
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

NP-COMPLETENESS:
THE COOK-LEVIN THEOREM

TUESDAY March 25

Theorem (Cook-Levin): SAT is NP-complete

Corollary: SAT ∈ P if and only if P = NP

Theorem (Cook/Levin'71) P= NP ⇔ SAT ∈ P

Steve Cook Leonid Levin

A 3cnf-formula is of the form:
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

clauses

SAT = { φ | φ is a satisfiable boolean formula }

3-SAT = { φ | φ is a satisfiable 3cnf-formula }

SAT = { φ | φ is a satisfiable boolean-formula }

3-SAT = { φ | φ is a satisfiable 3cnf-formula }

SAT, 3-SAT ∈ NP (why?)

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(2) Every language A in NP is polynomial time
reducible to SAT

(1) SAT ∈ NP (3SAT ∈ NP)

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT ∈ NP (3SAT ∈ NP)

(2) Every language A in NP is polynomial time
reducible to SAT

We build a poly-time reduction from A to SAT

The reduction turns a string w into a 3-cnf
formula φ such that w ∈ A iff φ ∈ 3-SAT.
φ will simulate the NP machine N for A on w.

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(2) Every language A in NP is polynomial time
reducible to SAT

We build a poly-time reduction from A to SAT

Let N be a non-deterministic TM that decides
A in time nk

The reduction turns a string w into a 3-cnf
formula φ such that w ∈ A iff φ ∈ 3-SAT.
φ will simulate the NP machine N for A on w.

(1) SAT ∈ NP (3SAT ∈ NP)

A 3SAT
f

f

The reduction f turns a string w into a 3-cnf formula φ
such that: w ∈ A ⇔ φ ∈ 3SAT.

φ will simulate the NP machine N for A on w.

w φ

So proof will also show:
3-SAT is NP-Complete

P
NP

3-SAT

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

nk

exp(nk)

Suppose A ∈ NTIME(nk) and let N be an NP machine for A.
A tableau for N on w is an nk × nk table whose rows are the
configurations of some possible computation of N on input w.

q0 w1 wn w2  # #  … …

nk

nk

A tableau is accepting if any row of the tableau
is an accepting configuration

Determining whether N accepts w is equivalent
to determining whether there is an accepting
tableau for N on w

A tableau is accepting if any row of the tableau
is an accepting configuration

Determining whether N accepts w is equivalent
to determining whether there is an accepting
tableau for N on w

Given w, our 3cnf-formula φ will describe a
generic tableau for N on w (in fact, essentially
generic for N on any string w of length n).

The 3cnf formula φ will be satisfiable if and only
if there is an accepting tableau for N on w.

Let C = Q ∪ Γ ∪ { # }

For each i and j (1 ≤ i, j ≤ nk) and for each s ∈ C
we have a variable xi,j,s

VARIABLES of φ

Each of the (nk)2 entries of a tableau is a cell

cell[i,j] = the cell at row i and column j

variables = |C|n2k, ie O(n2k), since |C| only depends on N

Let C = Q ∪ Γ ∪ { # }

For each i and j (1 ≤ i, j ≤ nk) and for each s ∈ C
we have a variable xi,j,s

VARIABLES of φ

Each of the (nk)2 entries of a tableau is a cell

cell[i,j] = the cell at row i and column j

These are the variables of φ and represent the
contents of the cells

We will have: xi,j,s = 1  cell[i,j] = s

variables = |C|n2k, ie O(n2k), since |C| only depends on N

xi,j,s = 1

means

cell[i, j] = s

We now design φ so that a satisfying assignment
to the variables xi,j,s corresponds to an accepting
tableau for N on w
The formula φ will be the AND of four parts:
φ = φcell ∧ φstart ∧ φaccept ∧ φmove

φaccept ensures* that an accepting configuration
occurs somewhere in the table

We now design φ so that a satisfying assignment
to the variables xi,j,s corresponds to an accepting
tableau for N on w
The formula φ will be the AND of four parts:
φ = φcell ∧ φstart ∧ φaccept ∧ φmove

φcell ensures that for each i,j, exactly one xi,j,s = 1

φstart ensures that the first row of the table is the starting
(initial) configuration of N on w

φmove ensures* that every row is a configuration that
legally follows from the previous config

*if the other components of φ hold

∧
1 ≤ i, j ≤ nk s ∈ C

xi,j,s (¬xi,j,s ∨ ¬xi,j,t) φcell =
s,t ∈ C

s ≠ t

at least one
variable is
turned on

at most one
variable is
turned on

φcell ensures that for each i,j, exactly one xi,j,s = 1

∧
1 ≤ i, j ≤ nk s ∈ C

xi,j,s (¬xi,j,s ∨ ¬xi,j,t) φcell =
s,t ∈ C

s ≠ t

at least one
variable is
turned on

at most one
variable is
turned on

Thus, φcell is satisfiable
(ie, there exist assignment to the variables s.t. φcell evaluates to 1)

each cell in the tableau has exactly one symbol (from C.)

φcell ensures that for each i,j, exactly one xi,j,s = 1

φstart = x1,1,# ∧ x1,2,q ∧
 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧
 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

q0 w1 wn w2  # #  … …

φstart = x1,1,# ∧ x1,2,q ∧
 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧
 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

Thus, φstart is satisfiable
the first row of the tableau represents the start
configuration for N on input w

φaccept =
1 ≤ i, j ≤ nk

xi,j,q accept

Thus, φaccept is satisfiable 
at least one cell in the tableau has the symbol qaccept.

φmove ensures that every row is a configuration
that legally follows from the previous
It works by ensuring that each 2 × 3 “window” of
cells is legal (Does not violate N’s rules)

q0 w1 wn w2  # #  … …

φmove ensures that every row is a configuration
that legally follows from the previous
It works by ensuring that each 2 × 3 “window” of
cells is legal (Does not violate N’s rules)

If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)}
which of the following windows are legal:

a q1 b

q2 a c

b a

b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b q2

If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)}
which of the following windows are legal:

a q1 b

q2 a c

b a

b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b q2

CLAIM:
If

• the top row of the table is the start configuration,
and
• and every window is legal,

Then
each row of the table is a configuration that legally
follows the preceding one.

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

CLAIM:
If

• the top row of the table is the start configuration,
and
• and every window is legal,

Then
each row of the table is a configuration that legally
follows the preceding one.

CLAIM:
If

• the top row of the table is the start configuration,
and
• and every window is legal,

Then
each row of the table is a configuration that legally
follows the preceding one.

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol

a
a

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol
Case 2. center cell of window is a state symbol

a q
a

CLAIM:
If

• the top row of the table is the start configuration,
and
• and every window is legal,

Then
each row of the table is a configuration that legally
follows the preceding one.

q0 w1 wn w2  # #  … …

ok

o
k
k

ok

w3 w4

w2 w3

w4

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol
Case 2. center cell of window is a state symbol

q0 w1 wn w2  # #  … …

ok

o
k
k

ok

w3 w4

w2 w3

w4

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol
Case 2. center cell of window is a state symbol

q0 w1 wn w2  # #  … …

ok

o
k
k

ok

w3 w4

w2 w3

w4

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol
Case 2. center cell of window is a state symbol

q0 w1 wn w2  # #  … …

ok

o
k
k

ok

w3 w4

w2 w3

w4

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol
Case 2. center cell of window is a state symbol

a1 q an a2  # #  … …

ok

o
k
k

ok

a3 a4

a3 a4 ok

a5

a5

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol
Case 2. center cell of window is a state symbol

a1 q an a2  # #  … …

ok

o
k
k

ok

a3 a4

a3 a4 ok

a5

a5

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol
Case 2. center cell of window is a state symbol

a1 q an a2  # #  … …

ok

o
k
k

ok

a3 a4

a3 a4 ok

a5

a5

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and
not adjacent to a state symbol
Case 2. center cell of window is a state symbol

a1 q an a2  # #  … …

ok

o
k
k

ok

a3 a4

a3 a4 ok

a5

a5

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

So the lower configuration follows from the upper!!!

(i,j-1)

a1

(i,j)
a2

(i,j+1)

a3

(i+1,j-1)

a4

(i+1,j)

a5

(i+1,j+ 1)

a6

row i

row i+1

col. j-1 col. j col. j+1

The (i,j) Window

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …, a6).

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …, a6).
 This disjunct is satisfiable

There is some assignment to the cells (ie variables) in
the window (i,j) that makes the window legal

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

So φmove is satisfiable

There is some assignment to each of the variables that
makes every window legal.

This is a disjunct over all (≤ |C|6) legal sequences (a1, …, a6).

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …, a6).

Can re-write as equivalent conjunct:

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

a1, …, a6
ISN’T a legal window

1 2 3 4 5 6 ≡ (i,j-1,a ∨ i,j,a ∨ i,j,+1,a ∨ i+1,j-1,a ∨ i+1,j,a ∨ +1,j+1,a)

This is a conjunct over all (≤ |C|6) illegal sequences (a1, …, a6).

This is a disjunct over all (≤ |C|6) legal sequences (a1, …, a6).

Can re-write as equivalent conjunct:

φ is satisfiable (ie, there is some assignment to each of
the varialbes s.t. φ evaluates to 1)

there is some assignment to each of the variables s.t.
 φcell and φstart and φaccept and φmove each evaluates to 1

There is some assignment of symbols to cells in the
tableau such that:
• The first row of the tableau is a start configuration

and
• Every row of the tableau is a configuration that

follows from the preceding by the rules of N and
• One row is an accepting configuration
,
There is some accepting computation for N with input w

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

WHAT’S THE LENGTH OF φ ?

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

∧
1 ≤ i, j ≤ nk s ∈ C

xi,j,s (¬xi,j,s ∨ ¬xi,j,t) φcell =
s,t ∈ C

s ≠ t

O(n2k) clauses
Length(φcell) = O(n2k) O(log (n)) = O(n2k log n)

length(indices)

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

O(nk)

φ = φcell ∧ φstart ∧ φaccept ∧ φmove
φstart = x1,1,# ∧ x1,2,q ∧
 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧
 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

φaccept =
1 ≤ i, j ≤ nk

xi,j,q accept

O(n2k)

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

O(n2k)

a1, …, a6
ISN’T a legal window

 (xi,j-1,a ∨ xi,j,a ∨ xi,j,+1,a ∨ xi+1,j-1,a ∨ xi+1,j,a ∨ xi+1,j+1,a) 1 2 3 4 5 6
- - - - - -

the (i, j) window is legal =

This is a conjunct over all (≤ |C|6) illegal sequences (a1, …, a6).

Theorem (Cook-Levin): SAT is NP-complete

Corollary: SAT ∈ P if and only if P = NP

Theorem (Cook-Levin): 3SAT is NP-complete

Corollary: 3SAT ∈ P if and only if P = NP

3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3 literals

 a ≡ (a ∨ a ∨ a), (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:

3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3 literals

 a ≡ (a ∨ a ∨ a), (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:

(a ∨ b ∨ c ∨ d) ≡(a ∨ b ∨ z) ∧ (¬z ∨ c ∨ d)
If a clause has more than three variables:

(a1 ∨ a2 ∨ … ∨ at) ≡
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧… (¬zt-3 ∨ at-1 ∨ zt)

A 3SAT
f

f

Given A in NP. The reduction f turned a string w into a
3-cnf formula φ such that: w ∈ A ⇔ φ ∈ 3SAT.

w φ

A 3SAT
f

f

The reduction f is poly time. WHY?

w φ

3-SAT is NP-Complete

P
NP

3-SAT

A

Theorem (Cook-Levin): 3SAT is NP-complete

Corollary: 3SAT ∈ P if and only if P = NP

WWW.FLAC.WS

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 27
	Slide Number 28
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 62
	Slide Number 63
	Slide Number 65
	Slide Number 67
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 75
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84

