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NON-DETERMINISM and  
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UNION THEOREM 
The union of two regular languages 

is also a regular language 

INTERSECTION THEOREM 
The intersection of two regular 

languages is also a regular language 

“Regular Languages Are Closed Under Union” 



Complement THEOREM 

The complement of a regular 
language is also a regular language 

In other words,  

 if L is regular than so is ¬L, 

 where ¬L= { w ∈ Σ* | w ∉ L } 

Proof ? 
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L(M) = { w | w begins with 1} 
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Suppose our machine reads strings from right to left… 
What language would be recognized then? 

0,1 

L(M) = { w | w begins with 1} 
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0 

0,1 

Suppose our machine reads strings from right to left… 
What language would be recognized then? 

0,1 

L(M) = { w | w begins with 1} 

L(M) = { w | w ends with 1}  Is L(M) regular? 
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L(M) = { w | w ends with 1}  Is L(M) regular? 



THE REVERSE OF A LANGUAGE 

Reverse: LR = { w1 …wk | wk …w1 ∈ L, wi ∈ Σ} 

If L is recognized by a normal DFA, 
Then LR is recognized by a DFA reading from right to left! 

Can every “Right-to-Left DFA” be replaced 
by a normal DFA??  



REVERSE THEOREM 
The reverse of a regular language is 

also a regular language 

``Regular Languages Are Closed Under Reverse” 

If a language can be recognized by a DFA 
that reads strings from right to left,  

then there is an “normal” DFA that accepts 
the same language 



REVERSING DFAs 
Assume L is a regular language.  
Let M be a DFA that recognizes L 

Task:  Build a DFA MR that accepts LR 

If M accepts w, then w describes a 
directed path in M from start to an accept 
state. 



Assume L is a regular language.  
Let M be a DFA that recognizes L 

Task:  Build a DFA MR that accepts LR 

If M accepts w, then w describes a 
directed path in M from start to an accept 
state. 

First Attempt:  
Try to define MR as M with the arrows reversed. 
Turn start state into a final state. 
Turn final states into start states. 

REVERSING DFAs 



MR IS NOT ALWAYS A DFA! 

It could have many start states 

Some states may have too many outgoing 

edges,  

or none at all! 
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REVERSE 
1 0 
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0,1 
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What happens with 100? 



REVERSE 
1 0 

1 

0 1 

0,1 

0 

What happens with 100? 

We will say that this machine accepts a string if 
there is some path that reaches an accept state 

from a start state. 



NONDETERMINISM is BORN! 
1 0 

1 

0 1 

0,1 

0 

What happens with 100? 

We will say that this machine accepts a string if 
there is some path that reaches an accept state 

from a start state. 



IBM JOURNAL APRIL 1959 
Turing Award winning paper 





0,1 

0, ε 0 

0,1 

At each state, we can have any number of 
out arrows for each letter σ ∈ Σε = Σ ∪ {ε} 

NFA  EXAMPLES 
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ε 0 

0,1 1 

0 

Possibly many start states 

NFA  EXAMPLES 

L(M) = {0i1j | i ∈ {0,1}, j ≥ 0} 
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0 

0 

L(M)={1,00} 

NFA  EXAMPLES 



Q is the set of states 

Σ is the alphabet 

δ : Q × Σε → 2Q  is the transition function 

Q0 ⊆ Q is the set of start states 

F ⊆ Q is the set of accept states 

A non-deterministic finite automaton (NFA) 
is a 5-tuple N = (Q, Σ, δ, Q0, F)  

2Q is the set of all possible subsets of Q 
Σε = Σ ∪ {ε} 



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε  (ε = empty string) 
 

Then N accepts w if there are r0, r1, ..., rn ∈ Q 
such that 

 

1. r0 ∈ Q0  
2. ri+1 ∈ δ(ri, wi+1 ) for i = 0, ..., n-1, and  
3. rn ∈ F 

A language L is recognized by an NFA N 
if L = L(N). 

L(N)  = the language recognized by N 
 = set of all strings machine N accepts 



Deterministic 
Computation 

Non-Deterministic 
Computation 

accept or reject accept 

reject 



Deterministic 
Computation 

Non-Deterministic 
Computation 

accept or reject accept 

reject 
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0 
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δ(q3,1) =  
q1 

q2 

q3 

q4 

δ(q2,1) =  {q4} 
∅ 

ε 

δ(q1,0) =  { q3} 
00 ∈ L(N)? 

01 ∈ L(N)? 

N = (Q, Σ, δ, Q0, F) 

Q  = {q1, q2, q3, q4} 

Σ = {0,1} 
Q0 = {q1, q2} 

F  = {q4} ⊆ Q 

δ(q3, ε) =  { q2} 
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q1 

q2 

q3 

q4 

δ   0  1 ε 

q1 {q3} ∅ ∅ 

q2 ∅ {q4} ∅ 

q3 {q4} ∅ {q2} 

q4 ∅ ∅ ∅ 

ε 

N = (Q, Σ, δ, Q0, F) 

Q  = {q1, q2, q3, q4} 

Q0 = {q1, q2} 

F  = {q4} ⊆ Q 

Σ = {0,1} 
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q2 

q3 

q4 

N = (Q, Σ, δ, Q0, F) 

Q  = {q1, q2, q3, q4} 

Q0 = {q1, q2} 

F  = {q4} ⊆ Q 

δ   0  1 ε 

q1 {q2,q3} ∅ ∅ 

q2 ∅ {q4} ∅ 

q3 {q4} ∅ ∅ 

q4 ∅ ∅ ∅ 

0 

Σ = {0,1} 
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q1 

q2 

q3 

q4 

N = (Q, Σ, δ, Q0, F) 

Q  = {q1, q2, q3, q4} 

Q0 = {q1, q2} 

F  = {q4} ⊆ Q 

δ   0  1 ε 

q1 {q2,q3} ∅ ∅ 

q2 ∅ {q4} ∅ 

q3 {q4} ∅ ∅ 

q4 ∅ ∅ ∅ 

0 

Σ = {0,1} 



MULTIPLE START STATES 

We allow multiple start states for NFAs, 
and Sipser allows only one 

Can easily convert NFA with many start 
states into one with a single start state: 

ε 
ε 

ε 



UNION THEOREM FOR NFAs? 

0 0 

1 

1 
0 



UNION THEOREM FOR NFAs? 

0 0 

1 

1 
0 



NFAs ARE SIMPLER THAN DFAs 

1 0,1 

0,1 
0 

A DFA that recognizes 
the language {1}: 



An NFA that recognizes the language {1}: 

1 

1 0,1 

0,1 
0 

A DFA that recognizes 
the language {1}: 

NFAs ARE SIMPLER THAN DFAs 



Theorem: Every NFA has an equivalent* 
DFA 

Corollary: A language is regular iff  
it is recognized by an NFA 

Corollary: L is regular iff LR is regular 

* N is equivalent to M if L(N) = L (M) 

BUT DFAs CAN SIMULATE NFAs! 



FROM NFA TO DFA 

accept 

reject 

To learn if NFA accepts, we 
could do the computation 
in parallel, maintaining the 
set of all possible states 

that can be reached 

Q′ = 2Q 
Idea: 

Input: NFA N = (Q, Σ, δ, Q0, F)  

Output: DFA M = (Q′, Σ, δ′, q0′, F′)  



Q′ = 2Q 

δ′ : Q′ × Σ → Q′ 

δ′(R,σ) =  ∪ ε( δ(r,σ) ) 
r∈R 

q0′ = ε(Q0) 

F′ = { R ∈ Q′ | f ∈ R for some f ∈ F } 

FROM NFA TO DFA 
Input: NFA N = (Q, Σ, δ, Q0, F)  

Output: DFA M = (Q′, Σ, δ′, q0′, F′)  

* 

  For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached 
from some r ∈ R by traveling along zero or more ε arrows}  

* 



0,1 

0,ε 0,ε 

0,1 

EXAMPLE OF ε-CLOSURE  

q0 q1 q2 

ε({q0}) = 
ε({q1}) = 

ε({q2}) = 



0,1 

0,ε 0,ε 

0,1 

EXAMPLE OF ε-CLOSURE  

q0 q1 q2 

ε({q0}) = {q0 , q1, q2} 
 ε({q1}) = {q1, q2} 

ε({q2}) = {q2} 
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1 

b 
ε 

Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: Equivalent DFA M 

ε({1}) = {1,3} 

N 
M = (2{1,2,3}, {a,b}, δ′, {1,3}, …) 
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b 
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: Equivalent DFA M 

ε({1}) = {1,3} 

N 
M = (2{1,2,3}, {a,b}, δ′, {1,3}, …) 

{1,3} 

a 

b 

{2} a {2,3} 

b 

{3} 
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: Equivalent DFA M 

ε({1}) = {1,3} 

N 
M = (2{1,2,3}, {a,b}, δ′, {1,3}, …) 

{1,3} 

a 

b 

{2} a {2,3} 

b 

{3} 

a 

{1,2,3} 

a b 

b 

a 
∅ 

a,b 

{1}, {1,2} ? 

b 
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2  3 

1 

b 
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: equivalent DFA  M 

ε({1}) = {1,3} 

N 

N =  ( Q,      Σ,   δ,  Q0,  F )    

= (Q′, Σ, δ′, q0′, F′) 

δ′ a b 
∅ 
{1} 
{2} 
{3} 
{1,2} 
{1,3} 
{2,3} 
{1,2,3} 

q0′ = 
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: equivalent DFA  M 

ε({1}) = {1,3} 

N 

N =  ( Q,      Σ,   δ,  Q0,  F )    

= (Q′, Σ, δ′, q0′, F′) 

δ′ a b 
∅ ∅ 
{1} 
{2} 
{3} 
{1,2} 
{1,3} 
{2,3} 
{1,2,3} 

q0′ = 
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a, b 

a 

2  3 

1 

b 
ε 

Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: equivalent DFA  M 

ε({1}) = {1,3} 

N 

N =  ( Q,      Σ,   δ,  Q0,  F )    

= (Q′, Σ, δ′, q0′, F′) 

δ′ a b 
∅ ∅ ∅ 
{1} ∅ {2} 
{2} {2,3} {3} 
{3} {1,3} ∅ 
{1,2} {2,3} {2,3} 

{1,3} {1,3} {2} 
{2,3} {1,2,3} {3} 
{1,2,3} {1,2,3} {2,3} 

q0′ = 
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a, b 

a 

2  3 

1 

b 
ε 

Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: equivalent DFA  M 

ε({1}) = {1,3} 

N 

N =  ( Q,      Σ,   δ,  Q0,  F )    

= (Q′, Σ, δ′, q0′, F′) 

δ′ a b 
∅ ∅ ∅ 
{1} ∅ {2} 
{2} {2,3} {3} 
{3} {1,3} ∅ 
{1,2} {2,3} {2,3} 

{1,3} {1,3} {2} 
{2,3} {1,2,3} {3} 
{1,2,3} {1,2,3} {2,3} 

q0′ = 



NFAs CAN MAKE 
PROOFS MUCH 

EASIER! 

Remember this on your Homework! 



REGULAR LANGUAGES CLOSED 
UNDER CONCATENATION 

Given DFAs M1 and M2, connect accept 
states in M1 to start states in M2  

0 
0,1 

0 0 

1 

1 

1 

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B } 
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0,1 

0 0 

1 

1 

1 

L(N) = L(M1) ⋅ L(M2) 



REGULAR LANGUAGES CLOSED 
UNDER CONCATENATION 

Given DFAs M1 and M2, connect accept 
states in M1 to start states in M2  

0 
0,1 

0 0 

1 

1 

1 

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B } 

0 
0,1 

0 0 

1 

1 

1 
ε 

ε 

L(N) = L(M1) ⋅ L(M2) 



REGULAR LANGUAGES CLOSED 
UNDER CONCATENATION 

Given DFAs M1 and M2, connect accept 
states in M1 to start states in M2  

0 
0,1 

0 0 

1 

1 

1 

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B } 

0 
0,1 

0 0 

1 

1 

1 
ε 

ε 

L(N) = L(M1) ⋅ L(M2) 



RLs ARE CLOSED UNDER STAR 

Let M be a DFA, and let L = L(M) 

Can construct an NFA N that recognizes L* 

0 
0,1 

0 0 

1 

1 

1 

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A } 



RLs ARE CLOSED UNDER STAR 

Let M be a DFA, and let L = L(M) 

Can construct an NFA N that recognizes L* 

0 
0,1 

0 0 

1 

1 

1 
ε 

ε 

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A } 



RLs ARE CLOSED UNDER STAR 

Let M be a DFA, and let L = L(M) 

Can construct an NFA N that recognizes L* 

0 
0,1 

0 0 

1 

1 

1 

ε 

ε 

ε 

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A } 



Formally: 
Input: M = (Q, Σ, δ, q1, F)  

Output: N = (Q′, Σ, δ′, {q0}, F′)  

Q′ = Q ∪ {q0} 

F′ = F ∪ {q0} 

δ′(q,a) =  

{δ(q,a)} 
{q1} 
{q1} 

∅  

if q ∈ Q and a ≠ ε 
if q ∈ F and a = ε  
if q = q0 and a = ε  
if q = q0 and a ≠ ε  

∅  else 



Show: L(N) = L*   where L = L(M) 
 

1.  L(N) ⊇ L* 
 

2.  L(N) ⊆  L* 



Assume w = w1…wk is in L*, where w1,…,wk ∈ L  
We show N accepts w by induction on k 
Base Cases: 

k = 0 
k = 1 

 
 

(w = ε) 
(w ∈ L) 

1. L(N) ⊇ L*  ( where L = L(M)) 



Assume w = w1…wk is in L*, where w1,…,wk ∈ L  
We show N accepts w by induction on k 
Base Cases: 

k = 0 
k = 1 

Inductive Step: 

Assume N accepts all strings v = v1…vk ∈ L*, vi ∈ L 
and let v = v1…vk vk+1 ∈ L* , uj∈ L 

Since N accepts v1…vk (by induction) and  
   M accepts vk+1, N must accept v 

 
 

(w = ε) 
(w ∈ L) 

1. L(N) ⊇ L*  ( where L = L(M)) 



Assume w is accepted by N, we show w ∈ L* 
If w = ε or w ∈ L, then w ∈ L* 

2. L(N) ⊆ L*    (where L = L(M)) 



Assume w is accepted by N, we show w ∈ L* 

If w ≠ ε or  w ∉ L  
write w as w=uv, 
where v is the 
substring read 
after the last  
ε-transition 

If w = ε or w ∈ L, then w ∈ L* 

2. L(N) ⊆ L*    (where L = L(M)) 



Assume w is accepted by N, we show w ∈ L* 

accept 

ε 

2. L(N) ⊆ L*    (where L = L(M)) 

If w ≠ ε or  w ∉ L  
write w as w=uv, 
where v is the 
substring read 
after the last  
ε-transition 

If w = ε or w ∈ L, then w ∈ L* 



Assume w is accepted by N, we show w ∈ L* 

If w ≠ ε or  w ∉ L  
write w as w=uv, 
where v is the 
substring read 
after the last  
ε-transition 

If w = ε or w ∈ L, then w ∈ L* 

accept 

ε 

ε 

2. L(N) ⊆ L*    (where L = L(M)) 



Assume w is accepted by N, we show w ∈ L* 

If w ≠ ε or  w ∉ L  
write w as w=uv, 
where v is the 
substring read 
after the last  
ε-transition 

If w = ε or w ∈ L, then w ∈ L* 

accept 

ε 

ε 

u 

v 

2. L(N) ⊆ L*    (where L = L(M)) 



Assume w is accepted by N, we show w ∈ L* 
If w = ε or w ∈ L, then w ∈ L* 

accept 

ε 

ε 

u 

v 

u ∈ L* 

If w ≠ ε or  w ∉ L  
write w as w=uv, 
where v is the 
substring read 
after the last  
ε-transition 

By induction 

    v ∈ L 

2. L(N) ⊆ L*    (where L = L(M)) 



Assume w is accepted by N, we show w ∈ L* 
If w = ε or w ∈ L, then w ∈ L* 

accept 

ε 

ε 

u 

v 

u ∈ L* 

So, w=uv∈ L*  

    v ∈ L 

If w ≠ ε or  w ∉ L  
write w as w=uv, 
where v is the 
substring read 
after the last  
ε-transition 

By induction 

2. L(N) ⊆ L*    (where L = L(M)) 



REGULAR LANGUAGES ARE CLOSED  
UNDER  THE REGULAR OPERATIONS 

Union: A ∪ B = { w | w ∈ A or w ∈ B }  

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }  

Negation: ¬A = { w ∈ Σ* | w ∉ A }  

Reverse: AR = { w1 …wk | wk …w1 ∈ A } 

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B } 

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A } 



WWW.FLAC.WS 
Read Chapters 1.3 and 1.4 of the book for next time 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 45
	Slide Number 47
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 75

