0

q1

q2

q3

q4

δ 0 1 ε

q1 {q3} ∅ ∅

q2 ∅ {q4} ∅

q3 {q4} ∅ {q2}

q4 ∅ ∅ ∅

ε

N = (Q, Σ, δ, Q0, F)

Q = {q1, q2, q3, q4}

Q0 = {q1, q2}

F = {q4} ⊆ Q

Σ = {0,1}

1

0

0

q1

q2

q3

q4

N = (Q, Σ, δ, Q0, F)

Q = {q1, q2, q3, q4}

Q0 = {q1, q2}

F = {q4} ⊆ Q

δ 0 1 ε

q1 {q2,q3} ∅ ∅

q2 ∅ {q4} ∅

q3 {q4} ∅ ∅

q4 ∅ ∅ ∅

0

Σ = {0,1}

1

0

0

q1

q2

q3

q4

N = (Q, Σ, δ, Q0, F)

Q = {q1, q2, q3, q4}

Q0 = {q1, q2}

F = {q4} ⊆ Q

δ 0 1 ε

q1 {q2,q3} ∅ ∅

q2 ∅ {q4} ∅

q3 {q4} ∅ ∅

q4 ∅ ∅ ∅

0

Σ = {0,1}

MULTIPLE START STATES

We allow multiple start states for NFAs,
and Sipser allows only one

Can easily convert NFA with many start
states into one with a single start state:

ε
ε

ε

UNION THEOREM FOR NFAs?

0 0

1

1
0

UNION THEOREM FOR NFAs?

0 0

1

1
0

NFAs ARE SIMPLER THAN DFAs

1 0,1

0,1
0

A DFA that recognizes
the language {1}:

An NFA that recognizes the language {1}:

1

1 0,1

0,1
0

A DFA that recognizes
the language {1}:

NFAs ARE SIMPLER THAN DFAs

Theorem: Every NFA has an equivalent*
DFA

Corollary: A language is regular iff
it is recognized by an NFA

Corollary: L is regular iff LR is regular

* N is equivalent to M if L(N) = L (M)

BUT DFAs CAN SIMULATE NFAs!

FROM NFA TO DFA

accept

reject

To learn if NFA accepts, we
could do the computation
in parallel, maintaining the
set of all possible states

that can be reached

Q′ = 2Q
Idea:

Input: NFA N = (Q, Σ, δ, Q0, F)

Output: DFA M = (Q′, Σ, δ′, q0′, F′)

Q′ = 2Q

δ′ : Q′ × Σ → Q′

δ′(R,σ) = ∪ ε(δ(r,σ))
r∈R

q0′ = ε(Q0)

F′ = { R ∈ Q′ | f ∈ R for some f ∈ F }

FROM NFA TO DFA
Input: NFA N = (Q, Σ, δ, Q0, F)

Output: DFA M = (Q′, Σ, δ′, q0′, F′)

*

 For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached
from some r ∈ R by traveling along zero or more ε arrows}

*

0,1

0,ε 0,ε

0,1

EXAMPLE OF ε-CLOSURE

q0 q1 q2

ε({q0}) =
ε({q1}) =

ε({q2}) =

0,1

0,ε 0,ε

0,1

EXAMPLE OF ε-CLOSURE

q0 q1 q2

ε({q0}) = {q0 , q1, q2}
 ε({q1}) = {q1, q2}

ε({q2}) = {q2}

a

a , b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: Equivalent DFA M

ε({1}) = {1,3}

N
M = (2{1,2,3}, {a,b}, δ′, {1,3}, …)

a

a , b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: Equivalent DFA M

ε({1}) = {1,3}

N
M = (2{1,2,3}, {a,b}, δ′, {1,3}, …)

{1,3}

a

b

{2} a {2,3}

b

{3}

a

a , b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: Equivalent DFA M

ε({1}) = {1,3}

N
M = (2{1,2,3}, {a,b}, δ′, {1,3}, …)

{1,3}

a

b

{2} a {2,3}

b

{3}

a

{1,2,3}

a b

b

a
∅

a,b

{1}, {1,2} ?

b

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Q′, Σ, δ′, q0′, F′)

δ′ a b
∅
{1}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

q0′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Q′, Σ, δ′, q0′, F′)

δ′ a b
∅ ∅
{1}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

q0′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Q′, Σ, δ′, q0′, F′)

δ′ a b
∅ ∅ ∅
{1} ∅ {2}
{2} {2,3} {3}
{3} {1,3} ∅
{1,2} {2,3} {2,3}

{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}

q0′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Q′, Σ, δ′, q0′, F′)

δ′ a b
∅ ∅ ∅
{1} ∅ {2}
{2} {2,3} {3}
{3} {1,3} ∅
{1,2} {2,3} {2,3}

{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}

q0′ =

NFAs CAN MAKE
PROOFS MUCH

EASIER!

Remember this on your Homework!

REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Given DFAs M1 and M2, connect accept
states in M1 to start states in M2

0
0,1

0 0

1

1

1

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

0
0,1

0 0

1

1

1

L(N) = L(M1) ⋅ L(M2)

REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Given DFAs M1 and M2, connect accept
states in M1 to start states in M2

0
0,1

0 0

1

1

1

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

0
0,1

0 0

1

1

1
ε

ε

L(N) = L(M1) ⋅ L(M2)

REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Given DFAs M1 and M2, connect accept
states in M1 to start states in M2

0
0,1

0 0

1

1

1

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

0
0,1

0 0

1

1

1
ε

ε

L(N) = L(M1) ⋅ L(M2)

RLs ARE CLOSED UNDER STAR

Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

0
0,1

0 0

1

1

1

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }

RLs ARE CLOSED UNDER STAR

Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

0
0,1

0 0

1

1

1
ε

ε

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }

RLs ARE CLOSED UNDER STAR

Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

0
0,1

0 0

1

1

1

ε

ε

ε

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }

Formally:
Input: M = (Q, Σ, δ, q1, F)

Output: N = (Q′, Σ, δ′, {q0}, F′)

Q′ = Q ∪ {q0}

F′ = F ∪ {q0}

δ′(q,a) =

{δ(q,a)}
{q1}
{q1}

∅

if q ∈ Q and a ≠ ε
if q ∈ F and a = ε
if q = q0 and a = ε
if q = q0 and a ≠ ε

∅ else

Show: L(N) = L* where L = L(M)

1. L(N) ⊇ L*

2. L(N) ⊆ L*

Assume w = w1…wk is in L*, where w1,…,wk ∈ L
We show N accepts w by induction on k
Base Cases:

k = 0
k = 1




(w = ε)
(w ∈ L)

1. L(N) ⊇ L* (where L = L(M))

Assume w = w1…wk is in L*, where w1,…,wk ∈ L
We show N accepts w by induction on k
Base Cases:

k = 0
k = 1

Inductive Step:

Assume N accepts all strings v = v1…vk ∈ L*, vi ∈ L
and let v = v1…vk vk+1 ∈ L* , uj∈ L

Since N accepts v1…vk (by induction) and
 M accepts vk+1, N must accept v




(w = ε)
(w ∈ L)

1. L(N) ⊇ L* (where L = L(M))

Assume w is accepted by N, we show w ∈ L*
If w = ε or w ∈ L, then w ∈ L*

2. L(N) ⊆ L* (where L = L(M))

Assume w is accepted by N, we show w ∈ L*

If w ≠ ε or w ∉ L
write w as w=uv,
where v is the
substring read
after the last
ε-transition

If w = ε or w ∈ L, then w ∈ L*

2. L(N) ⊆ L* (where L = L(M))

Assume w is accepted by N, we show w ∈ L*

accept

ε

2. L(N) ⊆ L* (where L = L(M))

If w ≠ ε or w ∉ L
write w as w=uv,
where v is the
substring read
after the last
ε-transition

If w = ε or w ∈ L, then w ∈ L*

Assume w is accepted by N, we show w ∈ L*

If w ≠ ε or w ∉ L
write w as w=uv,
where v is the
substring read
after the last
ε-transition

If w = ε or w ∈ L, then w ∈ L*

accept

ε

ε

2. L(N) ⊆ L* (where L = L(M))

Assume w is accepted by N, we show w ∈ L*

If w ≠ ε or w ∉ L
write w as w=uv,
where v is the
substring read
after the last
ε-transition

If w = ε or w ∈ L, then w ∈ L*

accept

ε

ε

u

v

2. L(N) ⊆ L* (where L = L(M))

Assume w is accepted by N, we show w ∈ L*
If w = ε or w ∈ L, then w ∈ L*

accept

ε

ε

u

v

u ∈ L*

If w ≠ ε or w ∉ L
write w as w=uv,
where v is the
substring read
after the last
ε-transition

By induction

 v ∈ L

2. L(N) ⊆ L* (where L = L(M))

Assume w is accepted by N, we show w ∈ L*
If w = ε or w ∈ L, then w ∈ L*

accept

ε

ε

u

v

u ∈ L*

So, w=uv∈ L*

 v ∈ L

If w ≠ ε or w ∉ L
write w as w=uv,
where v is the
substring read
after the last
ε-transition

By induction

2. L(N) ⊆ L* (where L = L(M))

REGULAR LANGUAGES ARE CLOSED
UNDER THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w ∈ Σ* | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

WWW.FLAC.WS
Read Chapters 1.3 and 1.4 of the book for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 45
	Slide Number 47
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 75

