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Definition: A Turing Machine is a 7-tuple  
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:   

Q is a finite set of states 

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ 

q0 ∈ Q is the start state 

Σ is the input alphabet, where  ∉ Σ  

δ : Q × Γ → Q × Γ × {L,R}  

qaccept ∈ Q is the accept state 

qreject ∈ Q is the reject state, and qreject ≠ qaccept 
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COMPUTATION HISTORIES 
An accepting computation history is a 
sequence of configurations C1,C2,…,Ck, where 

A rejecting computation history is a sequence 
of configurations C1,C2,…,Ck, where 
  1. C1 is the start configuration,  
 2. Ck is a rejecting configuration,  
 3. Each Ci follows from Ci-1 

3. Each Ci follows from Ci-1 
2. Ck is an accepting configuration, 
1. C1 is the start configuration,  C1=q0w 

Ck=uqacceptv 
via the transition 

function δ  

Ck=uqrejectv 



M accepts w  
 

if and only if  
 

there is an accepting computation 
history that starts with C1=q0w 



We can encode a TM as a string of 0s and 1s 

0n10m10k10s10t10r10u1… 

n states 

m tape symbols  
(first k are input 

symbols) 

start 
state 

accept 
state 

reject 
state 

blank 
symbol 

( (p,a), (q,b,L) ) = 0p10a10q10b10 



NB. We assume a given convention of 
describing TMs by strings in Σ*.  

We may assume that any string in Σ* 
describes some TM: 

Either the string describes a TM by the 
convention,  

or if the string is gibberish at some point 
then the “machine” just halts if/when a 
computation gets to that point. 



A language is called Turing-recognizable or 
semi-decidable or recursively enumerable 
(r.e.)  if some TM recognizes it 

A language is called decidable or recursive 
if some TM decides it 

decidable 
(recursive) 
languages 

 

semi-decidable 
(r.e.) 

languages 

Languages  
over {0,1} 



ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: (proof by contradiction) 

Assume machine H decides ATM 

H( (M,w) ) = 
Accept if M accepts w 
 
Reject  if M does not accept w 

Construct a new TM D as follows: on input M, 
run H on (M,M) and output the opposite of H 

D( M ) = 
Reject if M accepts M  
                   i.e. if H(M,M) accepts 
Accept   if M does not accept M 
                   i.e. if H(M,M) rejects 



ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: (proof by contradiction) 

Assume machine H decides ATM 

H( (M,w) ) = 
Accept if M accepts w 
 
Reject  if M does not accept w 

Construct a new TM D as follows: on input M, 
run H on (M,M) and output the opposite of H 

D( M ) = 
Reject if M accepts M 
 
Accept   if M does not accept M 

D 
D D 

D D 



ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: (constructive proof & subtle) 

 Assume machine H SEMI-DECIDES ATM 

H( (M,w) ) = 
Accept    if M accepts w 
 
Rejects or Loops   otherwise  

Construct a new TM DH as follows:  
on input M, run H on (M,M) and output the 
“opposite” of H whenever possible. 



DH (  M  ) = 

Reject if  M  accepts  M 
(i.e. if H(  M  ,  M  ) = Accept) 
 
Accept if  M  rejects  M 
(i.e. if H(  M  ,  M  ) = Reject) 
 
Loops if  M  loops on  M 
(i.e. if H(  M  ,  M  ) loops) 

DH 

DH DH 
DH DH 

DH DH 
DH DH 

DH DH 

DH DH 

Note:  There is no contradiction here!  

      DH loops on DH 

We can effectively construct an instance which 
does not belong to ATM (namely, (DH, DH) )  
but H fails to tell us that.   



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that computes 

a function t : Σ* × Σ* → Σ*.  
 

Then there is a Turing machine R that computes a 
function  r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that computes 

a function t : Σ* × Σ* → Σ*.  
 

Then there is a Turing machine R that computes a 
function  r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 

T (a,b) t(a,b) 

R w t(<R>,w) 



Recursion Theorem says: 
A Turing machine can obtain its own 

description (code), and compute with it 

. We can use the operation: 
“Obtain your own description” 

in pseudocode! 
 

Given a computable t, we can get a computable r  
such that r(w) = t(<R>,w) where <R> is a description of r 

 

 INSIGHT: T (or t)  is really R (or r) 



Theorem:  ATM is undecidable 

Proof (using the Recursion Theorem): 

Assume H decides ATM  

1. Obtains its own description < R> 

Construct machine R such that on input w: 

2. Runs H on (<R>, w) and flips the output 

Running R on input w always does the 
opposite of what H says it should! 

(Informal Proof) 



Theorem:  ATM is undecidable 

Assume H decides ATM  

Let TH(x, w)  =     Reject if H (x, w) accepts 
Accept if H (x, w) rejects 

(Here x is viewed as a code for a TM) 

By the Recursion Theorem, there is a TM R such that: 
 

R(w) = TH(<R>, w)  = Reject if H (<R>, w) accepts 
Accept if H (<R>, w) rejects 

Contradiction! 

(Formal Proof) 

Proof (using the Recursion Theorem): 



Theorem:  MINTM is not  RE. 

Proof (using the Recursion Theorem): 

MINTM = {<M>| M is a minimal TM, wrt |<M>|} 



Theorem:  MINTM is not  RE. 

Proof (using the Recursion Theorem): 

Assume E enumerates MINTM  

1. Obtains its own description <R> 
Construct machine R such that on input w: 

2. Runs E until a machine D appears 
with a  longer description than of R 

Contradiction. Why? 

3. Simulate D  on w 

MINTM = {<M>| M is a minimal TM, wrt |<M>|} 

(Informal Proof) 



Theorem:  MINTM is not  RE. 

Proof (using the Recursion Theorem): 

Assume E enumerates MINTM  

where <D> is first in E’s 
enumeration s.t. |<D>| > |x| 

Contradiction. Why? 

MINTM = {<M>| M is a minimal TM, wrt |<M>|} 

Let TE(x, w)  = D(w) 

By the Recursion Theorem, there is a TM R such that: 
 

R(w) = TE(<R>, w)  = D(w)  

where <D> is first in E’s enumeration s.t. |<D>| > |<R>  

(Formal Proof) 



THE FIXED-POINT THEOREM 
Theorem: Let  f : Σ* → Σ* be a computrable 
function. There is a TM R such that f(<R>) 

describes a TM that is equivalent to R. 

Proof:  Pseudocode for the TM R: 

1. Obtain the description <R> 
On input w: 

2. Let g = f(<R>) and interpret g 
as a  code for a TM G 

3. Accept w  iff   G(w) accepts 

(Informal Proof) 



THE FIXED-POINT THEOREM 
Theorem: Let  f : Σ* → Σ* be a computrable 
function. There is a TM R such that f(<R>) 

describes a TM that is equivalent to R. 

Proof: Let Tf(x, w)  = G(w) where <G> = f (x)  
(Here f(x) is viewed as a code for a TM) 

By the Recursion Theorem, there is a TM R such that: 

R(w) = Tf(<R>, w)  = G(w) where <G> = f (<R>)  

Hence R  ≡ G  where <G> = f (<R>), ie <R> “≡”  f (<R>) 

 So R is a fixed point of f !  



THE FIXED-POINT THEOREM 
Theorem: Let  f : Σ* → Σ* be a computrable 
function. There is a TM R such that f(<R>) 

describes a TM that is equivalent to R. 

Example: 

Suppose  a virus flips the first bit of each word w 
in Σ*  (or in each TM). 

 
Then there is a TM R that “remains uninfected”.   



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that computes 

a function t : Σ* × Σ* → Σ*.  
 

Then there is a Turing machine R that computes a 
function  r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 

T (a,b) t(a,b) 

R w t(<R>,w) 



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that computes 

a function t : Σ* × Σ* → Σ*.  
 

Then there is a Turing machine R that computes a 
function  r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 

So first, need to show how to construct  a TM 
that  computes its own description (ie code). 



Lemma: There is a computable function 
q : Σ* → Σ*, where for any string w,  

q(w) is the description (code) of a TM Pw that 
on any input, prints out w and then accepts  

Q w Pw 

s 

w 

<Pw> 
 

TM Q computes q 



A TM  SELF THAT PRINTS <SELF> 

B <B> P<B> 

B 

     (<B>) w’ B 

B (<M>) = < P<M> M>   where  P<M> M (w’) = M (<M>) 

So, B (<B>) = < P<B>B >  where P<B>B (w’) = B (<B>) 

Now, P<B>B (w’)= B(<B>)  = <P<B>B >> 

So, let  SELF  =  P<B>B  



A TM  SELF THAT PRINTS <SELF> 

B <M> P<M> 

M 

     (<M>) 

B P<B> w 

w’ 

P<B> 

B 

 (<B>) w’ 

M 

<B> 
B 

SELF 



A TM  SELF THAT PRINTS <SELF> 

B <M> P<M> 

M 

B P<B> w 

w’ 

P<B> 

B 

w’ <B> 

SELF 



A NOTE ON SELF REFERENCE 
Suppose in general we want to design a  

program that prints its own description. How? 

Print          sentence. this 

Print two copies of the following (the stuff 
inside quotes), and put the second copy in 

quotes: 
“Print two copies of the following (the stuff 
inside quotes), and put the second copy in 

quotes:” 

= B 

= P<B> 



A B f 

f 

Let f : Σ* → Σ* be a computable function 
 such that w ∈ A ⇔ f(w) ∈ B 

Say: A is Mapping Reducible to B  
Write: A ≤m B   

Σ* Σ* 

(also, ¬ A ≤m ¬ B  (why?) ) 

A≤m B 



A B f 

f 

Let f : Σ* → Σ* be a computable function 
 such that w ∈ A ⇔ f(w) ∈ B 

  So, if  B is (semi) decidable, then so is A 
(And if ¬ B is (semi) decidable, then so is ¬ A) 
 

Σ* Σ* 

A≤m B 



ATM HALTTM 

f 

f 

Σ* Σ* 

f: (M,w) → (M’, w) where M’(s) = M(s) if M(s) accepts, 
                                                    Loops otherwise 

ATM = { (M,w) | M is a TM that accepts string w } 

HALTTM = { (M,w) | M is a TM that halts on string w } 

So, (M, w)∈ ATM ⇔ (M’, w) ∈ HALTTM 

s ∈ Σ* 

ATM ≤m HALTTM 



ATM ¬ ETM 

f 

f 

Σ* Σ* 

ATM = { (M,w) | M is a TM that accepts string w } 

ETM = { M | M is a TM and L(M) = ∅ } 

f: (M,w) → Mw  where    Mw (s)  = M(w) if s = w, 
                                                     Loops otherwise 

So, (M, w)∈ ATM ⇔ Mw ∈ ¬ ETM 

s ∈ Σ* 

ATM ≤m ¬ E TM 



ATM REGTM 

f 

f 

Σ* Σ* 

ATM = { (M,w) | M is a TM that accepts string w } 

REGTM = { M | M is a TM and L(M) is regular} 

f: (M,w) → M’w  where    M’w (s)  = accept if s = 0n1n, 
                                                       M(w) otherwise 

So, (M, w)∈ ATM ⇔ M’w ∈ REGTM  

s ∈ Σ* 

ATM ≤m REGTM 



ETM EQTM 

f 

f 

Σ* Σ* 

ETM = { M | M is a TM and L(M) = ∅ } 

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)} 

f: M → (M, M ∅ ) where M ∅ (s)  = Loops 
 

So, M∈ E TM ⇔ (M, M ∅ ) ∈ EQTM  

s ∈ Σ* 

ETM ≤m EQTM 



ATM ¬ ALLPDA 

f 

f 

Σ* Σ* 

ATM = { (M,w) | M is a TM that accepts string w } 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 
 

f: (M,w) → PDA Pw  where     

Pw (s) = accept iff s is NOT an accepting computation of M(w) 

So, (M, w )∈ ATM ⇔ Pw ∈ ¬ ALLPDA  

s ∈ Σ* 

ATM ≤m¬ALLPDA 

 



ATM FPCP 

f 

f 

Σ* Σ* 

ATM = { (M,w) | M is a TM that accepts string w } 

(M, w )∈ ATM ⇔ P(M,w) ∈ FPCP  

FPCP = { P | P is a set of dominos with a match starting       
                              with the first domino } 

Construct  f: (M,w) → P(M,w)  such that 

ATM ≤m FPCP 



ATM PCP 

f 

f 

Σ* Σ* 

ATM = { (M,w) | M is a TM that accepts string w } 

(M, w )∈ ATM ⇔ P(M,w) ∈ PCP  

Construct  f: (M,w) → P(M,w)  such that 

ATM ≤m PCP 

PCP = { P | P is a set of dominos with a match } 



ATM = { (M,w) | M is a TM that accepts string w } 

HALTTM = { (M,w) | M is a TM that halts on string w } 

ETM = { M | M is a TM and L(M) = ∅ } 

REGTM = { M | M is a TM and L(M) is regular} 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 

ALL UNDECIDABLE 
Use Reductions to Prove 

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)} 

PCP = { P | P is a set of dominos with a match } 



ATM = { (M,w) | M is a TM that accepts string w } 

HALTTM = { (M,w) | M is a TM that halts on string w } 

ETM = { M | M is a TM and L(M) = ∅ } 

REGTM = { M | M is a TM and L(M) is regular} 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 

ALL UNDECIDABLE 
Use Reductions to Prove 

Which are SEMI-DECIDABLE? 

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)} 

PCP = { P | P is a set of dominos with a match } 

¬ ETM 

¬ EQTM 

¬ ALLPDA 



RICE’S THEOREM 

Then L is undecidable 
 
 

Let L be a language over Turing machines. 
Assume that L satisfies the following properties: 
1. For any TMs M1 and M2, where L(M1) = L(M2), 
M1 ∈ L if and only if M2 ∈ L  
2. There are TMs M1 and M2,  
where M1 ∈ L and M2 ∉ L  

EXTREMELY POWERFUL! 



RICE’S THEOREM 

Then L is undecidable 
 
 

Let L be a language over Turing machines. 
Assume that L satisfies the following properties: 
1. For any TMs M1 and M2, where L(M1) = L(M2), 
M1 ∈ L if and only if M2 ∈ L  
2. There are TMs M1 and M2,  
where M1 ∈ L and M2 ∉ L  

ETM = { M | M is a TM and L(M) = ∅ } 
REGTM = { M | M is a TM and L(M) is regular} 

FINTM = { M | M is a TM and L(M) is 
finite} 



ATM L f 

f 

Show: ATM is mapping reducible to L 

Σ* Σ* 

(M,w) 

(M,w) 

Proof:  Show  L is undecidable 



ATM L f 

f 

Show: ATM is mapping reducible to L 

Σ* Σ* 

(M,w) 

(M,w) 

 M1 

 M 2 

Proof:  Show  L is undecidable 



  

Proof: 

Assume, WLOG, that M∅  ∉  L   Why?  
Let M1 ∈ L  (such M1 exists, by 

assumption) 

Define M∅  to be a TM that never halts 

 Map  (M, w)   Mw where 
 

Mw (s) = accepts if both M(w) and M1(s) accept 
              loops otherwise 

 

What is the language of Mw ?  

Show ATM is mapping reducible to 
L : 

RICE’S THEOREM 



ATM L f 

f 

ATM is mapping reducible to L 

Σ* Σ* 

≡ M1 

≡ M∅  

(M,w) 

(M,w) 

Mw 

Mw 

QED 



Corollary: The following languages are 
undecidable. 
 

ETM = { M | M is a TM and L(M) = ∅ } 

REGTM = {M | M is TM and L(M) is regular} 

 
FINTM = {M | M is a TM and L(M) is finite} 

DECTM = {M | M is a TM and L(M) is 
decidable} 
 



FINITE 
STATE 

CONTROL 

INFINITE TAPE 

I N P U T 

 
q? 

 

ORACLE TMs 

Is (M,w) in 
ATM? 

YES 

 
qYES 

 



We say A is decidable in B if there is an 
oracle TM M with oracle B that decides A 

A Turing Reduces to B 

A ≤T B 
≤T is transitive 



≤T VERSUS ≤m 

Theorem: If A ≤m B then A ≤T B 
But in general, the converse doesn’t hold! 

Proof:  
If A ≤m B then there is a computable function  
f : Σ* → Σ*, where for every w, 

w ∈ A ⇔ f(w) ∈ B 
We can thus use an oracle for B to decide A 

Theorem: ¬HALTTM ≤T HALTTM 
Theorem: ¬HALTTM ≤m HALTTM WHY? 
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0 

THE ARITHMETIC HIERARCHY 

∑ 1 
0 

Π n 
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∆ n+1 
0 

= { semi-decidable sets } 

= { decidable sets }   (sets = 
languages) 

= { sets semi-decidable in some B ∈       } 

= { sets decidable in some B ∈           } 

= { complements of sets in            } 

∑ n+1 
0 ∑ 
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Definition: A decidable predicate R(x,y) is some 
proposition about x and y1, where there is a TM M 
such that 
 
for all x, y, R(x,y) is TRUE   ⇒   M(x,y) accepts 
  R(x,y) is FALSE  ⇒   M(x,y) rejects 
 
We say M “decides” the predicate R. 
 

EXAMPLES:  
R(x,y) = “x + y is less than 100” 

R(<N>,y) = “N halts on y in at most 100 steps” 
Kleene’s T predicate, T(<M>, x, y): M accepts x in y 

steps.  
 1. x, y are positive integers or elements of ∑* 



Theorem: A language A is semi-decidable  
if and only if there is a decidable predicate R(x, y) 
such that: A = { x | ∃y R(x,y) } 
Proof: 
(1) If A = { x | ∃y R(x,y) } then A is semi-decidable  

Because we can enumerate over all y’s 

(2) If A is semi-decidable, then A = { x | ∃y R(x,y) }  

Let M semi-decide A and  
Let R<M>(x,y) be the Kleene T- predicate: T(<M>, x, y): 
TM M accepts x in y steps (y interpreted as an integer) 
R<M> is a decidable predicate (why?) 
So x ∈A if and only if ∃y R<M> (x,y) is true. 
 



∑ 1 
0 

= languages of the form { x | ∃y R(x,y) }  

= languages of the form { x | ∀y R(x,y) }  

Π 1 
0 

∆ 1 
0 

∑ 1 
0 Π 1 

0 ∩ = 

= { semi-decidable sets } 

= { complements of semi-decidable sets } 

= { decidable sets } 

Where R is a decidable predicate 

Theorem 



∑ 2 
0 

= languages of the form { x | ∃y1∀y2 R(x,y1,y2) }  

= languages of the form { x | ∀y1∃y2 R(x,y1,y2) }  
Π 2 

0 

∆ 2 
0 ∑ 2 

0 Π 2 
0 ∩ = 

= { sets semi-decidable in some semi-dec. B } 

= { complements of            sets} ∑ 2 
0 

Theorem 

Where R is a decidable predicate 



∑ n 
0 = languages { x | ∃y1∀y2∃y3…Qyn R(x,y1,…,yn) }  

= languages { x | ∀y1∃y2∀y3…Qyn R(x,y1,…,yn) }  Π n 
0 

∆ n 
0 ∑ n 

0 Π n 
0 ∩ = 

Where R is a decidable predicate 

Theorem 



∑ 1 
0 = languages of the form { x | ∃y R(x,y) }  

We know  that ATM is in  ∑ 1 
0 

ATM = { <(M,w)> | ∃t [M accepts w in t steps] } 

decidable predicate 

Decidable predicate 

ATM = { <(M,w)> | ∃t T (<M>, w, t )} 

Why? 

Show it can be described in this 
form: 

ATM = { <(M,w)> | ∃v (v is an accepting  
            computation history  of M on w}  

Example 
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Co-semi-
decidable 
languages 
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0 Π 2 
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ATM 



Π 1 
0 = languages of the form { x | ∀y R(x,y) }  

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in  

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] } 

Π 1 
0 

two quantifiers?? decidable predicate 

Example 



Π 1 
0 = languages of the form { x | ∀y R(x,y) }  

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in  

EMPTY = { M | ∀w∀t [ ¬T(<M>, w, t) ] } 

Π 1 
0 

two quantifiers?? decidable predicate 

Example 



Theorem. There is a 1-1 and onto computable 
function < , >: Σ* x Σ* → Σ*  and  computable 
functions π1 and π2 : Σ* → Σ*  such that  

  z = <w, t>  ⇒  π1 (z) = w and π2(z) = t 

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] 
} 
EMPTY = { M | ∀z[M doesn’t accept π1 (z) in π2(z) steps]} 

THE PAIRING FUNCTION 

EMPTY = { M | ∀z[ ¬T(<M>, π1 (z) , π2(z) ) ] } 
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ATM EMPTY 



Π 2 
0 = languages of the form { x | ∀y∃z R(x,y,z) }  

Show that TOTAL = { M | M halts on all inputs }  
is in  

TOTAL = { M | ∀w ∃t [M halts on w in t steps] } 

Π 2 
0 

decidable predicate 

Example 



Π 2 
0 = languages of the form { x | ∀y∃z R(x,y,z) }  

Show that TOTAL = { M | M halts on all inputs }  
is in  

TOTAL = { M | ∀w ∃t [ T(<M>, w, t) ] } 

Π 2 
0 

decidable predicate 

Example 
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Semi-
decidable 
languages 
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∑ 2 
0 = languages of the form { x | ∃y∀z R(x,y,z) }  

Show that FIN = { M | L(M) is finite } is in  

FIN = { M | ∃n∀w∀t [Either |w| < n, or  
                       M doesn’t accept w in t steps] } 

∑ 2 
0 

FIN = { M | ∃n∀w∀t ( |w| < n ∨¬ T(<M>,w, t) )} 

decidable predicate 

Example 
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Each is m-complete for its level in 
hierachy and cannot go lower (by next 
Theorem, which shows the hierarchy 
does not collapse). 



ORACLES not all powerful 
The following problem cannot be decided, even by 
a TM with an oracle for the Halting Problem: 

SUPERHALT = { (M,x) | M, with an oracle for the  
       Halting Problem, halts on x} 

Can use diagonalization here! 
Suppose H decides SUPERHALT (with oracle) 
Define D(X) = “if H(X,X) accepts (with oracle)  
   then LOOP, else ACCEPT.” 
D(D) halts ⇔  H(D,D) accepts ⇔  D(D) loops… 



SUPERHALT0 = HALT = { (M,x) | M halts on x}. 

Theorem: The arithmetic hierarchy is strict. 
That is, the nth level contains a language 
that isn’t in any of the levels below n. 

Proof IDEA: Same idea as the previous slide. 

SUPERHALT1 = { (M,x) | M, with an oracle for the  
       Halting Problem, halts on x} 

 
  SUPERHALTn = { (M,x) | M, with an oracle for   
            SUPERHALTn-1, halts on x} 

ORACLES not all powerful 



Theorem:  

1. The hierarchy is strict 

2. Each of the languages is m-complete 
for its class. 

Proof Idea. 

1. Let ATM,1 = ATM 

           A TM, n+1 = {(M,x)| M is an oracle machine 
with oracle ATM and M accepts x} 

 Then ATM, n  ∈  

 

 

∑ n 
0 Π n 

0 - 



Proof. 

2. Eg  to show FIN is m-complete for  

Need to show  
 

∑ 2 
0 

Theorem:  

1. The hierarchy is strict 

2. Each of the languages is m-complete 
for its class. 

a) FIN ∈  

b) For A ∈                then  A ≤m FIN  

∑ 2 
0 

∑ 2 
0 

FIN = { M| ∃n ∀x ∀t (|x| <n or 
M does not accept x in t 

steps)} 



A FIN 

f 

f 

Σ* Σ* 

For A ∈           , A={ x | ∃y∀z R(x,y,z)}  

f: x → Mx 

FIN = { M | L(M) is finite } 

∑ 2 
0 

Given input w:  
For each y of length |w| or less, look for z 
such that ¬ R(x,y,z)} . If found for all such y, 
Accept. Otherwise keep on running. 



A FIN 

f 

f 

Σ* Σ* 

For A ∈           , A={ x | ∃y∀z R(x,y,z)}  

FIN = { M | L(M) is finite } 

∑ 2 
0 

•If x ∈ A, then ∃y∀z  R(x,y,z)} , so when |w| >| y|, Mx 
keeps on running, so Mx∈  FIN. 
•If x ∉ A,  then ∀y∃z ¬ R(x,y,z)} , so  Mx recognizes Σ* 



CAN WE QUANTIFY HOW MUCH 
INFORMATION IS IN A STRING? 

A = 01010101010101010101010101010101 
 
B = 110010011101110101101001011001011 

Idea: The more we can “compress” a string, 
the less “information” it contains…. 



KOLMOGOROV COMPLEXITY 

Definition: The Kolmogorov complexity of x, 
denoted as K(x), is |d(x)|. 

Definition: Let x in {0,1}*. The shortest description 
of x, denoted as d(x), is the lexicographically 
shortest string <M,w> s.t. M(w) halts with x on tape. 

Use pairing function to code <M,w> 



KOLMOGOROV COMPLEXITY 

Theorem: There is a fixed c so that for all x in {0,1}*,  
K(x) ≤  |x| + c 

Proof: Define M = “On w, halt.”  
On any string x, M(x) halts with x on its tape! 
This implies 

K(x) ≤   |<M,x>|  ≤   2|M| + |x| + 1  ≤   c + |x| 
(Note: M is fixed for all x. So |M| is constant) 

 “The amount of information in x isn’t much more than |x|” 



REPETITIVE STRINGS 

Theorem: There is a fixed c so that for all x in {0,1}*,  
K(xx) ≤  K(x) + c 

Proof: Let N = “On <M,w>, let s=M(w). Print ss.”  
Let <M,w’> be the shortest description of x.   
Then <N,<M,w’>> is a description of xx 
Therefore 
K(xx) ≤   |<N,<M,w’>>|  ≤   2|N| + K(x) + 1  ≤   c + K(x) 

 “The information in xx isn’t much more than that in x” 



Proof:  
An intuitive way to see this: 
Define M: “On <x, n>, print x for n times”.  

Now take <M,<x,n>> as a description of xn. 

In binary, n takes O(log n) bits to write down, so we 
have K(x) + O(log n) as an upper bound on K(xn). 
 
 
 

 “The information in xn isn’t much more than that in x” 

REPETITIVE STRINGS 

Corollary: There is a fixed c so that for all n,  
and all  x ∈  {0,1}*,  

K(xn) ≤  K(x) + c log2 n 



REPETITIVE STRINGS 

Recall: 
A = 01010101010101010101010101010101 

 
For w = (01)n, K(w) ≤ K(01) + c log2 n 

 “The information in xn isn’t much more than that in x” 

Corollary: There is a fixed c so that for all n,  
and all  x ∈  {0,1}*,  

K(xn) ≤  K(x) + c log2 n 



CONCATENATION of STRINGS 

Theorem: There is a fixed c so that for all x , y in 
{0,1}*, 

K(xy) ≤ 2K(x) + K(y) + c 
 

Better: K(xy) ≤ 2 logK(x) +K(x) +  K(y) + c 
 



INCOMPRESSIBLE STRINGS 

“There are incompressible strings of every length” 

Theorem: For all n, there is an x ∈ {0,1}n such that  
K(x) ≥ n 

Proof: (Number of binary strings of length n) = 2n  
 

     (Number of descriptions of length < n)  
 ≤   (Number of binary strings of length < n)   

 =  2n – 1. 
 

Therefore: there’s at least one n-bit string that 
doesn’t have a description of length < n 



INCOMPRESSIBLE STRINGS 

“Most strings are fairly incompressible” 

Theorem: For all n and c, 
Prx ∈ {0,1}^n[ K(x) ≥ n-c ] ≥ 1 – 1/2c 

 

Proof: (Number of binary strings of length n) = 2n  
 

     (Number of descriptions of length < n-c)  
 ≤   (Number of binary strings of length < n-c)   

 =  2n-c – 1. 
 

So the probability that a random x has K(x) < n-c 
is at most (2n-c – 1)/2n < 1/2c. 



DETERMINING COMPRESSIBILITY 

Theorem: COMPRESS is undecidable! 

Can an algorithm help us compress strings? 
Can an algorithm tell us when a string is compressible? 

 COMPRESS = {(x,c) | K(x) ≤ c} 

Berry Paradox: “The first string whose shortest 
description cannot be written in less than fifteen 
words.” 



DETERMINING COMPRESSIBILITY 

Theorem: COMPRESS is undecidable! 
COMPRESS = {(x,n) | K(x) ≤ n} 

Proof:  
M = “On input x ∈ {0,1}*, 
 Interpret x as integer n. (|x| ≤ log n) 
 Find first y ∈ {0,1}* in lexicographical order,  
 s.t. (y,n) ∉  COMPRESS, then print y and 
halt.” 
 
 
 
 

M(x) prints the first string y* with K(y*) > n. 
Thus <M,x> describes y*, and |<M,x>| ≤ c + log n 
So n < K(y*) ≤ c + log n.  CONTRADICTION! 



DETERMINING COMPRESSIBILITY 

Theorem: K is not computable 

Proof:  
M = “On input x ∈ {0,1}*, 
 Interpret x as integer n. (|x| ≤ log n) 
 Find first y ∈ {0,1}* in lexicographical order,  
 s. t. K(y) > n , then print y and halt.” 
 
 
 
 

M(x) prints the first string y* with K(y*) > n. 
Thus <M,x> describes y*, and |<M,x>| ≤ c + log n 
So n < K(y*) ≤ c + log n.  CONTRADICTION! 



DETERMINING COMPRESSIBILITY 

What about other measures of compressibility?  

For example: 
 
• the smallest DFA that recognizes {x} 

 
• the shortest grammar in Chomsky normal form 

that generates the language {x} 
 
 
 



SO WHAT CAN YOU DO WITH THIS? 

Theorem: There are infinitely many primes. 

Many results in mathematics can be proved 
very simply using incompressibility. 

Proof: Suppose not. Let p1, … , pk be the primes. 
Let x be incompressible. Think of n = x as integer. 
Then there are ei s.t.  

n = p1
e1 … pk

ek  
For all i, ei ≤ log n, so |ei| ≤ log log n 
Can describe n (and x) with k log log n + c bits! 
But x was incompressible… CONTRADICTION! 

IDEA: Finitely many primes ⇒ can compress everything! 



Definition: Let M be a TM that halts on all inputs. 
The running time or time complexity of M is a 
function f : N → N, where f(n) is the maximum 
number of steps that M uses on any input of 
length n. 

Definition: TIME(t(n)) = { L | L is a language 
decided by a O(t(n)) time Turing Machine } 

P =        TIME(nk) ∪ 
k ∈ N 



Definition: A Non-Deterministic TM is a 7-tuple 
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:   

Q is a finite set of states 

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ 

q0 ∈ Q is the start state 

Σ is the input alphabet, where  ∉ Σ  

δ : Q × Γ → 2(Q × Γ × {L,R})  

qaccept ∈ Q is the accept state 

qreject ∈ Q is the reject state, and qreject ≠ qaccept 



NP =         NTIME(nk) ∪ 
k ∈ N 

     { L | L is decided by a 
O(t(n))-time non-deterministic Turing machine } 
Definition:  NTIME(t(n))  = 

TIME(t(n)) ⊆ NTIME(t(n)) 



Theorem: L ∈ NP ⇔ if there exists a poly-time 
Turing machine V with 

L = { x | ∃y [|y| = poly(|x|) and V(x,y) accepts ] } 

Proof: 

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }  
  then L ∈ NP 

(2) If L ∈ NP  then 
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }  

Non-deterministically guess y and then run V(x,y) 

Let N be a non-deterministic poly-time TM 
that decides L, define V(x,y) to accept iff y is 
an accepting computation history of N on x 



A language is in NP if and only if there exist 
“polynomial-length proofs’’ for membership 

to the language 

P = the problems that can be efficiently solved 
NP = the problems where proposed solutions can 
be efficiently verified 

P = NP? 
Can Problem Solving Be Automated? 

$$$ 
A Clay Institute Millennium Problem  



POLY-TIME REDUCIBILITY 
f : Σ* → Σ* is a polynomial time computable 
function 

Language A is polynomial time reducible to 
language B, written A ≤P B, if there is a poly-
time computable function f : Σ* → Σ* such that: 

w ∈ A ⇔ f(w) ∈ B 

f is called a polynomial time reduction of A to B 

       if some poly-time Turing machine M, 
on every input w, halts with just f(w) on its tape 

Theorem: If A ≤P B and B ∈ P, then A ∈ P 



3SAT = { φ | (∃y)[y is a satisfying assignment to φ 
   and φ is in 3cnf ] }  

SAT = { φ | (∃y)[ y is a satisfying assignment to φ 
  and φ is a boolean formula ] }  



Theorem (Cook-Levin):  
SAT and 3-SAT are NP-complete 
 
1. SAT ∈ NP: 

A satisfying assignment is a “proof” that a 
formula is satisfiable! 
 

2. SAT is NP-hard:  
Every language in NP can be polytime  
reduced to SAT (complex formula) 

Corollary: SAT ∈ P if and only if P = NP 



CLIQUE = { (G,k) | G is an undirected graph 
     with a k-clique } 

Theorem: CLIQUE is NP-Complete 

(1) CLIQUE ∈ NP 

(2) 3SAT ≤P CLIQUE 

Assume a reasonable encoding of graphs  
(example: the adjacency matrix is reasonable) 



(x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2)  

x1 ¬x1 

x1 x2 

¬x2 ¬x2 

x2 x2 

¬x1 

k = #clauses 

c
l
a
u
s
e 

#nodes = 3(# clauses) 



VERTEX-COVER = { (G,k) | G is an undirected 
graph with a k-node vertex cover } 

Theorem: VERTEX-COVER is NP-Complete 
(1) VERTEX-COVER ∈ NP 

(2) 3SAT ≤P VERTEX-COVER 



(x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2)  

x1 

x1 x2 

¬x1 

x2 x2 ¬x2 ¬x2 

¬x1 

x1 ¬x1 x2 ¬x2 

k = 2(#clauses) + (#variables) 

Variables and negations of variables 

clauses 



HAMPATH = { (G,s,t) | G is an directed graph  
   with a Hamilton path from s to t} 

Theorem: HAMPATH is NP-Complete 
(1) HAMPATH ∈ NP 

(2) 3SAT ≤P HAMPATH 
 

Proof is in Sipser, Chapter 7.5 





UHAMPATH = { (G,s,t) | G is an undirected graph  
   with a Hamilton path from s to t} 

Theorem: UHAMPATH is NP-Complete 
(1) UHAMPATH ∈ NP 

(2) HAMPATH ≤P UHAMPATH 
 





SUBSETSUM = { (S, t) | S is  multiset of integers and 
for some Y ⊆ S,  we have ∑y∈ Y  y = t }  

Theorem: SUBSETSUM is NP-Complete 
(1) SUBSETSUM ∈ NP 

(2) 3SAT ≤P SUBSETSUM 





HW 

Let G denote a graph, and s and t denote nodes. 
 
SHORTEST PATH  
= {(G, s, t, k) | 
             G has a simple path of length < k from s to t } 
 
LONGEST PATH 
= {(G, s, t, k) |  
             G has a simple path of length > k from s to t } 
 
   WHICH IS EASY?   WHICH IS HARD? Justify 
                          (see Sipser 7.21) 



WWW.FLAC.WS 
Good Luck on Midterm 2! 
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