15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

THURSDAY APRIL 3

REVIEW for Midterm 2 TUESDAY April 8

Definition: A Turing Machine is a 7-tuple

$$T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}), where:$$

Q is a finite set of states

 Σ is the input alphabet, where $\square \notin \Sigma$

 Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$

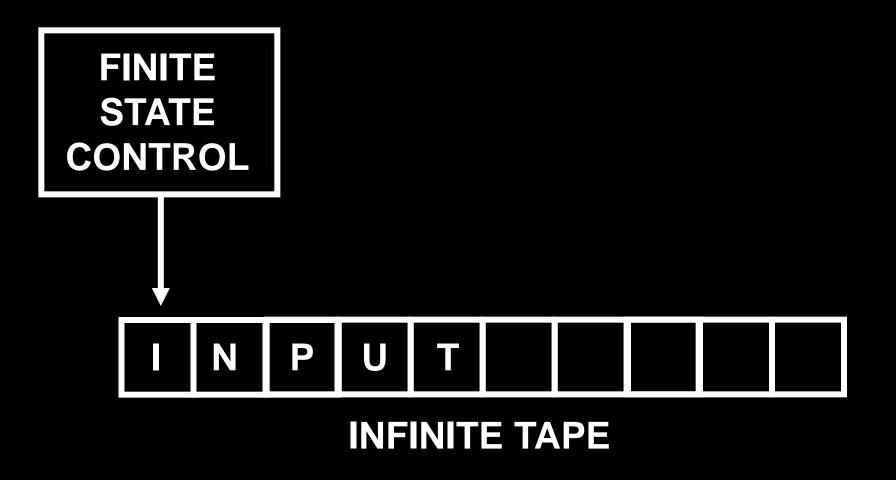
$$\delta: \mathbf{Q} \times \mathbf{\Gamma} \rightarrow \mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L},\mathbf{R}\}$$

 $q_0 \in Q$ is the start state

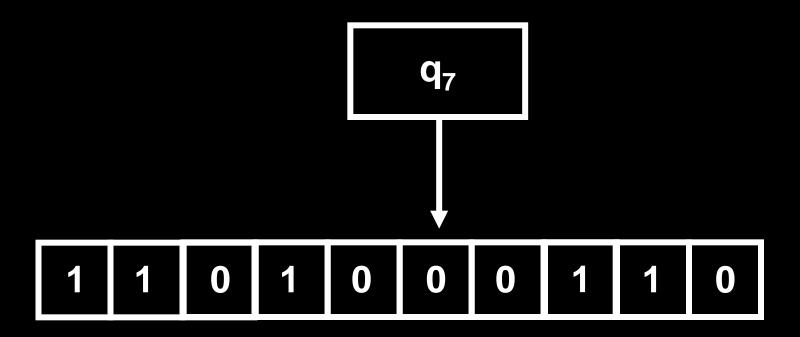
q_{accept} ∈ **Q** is the accept state

q_{reject} ∈ **Q** is the reject state, and **q**_{reject} ≠ **q**_{accept}

TURING MACHINE



CONFIGURATIONS 11010₇00110



COMPUTATION HISTORIES

An accepting computation history is a sequence of configurations C₁,C₂,...,C_k, where

- 1. C_1 is the start configuration, $C_1 = q_0 w$
- 2. C_k is an accepting configuration, $C_k = uq_{accept} v$
- 3. Each C_i follows from C_{i-1} via the transition function δ

A rejecting computation history is a sequence of configurations C₁,C₂,...,C_k, where

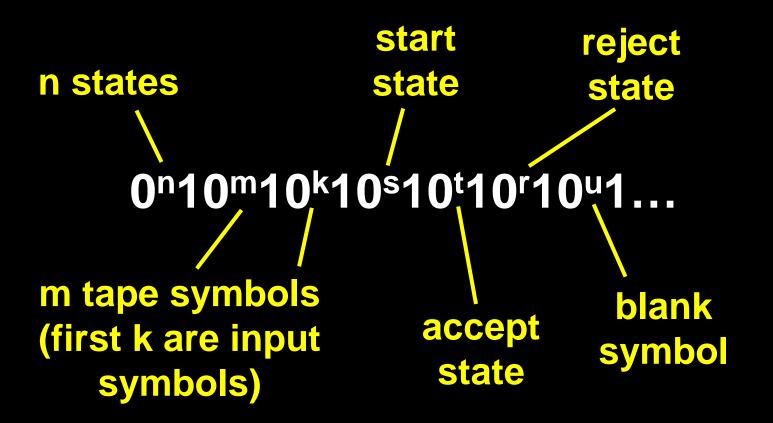
- 1. C₁ is the start configuration,
- 2. C_k is a rejecting configuration, C_k=uq_{reject}v
- 3. Each C_i follows from C_{i-1}

M accepts w

if and only if

there is an accepting computation history that starts with $C_1 = q_0 w$

We can encode a TM as a string of 0s and 1s



$$((p,a), (q,b,L)) = 0^{p}10^{a}10^{q}10^{b}10^{b}$$

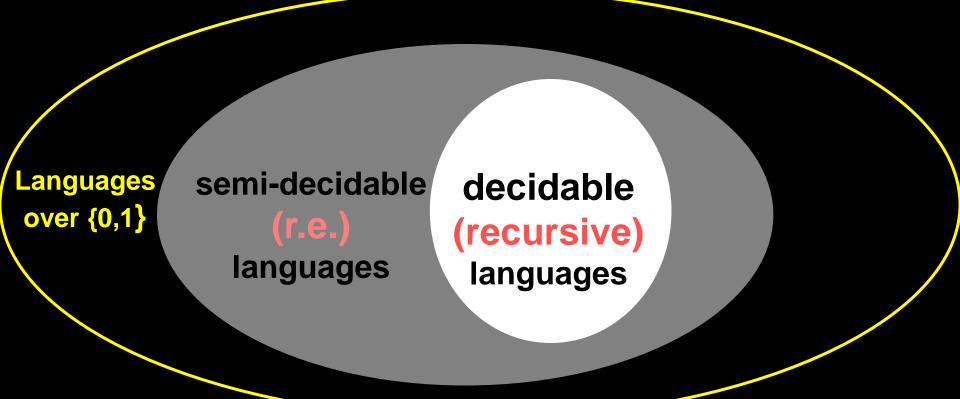
NB. We assume a given convention of describing TMs by strings in Σ^* .

We may assume that any string in Σ* describes some TM:

Either the string describes a TM by the convention,

or if the string is gibberish at some point then the "machine" just halts if/when a computation gets to that point. A language is called Turing-recognizable or semi-decidable or recursively enumerable (r.e.) if some TM recognizes it

A language is called decidable or recursive if some TM decides it



A_{TM} = { (M,w) | M is a TM that accepts string w }

A_{TM} is undecidable: (proof by contradiction)

Assume machine H decides A_{TM}

$$H(\ (M,w)\)= \begin{cases} Accept & \text{if M accepts } w\\ Reject & \text{if M does not accept } w \end{cases}$$

Construct a new TM D as follows: on input M, run H on (M,M) and output the opposite of H

A_{TM} = { (M,w) | M is a TM that accepts string w }

A_{TM} is undecidable: (proof by contradiction)

Assume machine H decides A_{TM}

$$H(\ (M,w)\)= \begin{cases} Accept & \text{if M accepts } w\\ Reject & \text{if M does not accept } w \end{cases}$$

Construct a new TM D as follows: on input M, run H on (M,M) and output the opposite of H

A_{TM} = { (M,w) | M is a TM that accepts string w }
A_{TM} is undecidable: (constructive proof & subtle)

Assume machine H SEMI-DECIDES ATM

$$H((M,w)) = \begin{cases} Accept & \text{if M accepts w} \\ Rejects or Loops & \text{otherwise} \end{cases}$$

Construct a new TM D_H as follows: on input M, run H on (M,M) and output the "opposite" of H whenever possible.

$$\begin{array}{c}
\text{Reject if } D_{H} \text{ accept: } D_{H} \\
\text{(i.e. if } H(D_{H} \mid D_{H}) = Accept)
\end{array}$$

$$\begin{array}{c}
\text{Accept i } D_{H} \text{ reject } D_{H} \\
\text{(i.e. if } H(D_{H} \mid D_{H}) = Reject)
\end{array}$$

$$\begin{array}{c}
\text{Loops i } D_{H} \text{ loops of } D_{H} \\
\text{(i.e. if } H(D_{H} \mid D_{H}) \text{ loops)}
\end{array}$$

Note: There is no contradiction here!

D_H loops on **D_H**

We can effectively construct an instance which does not belong to A_{TM} (namely, (D_H, D_H)) but H fails to tell us that.

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

$$(a,b) \rightarrow T \rightarrow t(a,b)$$

$$w \rightarrow R \rightarrow t(\langle R \rangle, w)$$

Recursion Theorem says: A Turing machine can obtain its own description (code), and compute with it

. We can use the operation: "Obtain your own description" in pseudocode!

Given a computable t, we can get a computable r such that $r(w) = t(\langle R \rangle, w)$ where $\langle R \rangle$ is a description of r

INSIGHT: T (or t) is really R (or r)

Theorem: A_{TM} is undecidable

Proof (using the Recursion Theorem):

Assume H decides A_{TM} (Informal Proof)

Construct machine R such that on input w:

- 1. Obtains its own description < R>
- 2. Runs H on (<R>, w) and flips the output

Running R on input w always does the opposite of what H says it should!

Theorem: A_{TM} is undecidable

Proof (using the Recursion Theorem):

Assume H decides A_{TM} (Formal Proof)

Let $T_H(x, w) =$ Reject if H(x, w) accepts Accept if H(x, w) rejects

(Here x is viewed as a code for a TM)

By the *Recursion Theorem*, there is a **TM** R such that:

R(w) $= H(\langle R \rangle, W) = R$ Accept if $H(\langle R \rangle, W) = R$ = R

Contradiction!

 $MIN_{TM} = {<M>| M \text{ is a minimal TM, wrt }|<M>|}$

Theorem: MIN_{TM} is not RE.

Proof (using the Recursion Theorem):

 $MIN_{TM} = {<M>| M \text{ is a minimal TM, wrt } |<M>|}$

Theorem: MIN_{TM} is not RE.

Proof (using the Recursion Theorem):

Assume E enumerates MIN_{TM} (Informal Proof)

Construct machine R such that on input w:

- 1. Obtains its own description <R>
 - 2. Runs E until a machine D appears with a longer description than of R
 - 3. Simulate D on w

Contradiction. Why?

 $MIN_{TM} = {<M>| M \text{ is a minimal TM, wrt } |<M>|}$

Theorem: MIN_{TM} is not RE.

Proof (using the Recursion Theorem):

Assume E enumerates MIN_{TM} (Formal Proof)

Let $T_E(x, w) = D(w)$ where <D> is first in E's enumeration s.t. |<D>| > |x|

By the *Recursion Theorem*, there is a **TM** R such that:

$$R(w) = T_E(\langle R \rangle, w) = D(w)$$

where $\langle D \rangle$ is first in E's enumeration s.t. $|\langle D \rangle| > |\langle R \rangle|$

Contradiction. Why?

THE FIXED-POINT THEOREM

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that $f(\langle R \rangle)$ describes a TM that is *equivalent* to R.

Proof: Pseudocode for the TM R:

(Informal Proof)

On input w:

- 1. Obtain the description <R>
- 2. Let g = f(<R>) and interpret g as a code for a TM G
 - 3. Accept w iff G(w) accepts

THE FIXED-POINT THEOREM

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that $f(\langle R \rangle)$ describes a TM that is equivalent to R.

Proof: Let $T_f(x, w) = G(w)$ where $\langle G \rangle = f(x)$ (Here f(x) is viewed as a code for a TM)

By the *Recursion Theorem*, there is a TM R such that:

$$R(w) = T_f(\langle R \rangle, w) = G(w) \text{ where } \langle G \rangle = f(\langle R \rangle)$$

Hence
$$R \equiv G$$
 where $\langle G \rangle = f (\langle R \rangle)$, ie $\langle R \rangle$ " \equiv " $f (\langle R \rangle)$

So R is a fixed point of f!

THE FIXED-POINT THEOREM

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that $f(\langle R \rangle)$ describes a TM that is equivalent to R.

Example:

Suppose a virus flips the first bit of each word w in Σ* (or in each TM).

Then there is a TM R that "remains uninfected".

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

$$(a,b) \rightarrow T \rightarrow t(a,b)$$

$$w \rightarrow R \rightarrow t(\langle R \rangle, w)$$

THE RECURSION THEOREM

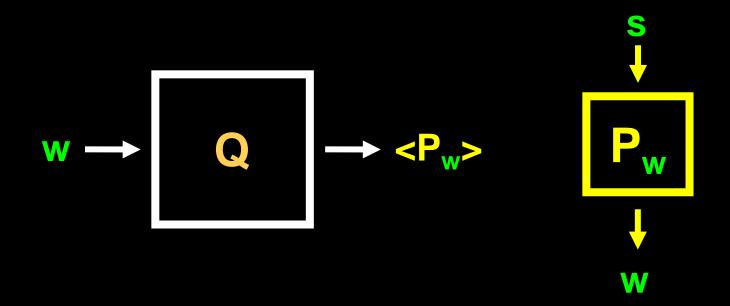
Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

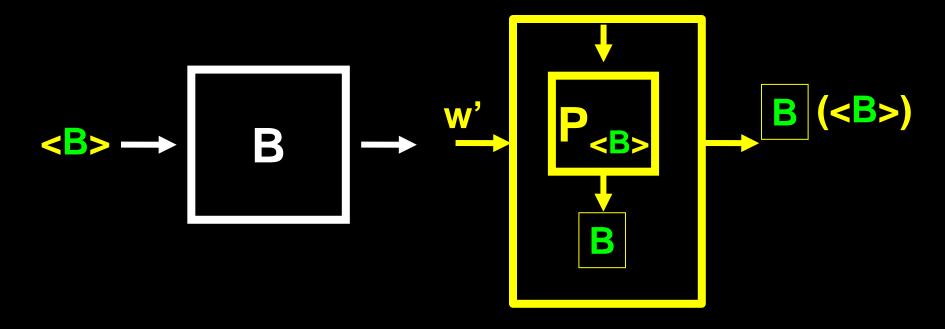
So first, need to show how to construct a TM that computes its own description (ie code).

Lemma: There is a computable function $q: \Sigma^* \to \Sigma^*$, where for any string w, q(w) is the *description* (code) of a TM P_w that on any input, prints out w and then accepts



TM Q computes q

ATM SELFTHAT PRINTS <SELF>



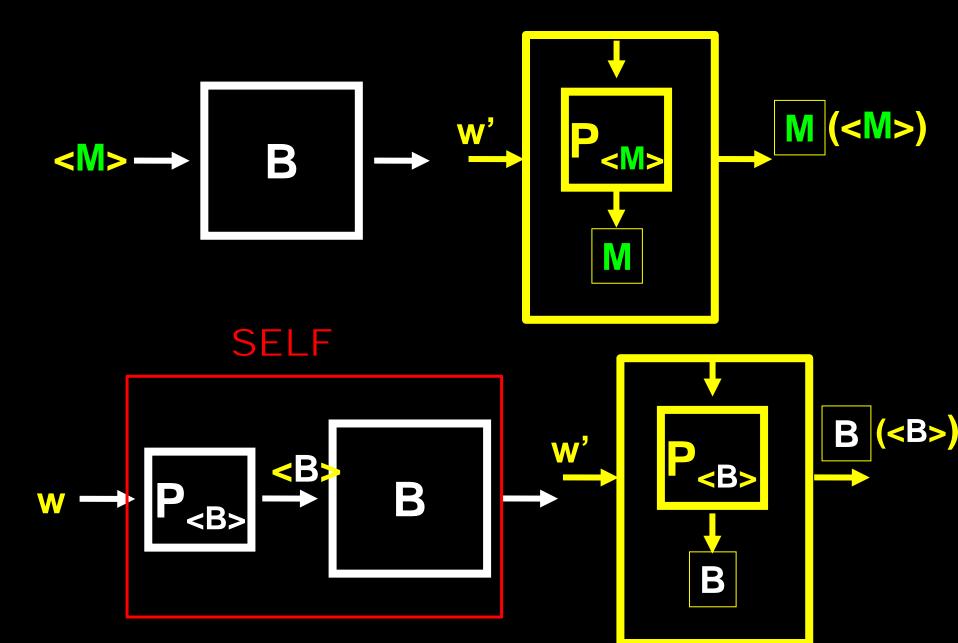
$$B() = < P_{} M> where $P_{} M(w') = M()$$$

So, **B** (
$$<$$
B $>$) = $<$ **P** $_{<$ B $>$ **B** $>$ where **P** $_{<$ B $>$ **B** (**w**') = B ($<$ B $>$)

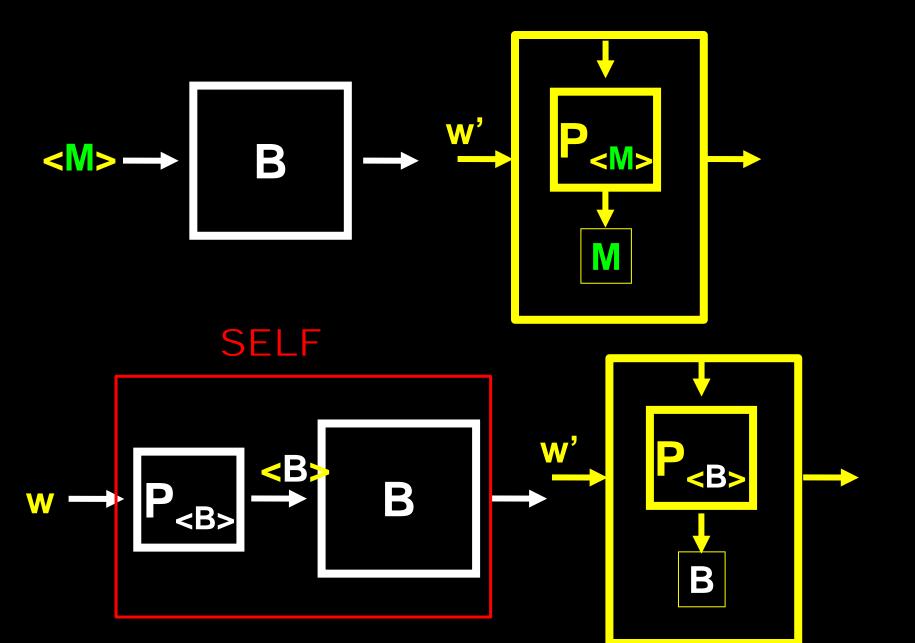
Now,
$$P_{B} B (w') = B(B) = \langle P_{B} B \rangle$$

So, let
$$SELF = P_{}B$$

ATM SELFTHAT PRINTS <SELF>



ATM SELFTHAT PRINTS <SELF>



A NOTE ON SELF REFERENCE

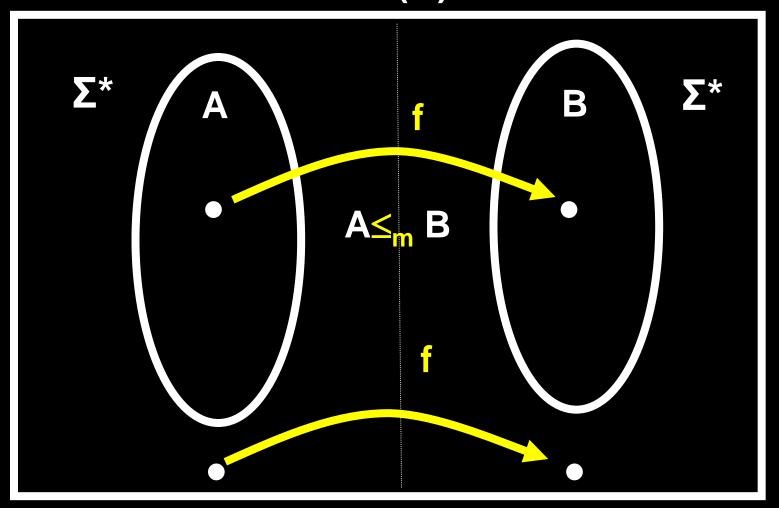
Suppose in general we want to design a program that prints its own description. **How?**

Print this sentence.

Print two copies of the following (the stuff = B inside quotes), and put the second copy in quotes:

"Print two copies of the following (the stuff = P_{} inside quotes), and put the second copy in quotes:"

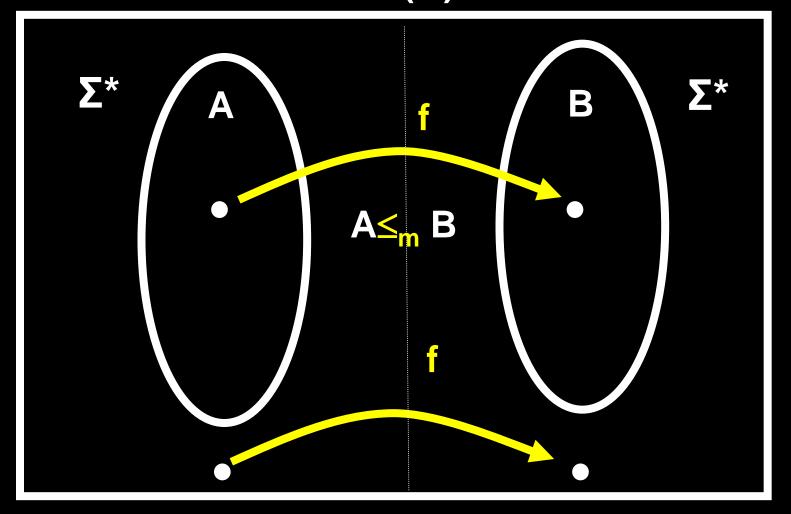
Let $f: \Sigma^* \to \Sigma^*$ be a computable function such that $w \in A \Leftrightarrow f(w) \in B$



Say: A is Mapping Reducible to B

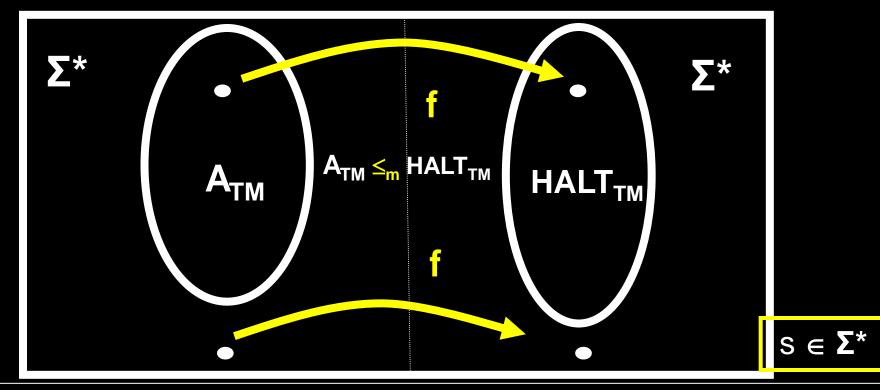
Write: $A \leq_m B$ (also, $\neg A \leq_m \neg B$ (why?))

Let $f: \Sigma^* \to \Sigma^*$ be a computable function such that $w \in A \Leftrightarrow f(w) \in B$



So, if B is (semi) decidable, then so is A (And if \neg B is (semi) decidable, then so is \neg A)

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$



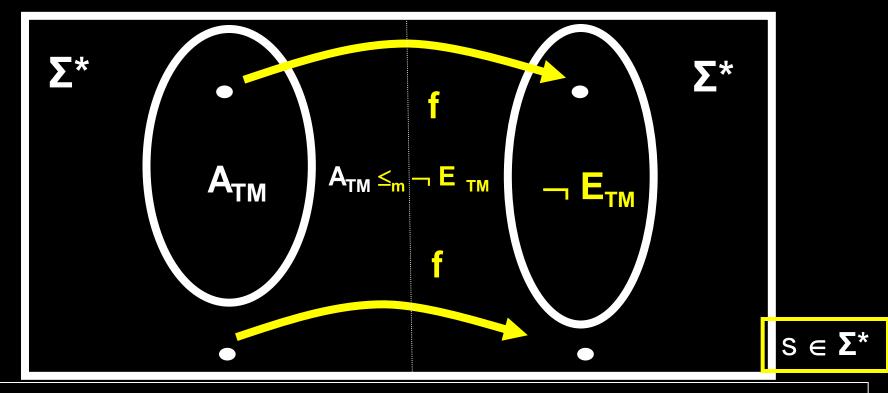
f: (M,w) → (M', w) where M'(s) = M(s) if M(s) accepts,

Loops otherwise

So, $(M, w) \in A_{TM} \Leftrightarrow (M', w) \in HALT_{TM}$

A_{TM} = { (M,w) | M is a TM that accepts string w }

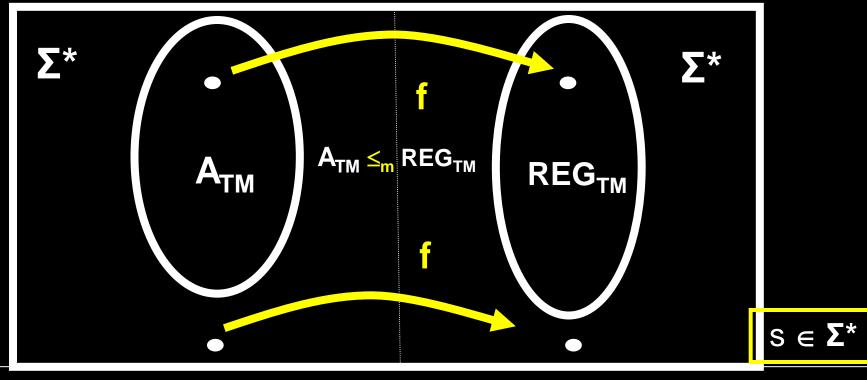
 $E_{TM} = \{ M \mid M \text{ is a TM and L(M)} = \emptyset \}$



f: $(M,w) \rightarrow M_w$ where $M_w(s) = M(w)$ if s = w, Loops otherwise

So, (M, w) $\in A_{TM} \Leftrightarrow M_{W} \in \neg E_{TM}$

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$

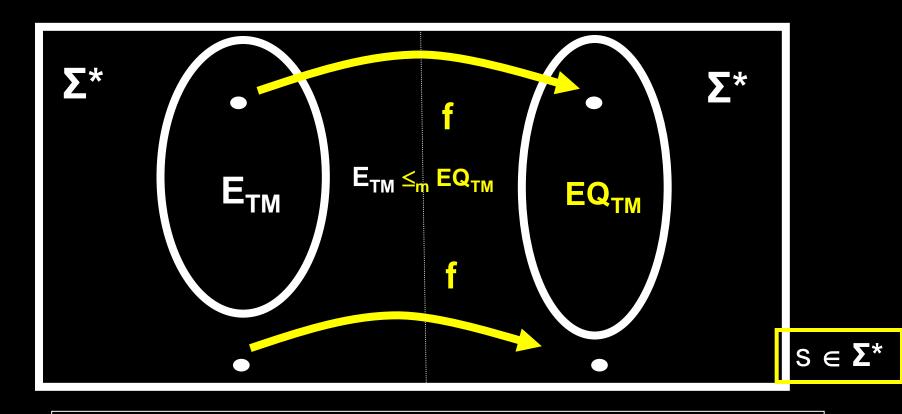


f: $(M,w) \rightarrow M'_w$ where $M'_w(s) = accept$ if $s = 0^n1^n$, M(w) otherwise

So, (M, w) $\in A_{TM} \Leftrightarrow M'_{W} \in REG_{TM}$

 $E_{TM} = \{ M \mid M \text{ is a TM and L(M)} = \emptyset \}$

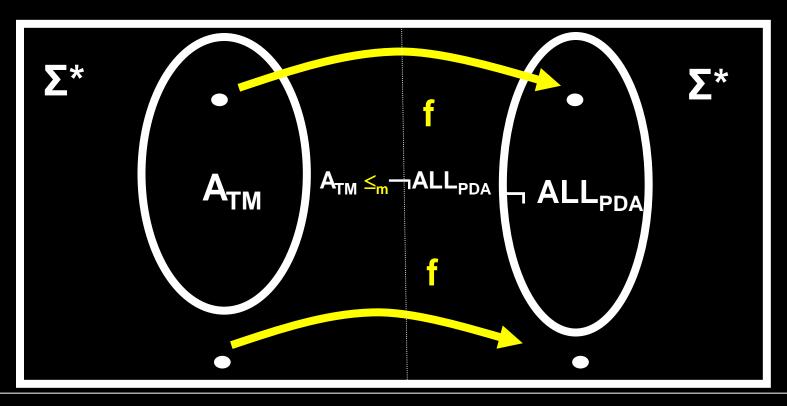
 $\overline{EQ_{TM}} = \{(M, N) \mid M, N \text{ are TMs and L(M)} = L(N)\}$



f: $M \rightarrow (M, M_{\varnothing})$ where $M_{\varnothing}(s) = Loops$

So, $M \in E_{TM} \Leftrightarrow (M, M_{\varnothing}) \in EQ_{TM}$

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$



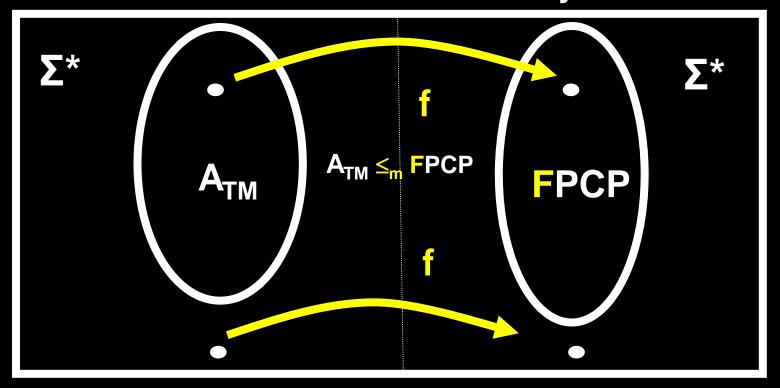
$$f: (M,w) \rightarrow PDA P_w$$
 where

 $S \in \Sigma^*$

 P_w (s) = accept iff s is NOT an accepting computation of M(w)

So, (M, w) $\in A_{TM} \Leftrightarrow P_{W} \in \neg ALL_{PDA}$

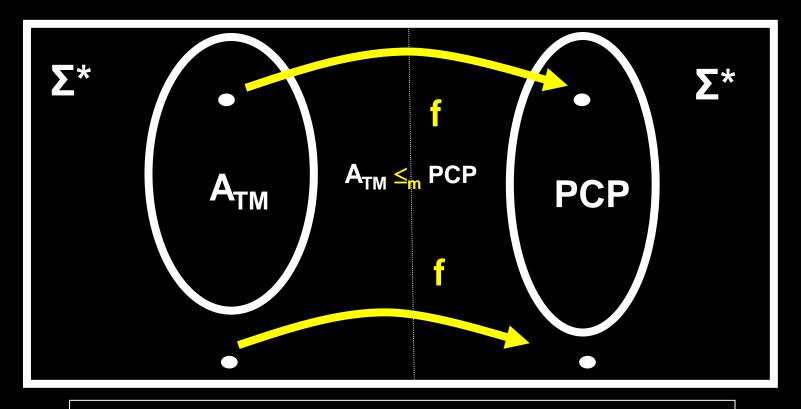
A_{TM} = { (M,w) | M is a TM that accepts string w }



Construct $f: (M,w) \rightarrow P_{(M,w)}$ such that

 $(M, w) \in A_{TM} \Leftrightarrow P_{(M,w)} \in FPCP$

A_{TM} = { (M,w) | M is a TM that accepts string w }
PCP = { P | P is a set of dominos with a match }



Construct $f: (M,w) \rightarrow P_{(M,w)}$ such that

 $\textbf{(M, w)} \in A_{TM} \Leftrightarrow P_{(M,w)} \in PCP$

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string w } \}$ $\overline{HALT_{TM}} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$ $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$ $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$ $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and L(M)} = L(N)\}$ $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$ PCP = { P | P is a set of dominos with a match }

ALL UNDECIDABLE

Use Reductions to Prove

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string w } \}$ $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$ $E_{TM} = \{ M \mid M \text{ is a } TM \text{ and } L(M) = \emptyset \}$ $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$ $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and L(M)} = L(N)\} - EQ_{TM}$ $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$ $\neg ALL_{PDA}$

PCP = { P | P is a set of dominos with a match }

ALL UNDECIDABLE

Use Reductions to Prove

Which are SEMI-DECIDABLE?

RICE'S THEOREM

Let L be a language over Turing machines.

Assume that L satisfies the following properties:

- 1. For any TMs M_1 and M_2 , where $L(M_1) = L(M_2)$, $M_1 \in L$ if and only if $M_2 \in L$
- 2. There are TMs M_1 and M_2 , where $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

EXTREMELY POWERFUL!

RICE'S THEOREM

Let L be a language over Turing machines.

Assume that L satisfies the following properties:

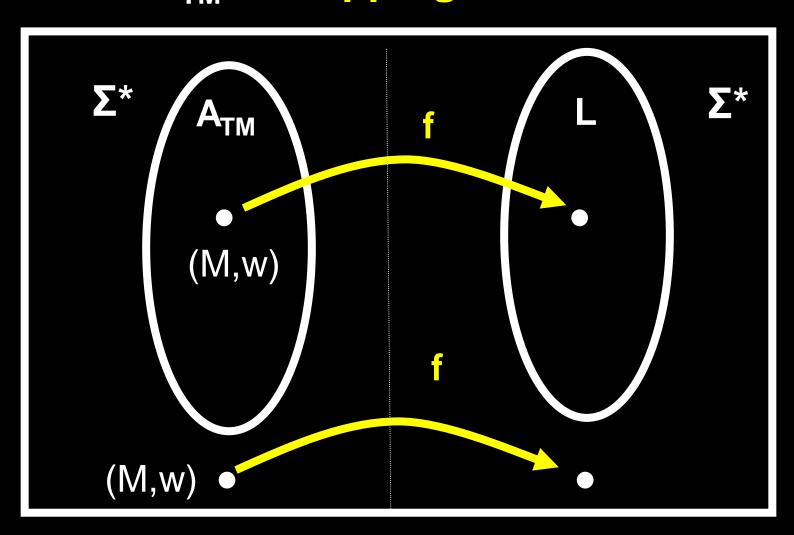
- 1. For any TMs M_1 and M_2 , where $L(M_1) = L(M_2)$, $M_1 \in L$ if and only if $M_2 \in L$
- 2. There are TMs M_1 and M_2 , where $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

```
FIN<sub>TM</sub> = { M | M is a TM and L(M) is E_{TM} = \{ M \mid M \text{ is } A \text{ TM and L(M)} = \emptyset \}
REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}
```

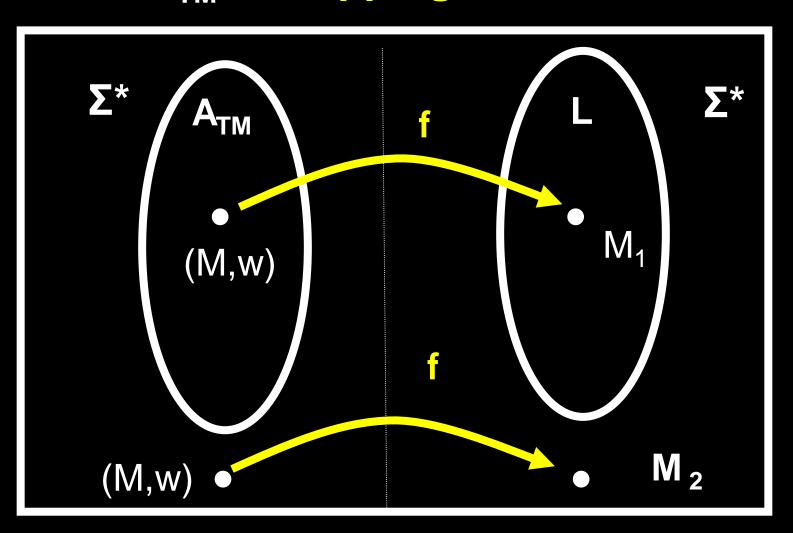
Proof: Show L is undecidable

Show: A_{TM} is mapping reducible to L



Proof: Show L is undecidable

Show: A_{TM} is mapping reducible to L



RICE'S THEOREM

Proof:

Define M_Ø to be a TM that never halts

Assume, WLOG, that $M_{\emptyset} \notin L$ Why?

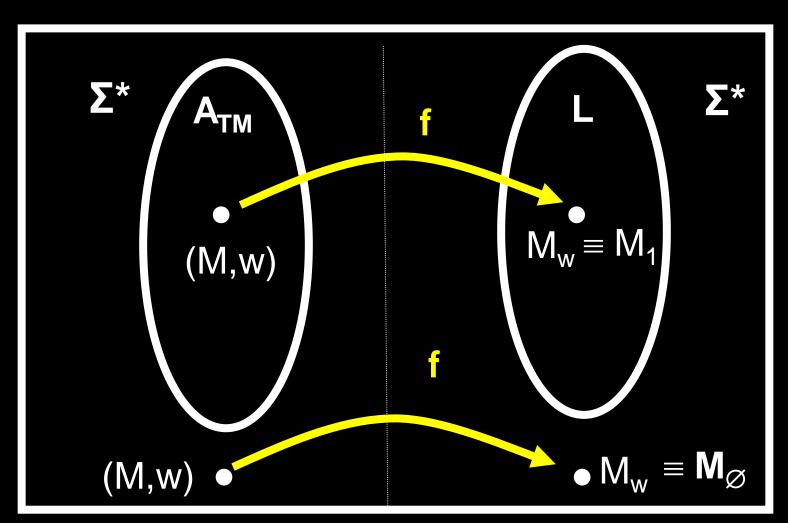
Let $M_1 \in L$ (such M_1 exists, by assumption) Show A_{TM} is mapping reducible to

Map $(M, w) \rightarrow M_w$ where

 $M_w(s)$ = accepts if both M(w) and $M_1(s)$ accept loops otherwise

What is the language of M_w?

A_{TM} is mapping reducible to L



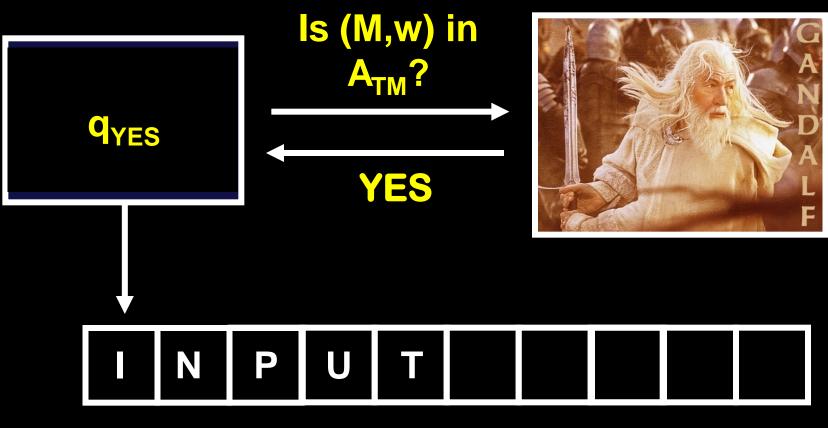
Corollary: The following languages are undecidable.

```
E_{TM} = \{ M \mid M \text{ is a TM and L(M)} = \emptyset \}

REG_{TM} = \{ M \mid M \text{ is TM and L(M) is regular} \}
```

 $FIN_{TM} = \{M \mid M \text{ is a TM and L(M) is finite}\}$ $DEC_{TM} = \{M \mid M \text{ is a TM and L(M) is decidable}\}$

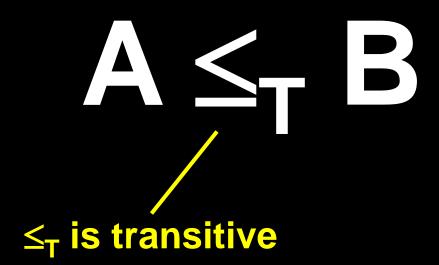
ORACLE TMs



INFINITE TAPE

A Turing Reduces to B

We say A is decidable in B if there is an oracle TM M with oracle B that decides A



Theorem: If $A \leq_m B$ then $A \leq_T B$ But in general, the converse doesn't hold!

Proof:

If $A \leq_m B$ then there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \Leftrightarrow f(w) \in B$$

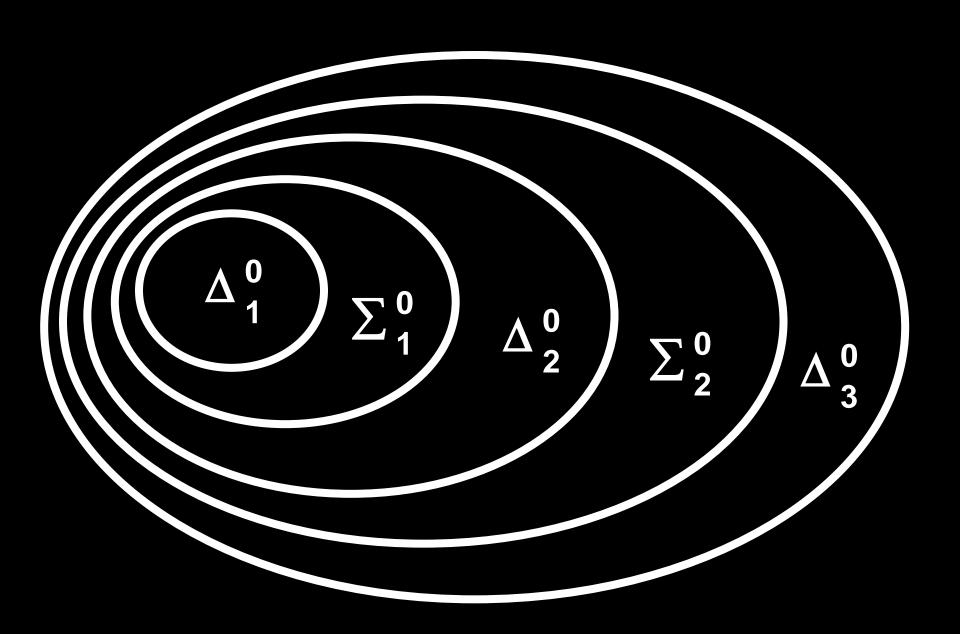
We can thus use an oracle for B to decide A

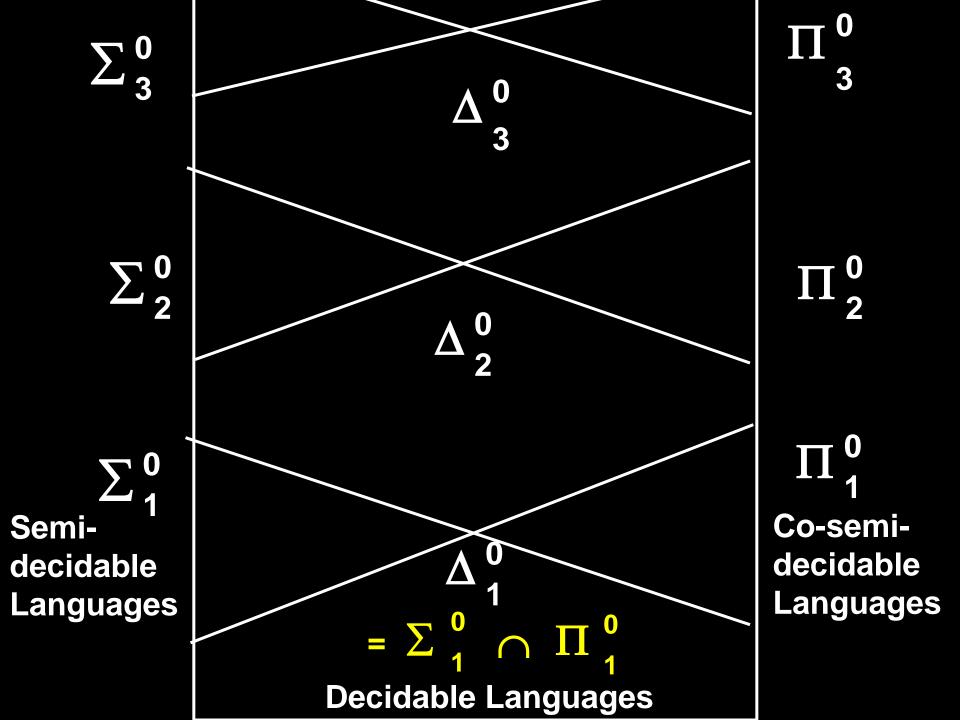
Theorem: —HALT_{TM} ≤_T HALT_{TM}

Theorem: ¬HALT_{TM}/≤_m HALT_{TM} WHY?

THE ARITHMETIC HIERARCHY

```
\Delta_1^0 = { decidable sets } (sets = languages)
   \sum_{1}^{0} = \{ \text{ semi-decidable sets } \}
\sum_{n+1}^{0} = \{ \text{ sets semi-decidable in some } B \in \sum_{n}^{0} \}
\Delta_{n+1}^{0} = \{ \text{ sets decidable in some B } \in \Sigma_{n}^{0} \}
  \Pi_n^0 = \{ \text{ complements of sets in } \sum_{n=1}^{\infty} \}
```





Definition: A decidable predicate R(x,y) is some proposition about x and y^1 , where there is a TM M such that

for all x, y, R(x,y) is TRUE
$$\Rightarrow$$
 M(x,y) accepts R(x,y) is FALSE \Rightarrow M(x,y) rejects

We say M "decides" the predicate R.

EXAMPLES:

R(x,y) = "x + y is less than 100" R(<N>,y) = "N halts on y in at most 100 steps"Kleene's T predicate, T(<M>, x, y): M accepts x in y steps.

1. x, y are positive integers or elements of Σ^*

Theorem: A language A is semi-decidable if and only if there is a decidable predicate R(x, y) such that $x = \{x \mid \exists y \mid R(x,y)\}$

Proof:

- (1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is semi-decidable Because we can enumerate over all y's
- (2) If A is semi-decidable, then $A = \{ x \mid \exists y \ R(x,y) \}$

Let M semi-decide A and

Let $R_{<M>}(x,y)$ be the Kleene T- predicate: T(<M>, x, y):

TM M accepts x in y steps (y interpreted as an integer)

R_{<M>} is a decidable predicate (why?)

So $x \in A$ if and only if $\exists y R_{\leq M \geq }(x,y)$ is true.

Theorem

```
\sum_{1}^{0} = \{ \text{ semi-decidable sets } \}
       = languages of the form \{x \mid \exists y \ R(x,y)\}
\Pi_1^0 = { complements of semi-decidable sets }
       = languages of the form \{x \mid \forall y \ R(x,y)\}
\Delta_{1}^{0} = \{ \text{ decidable sets } \}
       = \sum_{1}^{0} \cap \Pi_{1}^{0}
           Where R is a decidable predicate
```

Theorem

$$\sum_{2}^{0} = \{ \text{ sets semi-decidable in some semi-dec. B} \}$$

$$= \text{ languages of the form } \{ x \mid \exists y_1 \forall y_2 \ R(x,y_1,y_2) \}$$

$$\prod_{2}^{0} = \{ \text{ complements of } \sum_{2}^{0} \text{ sets} \}$$

$$= \text{ languages of the form } \{ x \mid \forall y_1 \exists y_2 \ R(x,y_1,y_2) \}$$

$$\Delta_{2}^{0} = \sum_{2}^{0} \cap \prod_{2}^{0}$$

Where R is a decidable predicate

Theorem

$$\sum_{n=1}^{\infty} = \text{languages} \{ x \mid \exists y_1 \forall y_2 \exists y_3 ... Qy_n R(x, y_1, ..., y_n) \}$$

$$\prod_{n=1}^{\infty} = \text{languages} \{ x \mid \forall y_1 \exists y_2 \forall y_3 ... Qy_n R(x, y_1, ..., y_n) \}$$

$$\Delta_n^0 = \sum_n^0 \cap \Pi_n^0$$

Where R is a decidable predicate

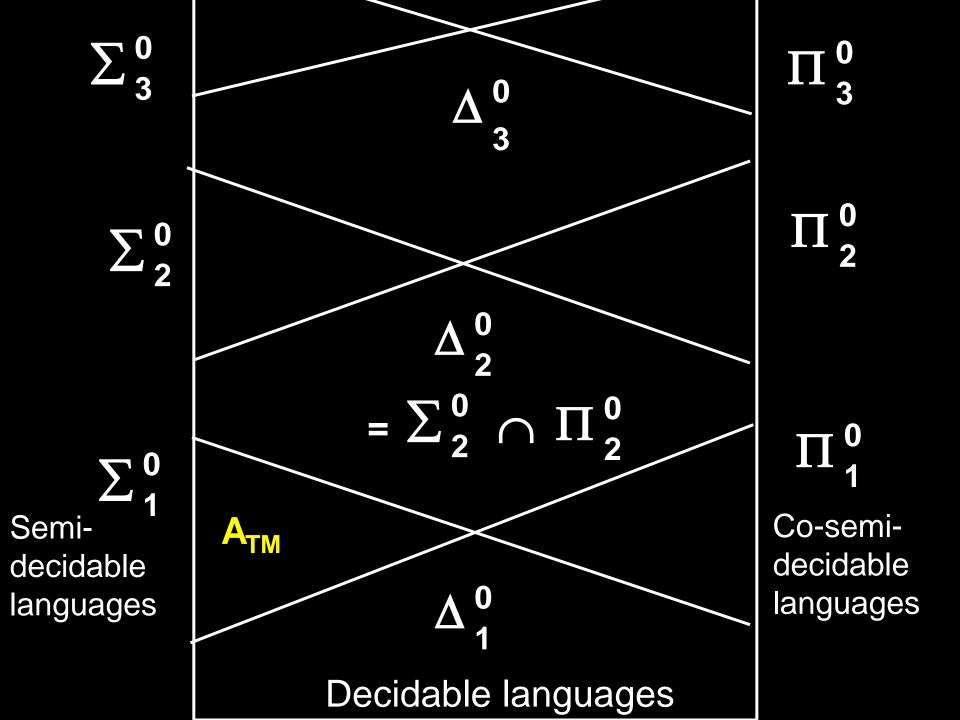
$$\sum_{1}^{0} = \text{languages of the form } \{x \mid \exists y R(x,y)\}$$
We know that A_{TM} is in \sum_{1}^{0} Why?

Show it can be described in this form: $\{<(M,w)> \mid \exists t \ [M \ accepts \ w \ in \ t \ steps]\}$

decidable predicate

$$A_{TM} = \{ \langle (M, w) \rangle \mid \exists t \ T \ (\langle M \rangle, \ w, \ t \) \}$$

 $A_{TM} = \{ \langle (M,w) \rangle \mid \exists v \text{ (v is an accepting computation history of M on w)} \}$



two quantifiers??

$$\Pi_1^0$$
 = languages of the form { x | \forall y R(x,y) } Show that EMPTY (ie, E_{TM}) = { M | L(M) = \emptyset } is ii) Π_1^0 EMPTY = { M | \forall w \forall t [M doesn't accept w in t steps] }

decidable predicate

$$\Pi_1^0$$
 = languages of the form { x | \forall y R(x,y) }
Show that EMPTY (ie, E_{TM}) = { M | L(M) = \emptyset } is in Π_1^0
EMPTY = { M | \forall w \forall t [\neg T($<$ M>, w, t)] }
two quantifiers?? decidable predicate

THE PAIRING FUNCTION

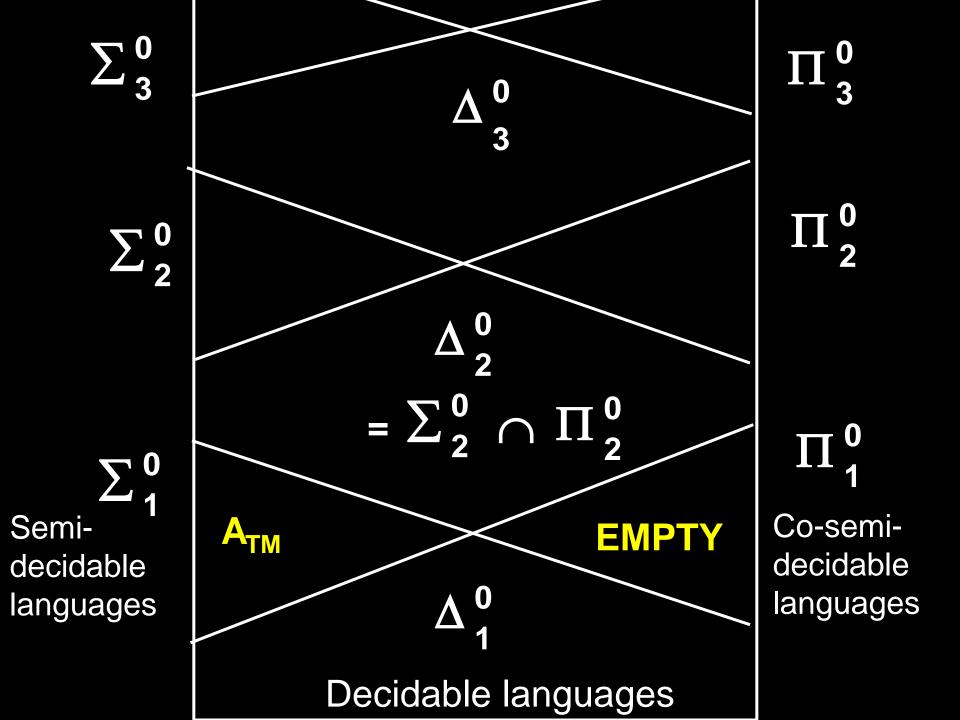
Theorem. There is a 1-1 and onto computable function <, >: $\Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \to \Sigma^*$ such that

$$z = \langle w, t \rangle \Rightarrow \pi_1(z) = w \text{ and } \pi_2(z) = t$$

EMPTY = { M | ∀w∀t [M doesn't accept w in t steps] }

EMPTY = { M | \forall z[M doesn't accept π_1 (z) in π_2 (z) steps]}

EMPTY = { M |
$$\forall z[\neg T(, \pi_1(z), \pi_2(z))] }$$

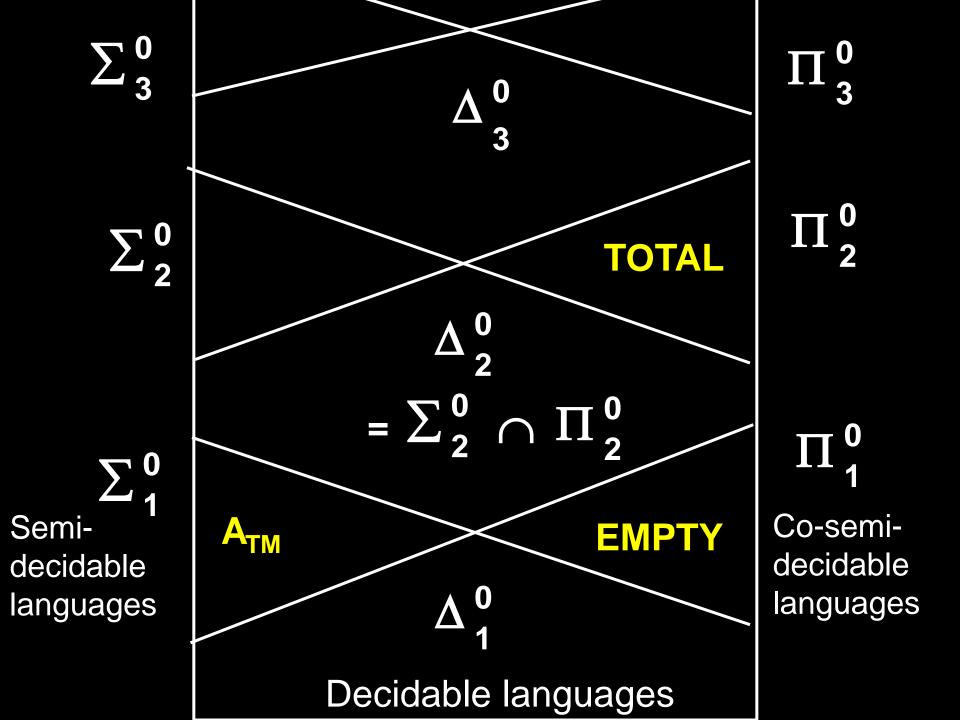


```
\Pi_2^0 = languages of the form { x | \forall y \exists z \ R(x,y,z) }
Show that TOTAL = { M | M halts on all inputs }
is in \Pi_2^0
```

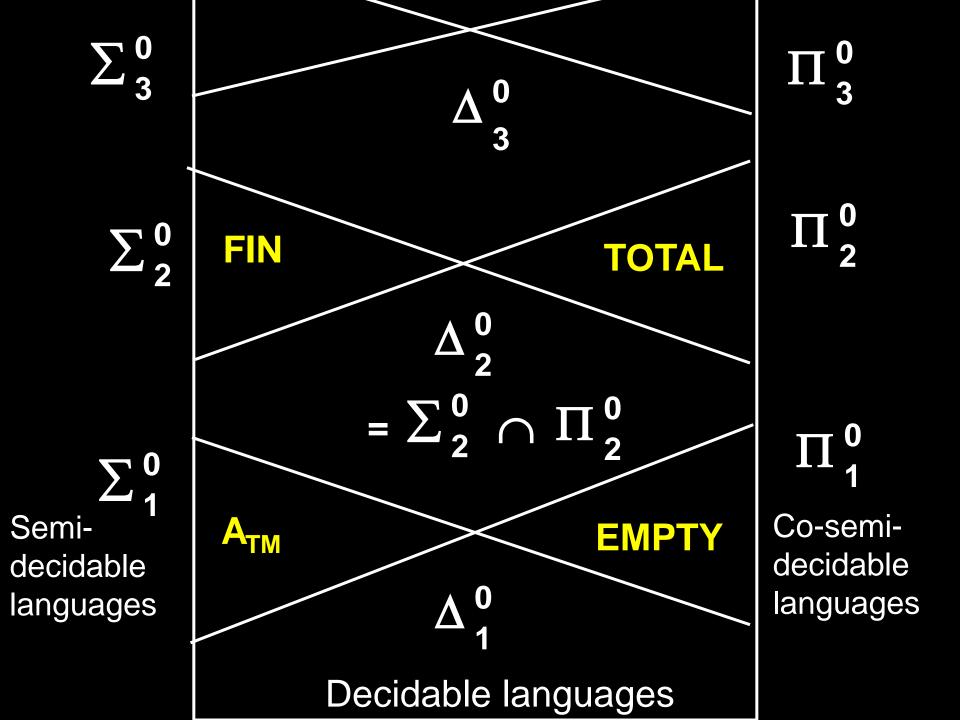
TOTAL = $\{ M \mid \forall w \exists t [M halts on w in t steps] \}$

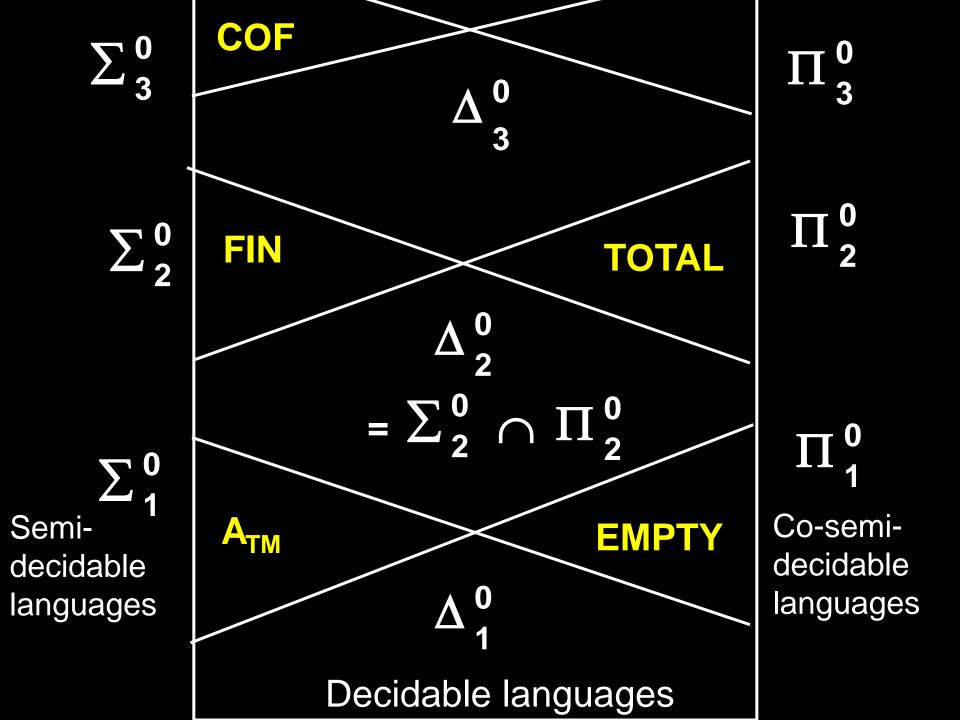
decidable predicate

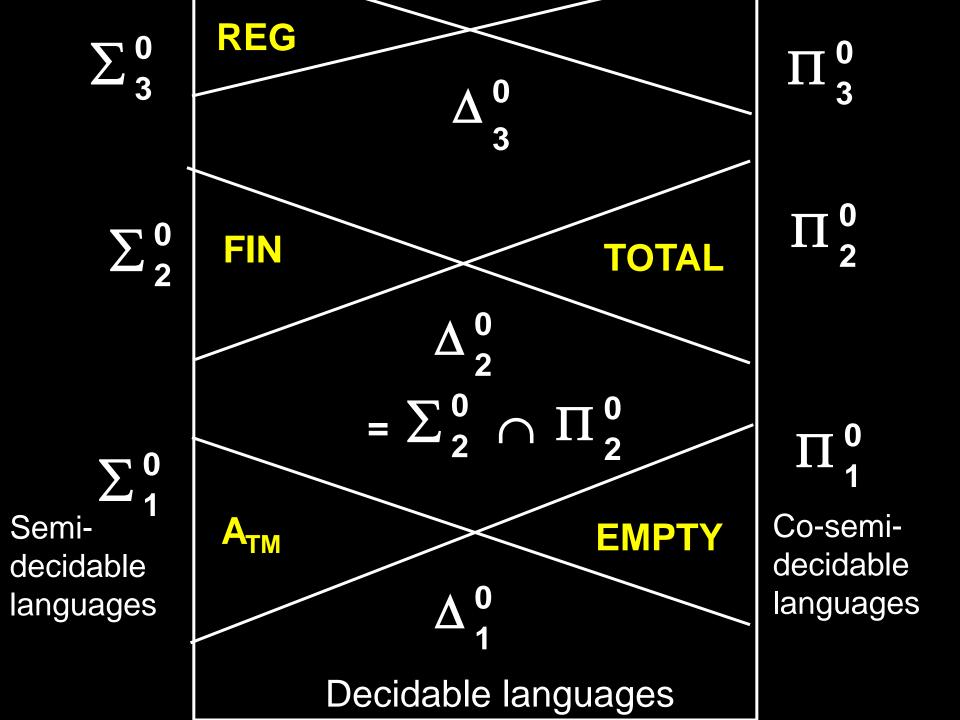
```
\Pi_2^0 = languages of the form { x | \forall y \exists z \ R(x,y,z) }
Show that TOTAL = { M | M halts on all inputs }
is in \prod_{2}^{0}
   TOTAL = \{ M \mid \forall w \exists t [ T(\langle M \rangle, w, t) ] \}
                                     decidable predicate
```

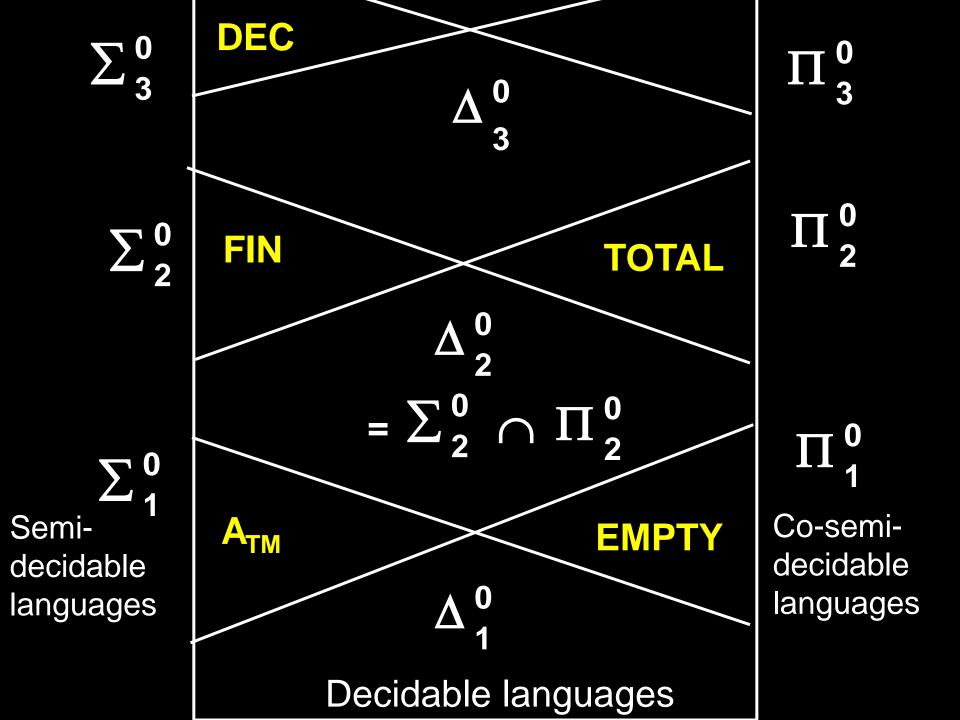


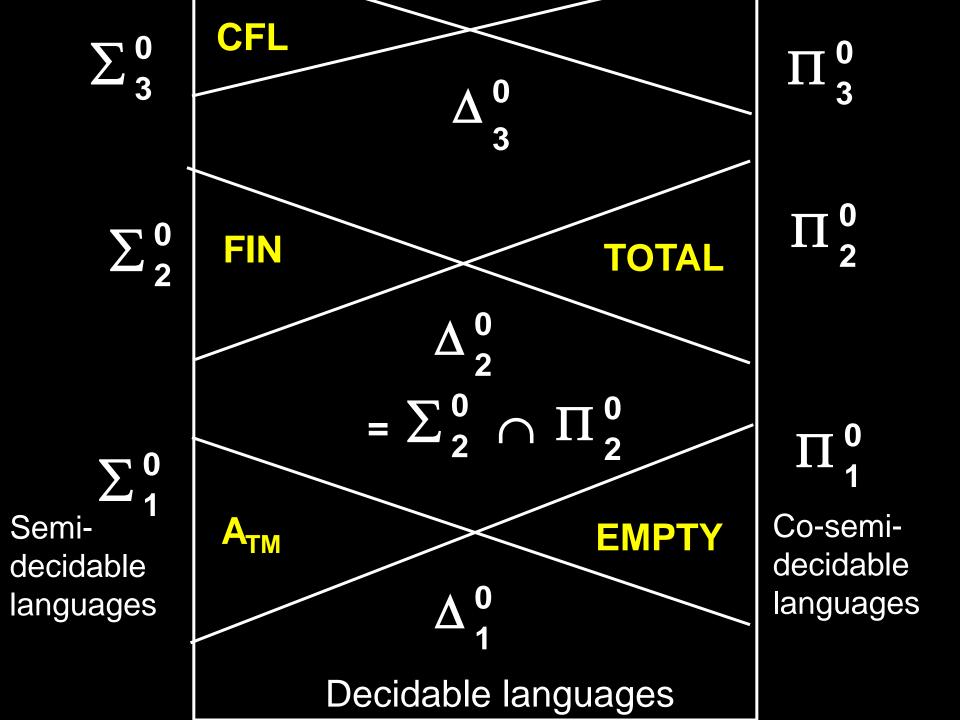
```
\sum_{2}^{0} = languages of the form { x | \exists y \forall z \ R(x,y,z) }
Show that FIN = { M | L(M) is finite } is in \sum_{n=0}^{\infty}
  FIN = \{ M \mid \exists n \forall w \forall t \text{ [Either } |w| < n, or \} \}
                        M doesn't accept w in t steps] }
  FIN = \{ M \mid \exists n \forall w \forall t (|w| < n \lor \neg T(\langle M \rangle, w, t)) \}
                                        decidable predicate
```











Each is m-complete for its level in hierarchy and cannot go lower (by next Theorem, which shows the hierarchy does not collapse).

ORACLES not all powerful

The following problem cannot be decided, even by a TM with an oracle for the Halting Problem:

SUPERHALT = $\{ (M,x) \mid M, \text{ with an oracle for the } Halting Problem, halts on x \}$

Can use diagonalization here!

Suppose H decides SUPERHALT (with oracle)

Define D(X) = "if H(X,X) accepts (with oracle) then LOOP, else ACCEPT."

D(D) halts $\Leftrightarrow H(D,D)$ accepts $\Leftrightarrow D(D)$ loops...

ORACLES not all powerful

Theorem: The arithmetic hierarchy is strict.
That is, the nth level contains a language that isn't in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

```
SUPERHALT<sup>0</sup> = HALT = { (M,x) \mid M \text{ halts on } x}.
SUPERHALT<sup>1</sup> = { (M,x) \mid M, with an oracle for the
```

Halting Problem, halts on x}

SUPERHALTⁿ = { $(M,x) \mid M$, with an oracle for SUPERHALTⁿ⁻¹, halts on x}

Theorem:

- 1. The hierarchy is strict
- 2. Each of the languages is m-complete for its class.

Proof Idea.

1. Let $A_{TM,1} = A_{TM}$

 $A_{TM, n+1} = \{(M,x)| M \text{ is an oracle machine with oracle } A_{TM} \text{ and } M \text{ accepts } x\}$

Then
$$A_{TM, n} \in \sum_{n=1}^{\infty} - \prod_{n=1}^{\infty}$$

Theorem:

- 1. The hierarchy is strict
- 2. Each of the languages is m-complete for its class.

Proof.

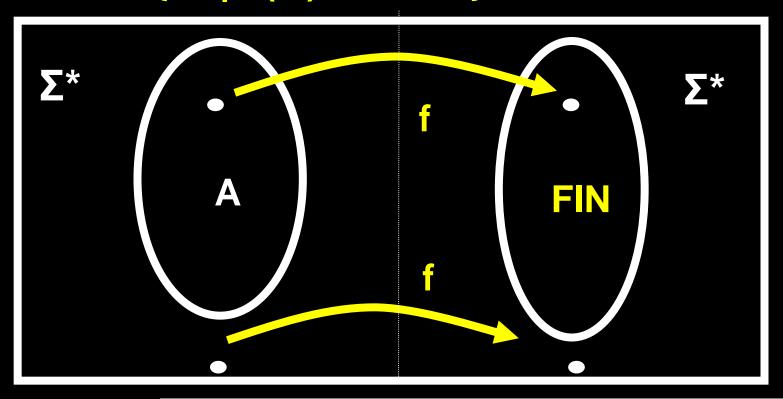
2. Eg to show FIN is m-complete for \sum_{2}^{0}

Need to show

a) FIN
$$\in \sum_{2}^{0}$$

b) For A
$$\in \sum_{2}^{0}$$

For $A \in \sum_{2}^{0}$, $A=\{x \mid \exists y \forall z \ R(x,y,z)\}\}$ $FIN = \{M \mid L(M) \text{ is finite }\}$

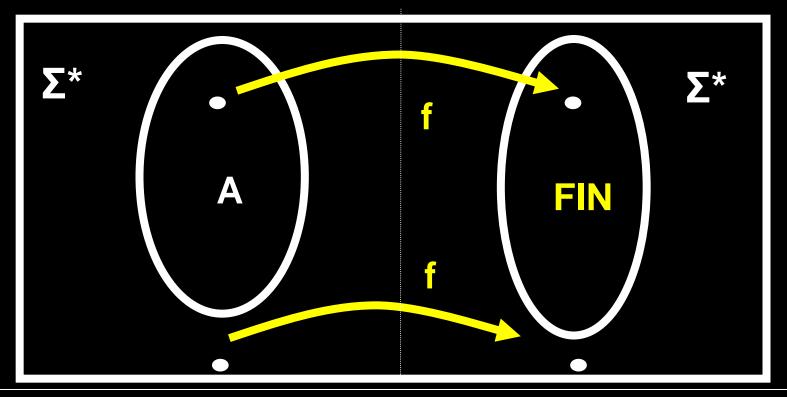


 $f: X \to M_x$

Given input w:

For each y of length |w| or less, look for z such that $\neg R(x,y,z)$. If found for all such y, Accept. Otherwise keep on running.

For $A \in \sum_{2}^{0}$, $A=\{x \mid \exists y \forall z \ R(x,y,z)\}$ $FIN = \{M \mid L(M) \text{ is finite } \}$



- •If $x \in A$, then $\exists y \forall z \ R(x,y,z)$, so when |w| > |y|, M_x keeps on running, so $M_x \in FIN$.
- •If $x \notin A$, then $\forall y \exists z \neg R(x,y,z)$, so M_x recognizes Σ^*

CAN WE QUANTIFY HOW MUCH INFORMATION IS IN A STRING?

A = 0101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can "compress" a string, the less "information" it contains....

KOLMOGOROV COMPLEXITY

Definition: Let x in $\{0,1\}^*$. The shortest description of x, denoted as d(x), is the lexicographically shortest string $\langle M, w \rangle$ s.t. M(w) halts with x on tape.

Use pairing function to code <M,w>

Definition: The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

KOLMOGOROV COMPLEXITY

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(x) \le |x| + c$

"The amount of information in x isn't much more than x"

Proof: Define M = "On w, halt."

On any string x, M(x) halts with x on its tape!

This implies

$$K(x) \le |\langle M, x \rangle| \le 2|M| + |x| + 1 \le c + |x|$$

(Note: M is fixed for all x. So M is constant)

REPETITIVE STRINGS

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(xx) \le K(x) + c$

"The information in xx isn't much more than that in x"

Proof: Let N = "On < M, w>, let s=M(w). Print ss."

Let <M,w'> be the shortest description of x.

Then <N,<M,w'>> is a description of xx

Therefore

 $K(xx) \le |\langle N, \langle M, w' \rangle \rangle| \le 2|N| + K(x) + 1 \le c + K(x)$

REPETITIVE STRINGS

Corollary: There is a fixed c so that for all n, and all $x \in \{0,1\}^*$, $K(x^n) \le K(x) + c \log_2 n$

"The information in xⁿ isn't much more than that in x"

Proof:

An intuitive way to see this:

Define M: "On $\langle x, n \rangle$, print x for n times".

Now take $\langle M, \langle x, n \rangle \rangle$ as a description of x^n .

In binary, n takes O(log n) bits to write down, so we have K(x) + O(log n) as an upper bound on K(xn).

REPETITIVE STRINGS

Corollary: There is a fixed c so that for all n, and all $x \in \{0,1\}^*$, $K(x^n) \le K(x) + c \log_2 n$

"The information in xⁿ isn't much more than that in x"

Recall:

A = 010101010101010101010101010101

For $w = (01)^n$, $K(w) \le K(01) + c \log_2 n$

CONCATENATION of STRINGS

Theorem: There is a fixed c so that for all x, y in {0,1}*,

$$K(xy) \leq 2K(x) + K(y) + c$$

Better: $K(xy) \le 2 \log K(x) + K(x) + K(y) + c$

INCOMPRESSIBLE STRINGS

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \ge n$

"There are incompressible strings of every length"

Proof: (Number of binary strings of length n) = 2^n

(Number of descriptions of length < n)
 ≤ (Number of binary strings of length < n)
 = 2ⁿ - 1.

Therefore: there's at least one n-bit string that doesn't have a description of length < n

INCOMPRESSIBLE STRINGS

```
Theorem: For all n and c, Pr_{x \in \{0,1\}^n}[K(x) \ge n-c] \ge 1 - 1/2^c
```

"Most strings are fairly incompressible"

Proof: (Number of binary strings of length n) = 2^n

(Number of descriptions of length < n-c)
 ≤ (Number of binary strings of length < n-c)
 = 2^{n-c} - 1.

So the probability that a random x has K(x) < n-c is at most $(2^{n-c} - 1)/2^n < 1/2^c$.

Can an algorithm help us compress strings?
Can an algorithm tell us when a string is compressible?

COMPRESS = $\{(x,c) \mid K(x) \le c\}$

Theorem: COMPRESS is undecidable!

Berry Paradox: "The first string whose shortest description cannot be written in less than fifteen words."

COMPRESS = $\{(x,n) \mid K(x) \le n\}$

Theorem: COMPRESS is undecidable!

```
Proof:
M = "On input x \in \{0,1\}^*,
      Interpret x as integer n. (|x| \le \log n)
      Find first y \in \{0,1\}^* in lexicographical order,
      s.t. (y,n) \( \nabla \) COMPRESS, then print y and
halt."
M(x) prints the first string y^* with K(y^*) > n.
 Thus \langle M, x \rangle describes y^*, and |\langle M, x \rangle| \leq c + \log n
So n < K(y^*) \le c + \log n. CONTRADICTION!
```

Theorem: K is not computable

Proof:

```
M = "On input x \in \{0,1\}^*, Interpret x as integer n. (|x| \le log n) Find first y \in \{0,1\}^* in lexicographical order, s. t. K(y) > n, then print y and halt."
```

M(x) prints the first string y^* with $K(y^*) > n$. Thus < M, x > describes y^* , and $|< M, x >| \le c + \log n$ So $n < K(y^*) \le c + \log n$. CONTRADICTION!

What about other measures of compressibility?

For example:

- the smallest DFA that recognizes {x}
- the shortest grammar in Chomsky normal form that generates the language {x}

SO WHAT CAN YOU DO WITH THIS?

Many results in mathematics can be proved very simply using incompressibility.

Theorem: There are infinitely many primes.

IDEA: Finitely many primes ⇒ can compress everything!

Proof: Suppose not. Let p_1, \ldots, p_k be the primes. Let x be incompressible. Think of n = x as integer. Then there are e_i s.t.

$$n = p_1^{e1} \dots p_k^{ek}$$

For all i, $e_i \le log n$, so $|e_i| \le log log n$ Can describe n (and x) with k log log n + c bits! But x was incompressible... CONTRADICTION! Definition: Let M be a TM that halts on all inputs. The running time or time complexity of M is a function $f: N \to N$, where f(n) is the maximum number of steps that M uses on any input of length n.

Definition: $TIME(t(n)) = \{ L \mid L \text{ is a language decided by a } O(t(n)) \text{ time Turing Machine } \}$

$$P = \bigcup TIME(n^k)$$

$$k \in N$$

Definition: A Non-Deterministic TM is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

Q is a finite set of states

 Σ is the input alphabet, where $\square \notin \Sigma$

 Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$

$$\delta: \mathbf{Q} \times \mathbf{\Gamma} \rightarrow \mathbf{2}^{(\mathbf{Q} \times \mathbf{\Gamma} \times \{L,R\})}$$

 $q_0 \in Q$ is the start state

q_{accept} ∈ Q is the accept state

q_{reject} ∈ Q is the reject state, and q_{reject} ≠ q_{accept}

Definition: NTIME(t(n)) = { L | L is decided by a O(t(n))-time non-deterministic Turing machine }

 $\mathsf{TIME}(\mathsf{t}(\mathsf{n})) \subseteq \mathsf{NTIME}(\mathsf{t}(\mathsf{n}))$

$$NP = \bigcup_{k \in \mathbb{N}} NTIME(n^k)$$

Theorem: L ∈ NP ⇔ if there exists a poly-time Turing machine V with

 $L = \{ x \mid \exists y [|y| = poly(|x|) \text{ and } V(x,y) \text{ accepts }] \}$

Proof:

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts } then L ∈ NP

Non-deterministically guess y and then run V(x,y)

(2) If $L \in NP$ then $L = \{ x \mid \exists y \mid y \mid = poly(|x|) \text{ and } V(x,y) \text{ accepts } \}$

Let N be a non-deterministic poly-time TM that decides L, define V(x,y) to accept iff y is an accepting computation history of N on x

A language is in NP if and only if there exist "polynomial-length proofs" for membership to the language

P = the problems that can be efficiently solved NP = the problems where proposed solutions can be efficiently verified

P = NP?

Can Problem Solving Be Automated?

\$\$\$

A Clay Institute Millennium Problem

POLY-TIME REDUCIBILITY

f: $\Sigma^* \to \Sigma^*$ is a polynomial time computable function if some poly-time Turing machine M, on every input w, halts with just f(w) on its tape

Language A is polynomial time reducible to language B, written $A \leq_P B$, if there is a polytime computable function $f: \Sigma^* \to \Sigma^*$ such that:

$$w \in A \Leftrightarrow f(w) \in B$$

f is called a polynomial time reduction of A to B

Theorem: If $A \leq_P B$ and $B \in P$, then $A \in P$

SAT = $\{ \phi \mid (\exists y)[y \text{ is a satisfying assignment to } \phi \text{ and } \phi \text{ is a boolean formula }] \}$

3SAT = { φ | (∃y)[y is a satisfying assignment to φ and φ is in 3cnf] }

Theorem (Cook-Levin): SAT and 3-SAT are NP-complete

1. SAT ∈ NP:

A satisfying assignment is a "proof" that a formula is satisfiable!

2. SAT is NP-hard:

Every language in NP can be polytime reduced to SAT (complex formula)

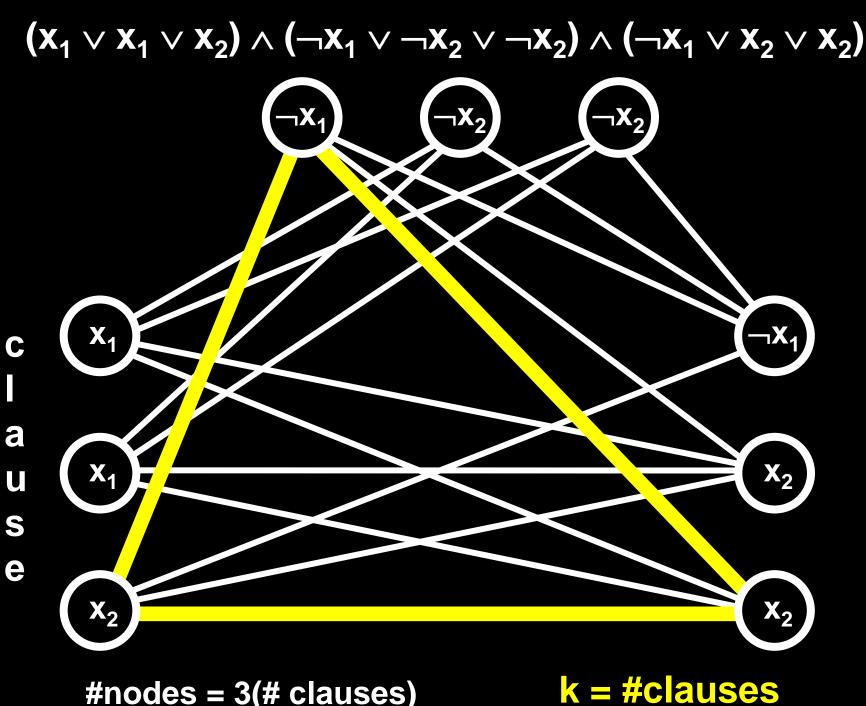
Corollary: SAT ∈ P if and only if P = NP

Assume a reasonable encoding of graphs (example: the adjacency matrix is reasonable)

CLIQUE = { (G,k) | G is an undirected graph with a k-clique }

Theorem: CLIQUE is NP-Complete

- (1) CLIQUE ∈ NP
- (2) 3SAT ≤_P CLIQUE



#nodes = 3(# clauses)

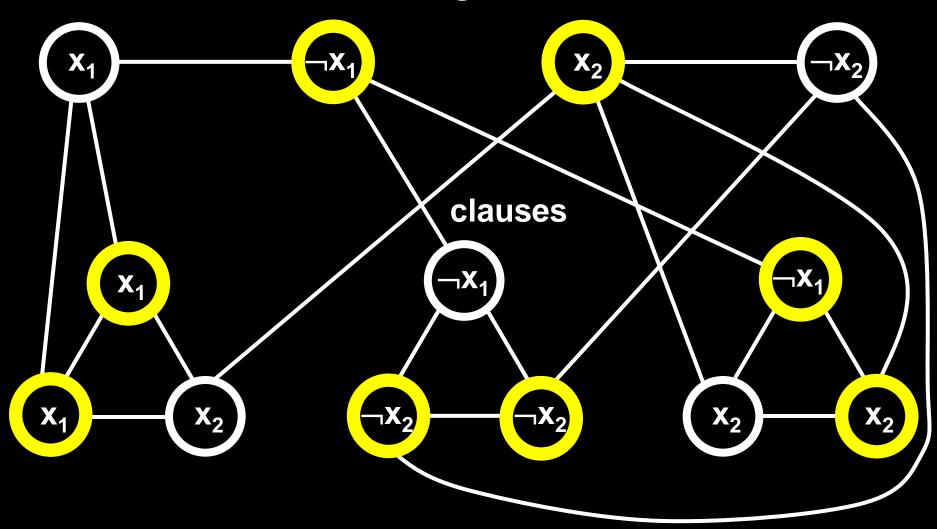
VERTEX-COVER = { (G,k) | G is an undirected graph with a k-node vertex cover }

Theorem: VERTEX-COVER is NP-Complete

- (1) VERTEX-COVER ∈ NP
- (2) $3SAT \leq_{P} VERTEX-COVER$

$$(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$$

Variables and negations of variables



k = 2(#clauses) + (#variables)

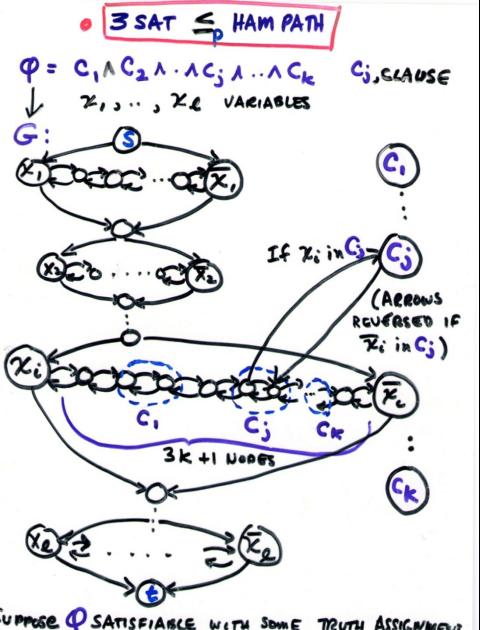
HAMPATH = { (G,s,t) | G is an directed graph with a Hamilton path from s to t}

Theorem: HAMPATH is NP-Complete

(1) HAMPATH \in NP

(2) 3SAT ≤_P HAMPATH

Proof is in Sipser, Chapter 7.5



SUPPOSE O SATISFIABLE WITH SOME TRUTH ASSIGNMENT. ZIG ZAG IF X: 6 TRUE, ZAG - ZIG IF X. TRUE. DETOUR ON CLAUSES NOT ALREADY COVERED.

UHAMPATH = { (G,s,t) | G is an undirected graph with a Hamilton path from s to t}

Theorem: UHAMPATH is NP-Complete

- (1) UHAMPATH ∈ NP
- (2) HAMPATH ≤_P UHAMPATH

HAMPATH & UHAMPATH uin umiduout sout vin mid out . Z IN EXAMPLE: . Why do we need mid?

SUBSETSUM = { (S, t) | S is multiset of integers and for some Y \subseteq S, we have $\sum_{v \in Y} y = t$ }

Theorem: SUBSETSUM is NP-Complete

- (1) SUBSETSUM ∈ NP
- (2) 3SAT ≤_P SUBSETSUM

3 SAT & SUGSET SUM C; , CLAUSE = CINCAN ... ACK VARIABLES: 21,..., Ze (S, t) 1 2 ... 2995 ... k 1 iff Zi IN C; (other) 10.0 ٤٤: 5 CK 59K FOR SUBSET CHOOSE ROWS WITH LITERALS TRUE 9; 's & h'is As NECESSARY TO ADD

HW

Let G denote a graph, and s and t denote nodes.

SHORTEST PATH

$$= \{(G, s, t, k) \mid$$

G has a simple path of length < k from s to t }

LONGEST PATH

$$= \{(G, s, t, k) \mid$$

G has a simple path of length > k from s to t }

WHICH IS EASY? WHICH IS HARD? Justify (see Sipser 7.21)

WWW.FLAC.WS

Good Luck on Midterm 2!