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Theorem (Cook-Levin): SAT is NP-complete 

Corollary: SAT ∈ P if and only if P = NP 



Theorem ( Cook/Levin'71)  P= NP ⇔  SAT ∈ P  

Steve Cook Leonid Levin 



A 3cnf-formula is of the form: 
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1)  

clauses 

SAT = { φ | φ is a satisfiable boolean formula } 

3-SAT = { φ | φ is a satisfiable 3cnf-formula } 



SAT = { φ | φ is a satisfiable boolean-formula } 

3-SAT = { φ | φ is a satisfiable 3cnf-formula } 

SAT, 3-SAT ∈ NP (why?) 



Theorem (Cook-Levin): SAT is NP-complete 

Proof: 

(2) Every language A in NP is polynomial time  
reducible to SAT 

(1) SAT ∈ NP  (3SAT ∈ NP) 



Theorem (Cook-Levin): SAT is NP-complete 

Proof: 

(1) SAT ∈ NP  (3SAT ∈ NP) 

(2) Every language A in NP is polynomial time  
reducible to SAT 

We build a poly-time reduction from A to SAT 

The reduction turns a string w into a 3-cnf 
formula φ such that w ∈ A iff φ ∈ 3-SAT.  
φ will simulate  the NP machine N for A on w. 



Theorem (Cook-Levin): SAT is NP-complete 

Proof: 

(2) Every language A in NP is polynomial time  
reducible to SAT 

We build a poly-time reduction from A to SAT 

Let N be a non-deterministic TM that decides 
A in time nk 

The reduction turns a string w into a 3-cnf 
formula φ such that w ∈ A iff φ ∈ 3-SAT.  
φ will simulate  the NP machine N for A on w. 

(1) SAT ∈ NP  (3SAT ∈ NP) 



A 3SAT 
f 

f 

The reduction f turns a string w into a 3-cnf formula φ 
such that:  w ∈ A ⇔ φ ∈ 3SAT.  

φ will simulate the NP machine N for A on w. 

w φ 



So proof will also show:  
3-SAT is NP-Complete 

P 
NP 

3-SAT 



Deterministic 
Computation 

Non-Deterministic 
Computation 

accept or reject accept 

reject 

nk 

exp(nk) 



Suppose  A ∈ NTIME(nk ) and let  N be an NP machine for A.  
A tableau for N on w is an nk × nk table whose rows are the 
configurations of some possible computation of N on input w. 

q0 w1 wn w2  # #  … … 

# # 

# # 

nk 

nk 



A tableau is accepting if any row of the tableau 
is an accepting configuration 

Determining whether N accepts w is equivalent 
to determining whether there is an accepting 
tableau for N on w  



A tableau is accepting if any row of the tableau 
is an accepting configuration 

Determining whether N accepts w is equivalent 
to determining whether there is an accepting 
tableau for N on w  

Given w, our 3cnf-formula φ will describe a 
generic tableau for N on w (in fact, essentially 
generic for N on any string w of length n). 

The 3cnf formula φ will be satisfiable if and only 
if there is an accepting tableau for N on w. 



Let C = Q ∪ Γ ∪ { # } 

For each i and j (1 ≤ i, j ≤ nk) and for each s ∈ C 
we have a variable xi,j,s 

VARIABLES of φ  

Each of the (nk)2 entries of a tableau is a cell 

cell[i,j]  = the cell at row i and column j 

# variables  = |C|n2k, ie O(n2k), since |C| only depends on N 



Let C = Q ∪ Γ ∪ { # } 

For each i and j (1 ≤ i, j ≤ nk) and for each s ∈ C 
we have a variable xi,j,s 

VARIABLES of φ  

Each of the (nk)2 entries of a tableau is a cell 

cell[i,j]  = the cell at row i and column j 

These are the variables of φ and represent the 
contents of the cells 

We will have:     xi,j,s = 1   cell[i,j] = s 

# variables  = |C|n2k, ie O(n2k), since |C| only depends on N 



xi,j,s = 1  

means  

cell[ i, j ] = s 



We now design φ so that a satisfying assignment 
to the variables xi,j,s corresponds to an accepting 
tableau for N on w 
The formula φ will be the AND of four parts: 
φ = φcell ∧ φstart ∧ φaccept ∧ φmove 



φaccept ensures* that an accepting configuration 
occurs somewhere in the table 

We now design φ so that a satisfying assignment 
to the variables xi,j,s corresponds to an accepting 
tableau for N on w 
The formula φ will be the AND of four parts: 
φ = φcell ∧ φstart ∧ φaccept ∧ φmove 

φcell ensures that for each i,j, exactly one xi,j,s = 1 

φstart ensures that the first row of the table is the starting 
(initial) configuration of N on w 

φmove ensures* that every row is a configuration that 
legally follows from the previous config 

*if the other components of φ hold    



∧ 
1 ≤ i, j ≤ nk s ∈ C 

xi,j,s (¬xi,j,s ∨ ¬xi,j,t ) φcell  = 
s,t ∈ C 

s ≠ t 

at least one 
variable is 
turned on 

at most one 
variable is 
turned on 

φcell ensures that for each i,j, exactly one xi,j,s = 1 



∧ 
1 ≤ i, j ≤ nk s ∈ C 

xi,j,s (¬xi,j,s ∨ ¬xi,j,t ) φcell  = 
s,t ∈ C 

s ≠ t 

at least one 
variable is 
turned on 

at most one 
variable is 
turned on 

Thus, φcell is satisfiable  
(ie, there exist assignment to the variables s.t. φcell evaluates to 1)  
  
each cell in the tableau has exactly one symbol (from C.)   

φcell ensures that for each i,j, exactly one xi,j,s = 1 



φstart  =  x1,1,# ∧ x1,2,q   ∧  
  x1,3,w   ∧ x1,4,w   ∧ … ∧ x1,n+2,w   ∧  
    x1,n+3, ∧ … ∧ x1,n  -1, ∧ x1,n   ,# 

0 

1 2 n 

k k 

q0 w1 wn w2  # #  … … 

# # 

  

 



φstart  =  x1,1,# ∧ x1,2,q   ∧  
  x1,3,w   ∧ x1,4,w   ∧ … ∧ x1,n+2,w   ∧  
    x1,n+3, ∧ … ∧ x1,n  -1, ∧ x1,n   ,# 

0 

1 2 n 

k k 

Thus, φstart is satisfiable  
the first row of the tableau represents the start 
configuration for N on input w 



φaccept  = 
1 ≤ i, j ≤ nk 

xi,j,q accept 

Thus, φaccept is satisfiable   
at least one cell in the tableau has the symbol qaccept. 
 



φmove  ensures that every row is a configuration 
that legally follows from the previous 
It works by ensuring that each 2 × 3 “window” of 
cells is legal (Does not violate N’s rules) 



q0 w1 wn w2  # #  … … 

# # 

# # 

φmove  ensures that every row is a configuration 
that legally follows from the previous 
It works by ensuring that each 2 × 3 “window” of 
cells is legal (Does not violate N’s rules) 



If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)}  
which of the following windows are legal: 

a q1 b 

q2 a c 

# b a 

# b a 

a b a 

a a a 

a q1 b 

a a q2 

a b a 

a b q2 

a a q1 

a a b 

b b b 

c b b 

a q1 b 

q1 a a 

b q1 b 

q2 b q2 



If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)}  
which of the following windows are legal: 

a q1 b 

q2 a c 

# b a 

# b a 

a b a 

a a a 

a q1 b 

a a q2 

a b a 

a b q2 

a a q1 

a a b 

b b b 

c b b 

a q1 b 

q1 a a 

b q1 b 

q2 b q2 



CLAIM:  
If 

• the top row of the table is the start configuration, 
and 
• and every window is legal, 

Then  
each row of the table is a configuration that legally 
follows the preceding one. 



Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 

CLAIM:  
If 

• the top row of the table is the start configuration, 
and 
• and every window is legal, 

Then  
each row of the table is a configuration that legally 
follows the preceding one. 



CLAIM:  
If 

• the top row of the table is the start configuration, 
and 
• and every window is legal, 

Then  
each row of the table is a configuration that legally 
follows the preceding one. 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 

a 
a 



Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 
Case 2. center cell of window is a state symbol 

a q 
a 

CLAIM:  
If 

• the top row of the table is the start configuration, 
and 
• and every window is legal, 

Then  
each row of the table is a configuration that legally 
follows the preceding one. 



q0 w1 wn w2  # #  … … 

# # 

# # 

ok 

o
k
k 

ok 

w3 w4 

w2 w3 

 
 
 
 
 
 
 
 

w4 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 
Case 2. center cell of window is a state symbol 
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# # 

# # 

ok 

o
k
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w4 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 
Case 2. center cell of window is a state symbol 
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# # 

# # 

ok 

o
k
k 

ok 

w3 w4 

w2 w3 

 
 
 
 
 
 
 
 

w4 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 
Case 2. center cell of window is a state symbol 



q0 w1 wn w2  # #  … … 

# # 

# # 

ok 

o
k
k 

ok 

w3 w4 

w2 w3 

 
 
 
 
 
 
 
 

w4 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 
Case 2. center cell of window is a state symbol 



a1 q an a2  # #  … … 

# # 

# # 

ok 

o
k
k 

ok 

 
 
 
 
 
 
 
 

a3 a4 

a3 a4 ok 

a5 

a5 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 
Case 2. center cell of window is a state symbol 



a1 q an a2  # #  … … 

# # 

# # 

ok 

o
k
k 

ok 

 
 
 
 
 
 
 
 

a3 a4 

a3 a4 ok 

a5 

a5 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 
Case 2. center cell of window is a state symbol 



a1 q an a2  # #  … … 

# # 

# # 

ok 

o
k
k 

ok 

 
 
 
 
 
 
 
 

a3 a4 

a3 a4 ok 

a5 

a5 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
Case 1. center cell of window is a non-state symbol and 
not adjacent to a state symbol 
Case 2. center cell of window is a state symbol 



a1 q an a2  # #  … … 

# # 

# # 

ok 

o
k
k 

ok 

 
 
 
 
 
 
 
 

a3 a4 

a3 a4 ok 

a5 

a5 

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  
 
So the lower configuration follows from the upper!!! 



 
(i,j-1) 

a1 

 

 
(i,j) 
a2 

 
(i,j+1) 

a3 
 

 
(i+1,j-1) 

a4 
 

 
(i+1,j) 

a5 
 

 
(i+1,j+ 1)     

a6 
 

row i 

row i+1 

col. j-1 col. j  col. j+1 

The (i,j) Window 



φmove  = 
1 ≤ i, j ≤ nk 

( the (i, j) window is legal ) 

the (i, j) window is legal =  

a1, …, a6 
is a legal window 

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  )  1 2 3 4 5 6 

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, a6). 
 



φmove  = 
1 ≤ i, j ≤ nk 

( the (i, j) window is legal ) 

the (i, j) window is legal =  

a1, …, a6 
is a legal window 

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  )  1 2 3 4 5 6 

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, a6). 
 This disjunct is satisfiable 
 
There is some assignment to the cells (ie variables) in 
the window (i,j) that makes the window legal 



φmove  = 
1 ≤ i, j ≤ nk 

( the (i, j) window is legal ) 

the (i, j) window is legal =  

a1, …, a6 
is a legal window 

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  )  1 2 3 4 5 6 

So φmove is satisfiable 
 
There is some assignment to each of the variables that 
makes every window legal. 

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, a6). 
 



φmove  = 
1 ≤ i, j ≤ nk 

( the (i, j) window is legal ) 

the (i, j) window is legal =  

a1, …, a6 
is a legal window 

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  )  1 2 3 4 5 6 

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, a6). 
 
Can re-write as equivalent conjunct: 
 



φmove  = 
1 ≤ i, j ≤ nk 

( the (i, j) window is legal ) 

the (i, j) window is legal =  

a1, …, a6 
is a legal window 

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  )  1 2 3 4 5 6 

a1, …, a6 
ISN’T a legal window 

1 2 3 4 5 6 ≡                (i,j-1,a  ∨ i,j,a  ∨ i,j,+1,a  ∨ i+1,j-1,a  ∨ i+1,j,a  ∨ +1,j+1,a  )  
 
 
This is a conjunct over all (≤ |C|6 ) illegal sequences (a1, …, a6). 
 

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, a6). 
 
Can re-write as equivalent conjunct: 
 



φ is satisfiable (ie, there is some assignment to each of 
the varialbes s.t. φ evaluates to 1) 
 
there is some assignment to each of the variables s.t. 
 φcell  and φstart  and φaccept and φmove  each evaluates to 1 
 
There is some assignment of symbols to cells in the 
tableau such that: 
• The first row of the tableau is a start configuration 

and 
• Every row of the tableau is a configuration that 

follows from the preceding by the rules of N and 
• One row is an accepting configuration  
, 
There is some accepting computation for N with input w 
 

φ = φcell ∧ φstart ∧ φaccept ∧ φmove 



WHAT’S THE LENGTH OF φ ? 

φ = φcell ∧ φstart ∧ φaccept ∧ φmove 



∧ 
1 ≤ i, j ≤ nk s ∈ C 

xi,j,s (¬xi,j,s ∨ ¬xi,j,t ) φcell  = 
s,t ∈ C 

s ≠ t 

O(n2k) clauses 
Length(φcell ) = O(n2k) O(log (n)) = O(n2k log n) 

length(indices) 

φ = φcell ∧ φstart ∧ φaccept ∧ φmove 



O(nk) 

φ = φcell ∧ φstart ∧ φaccept ∧ φmove 
φstart  =  x1,1,# ∧ x1,2,q   ∧  
  x1,3,w   ∧ x1,4,w   ∧ … ∧ x1,n+2,w   ∧  
    x1,n+3, ∧ … ∧ x1,n  -1, ∧ x1,n   ,# 

0 

1 2 n 

k k 



φaccept  = 
1 ≤ i, j ≤ nk 

xi,j,q accept 

O(n2k) 

φ = φcell ∧ φstart ∧ φaccept ∧ φmove 



φmove  = 
1 ≤ i, j ≤ nk 

( the (i, j) window is legal ) 

O(n2k) 

a1, …, a6 
ISN’T a legal window 

              ( xi,j-1,a  ∨ xi,j,a  ∨ xi,j,+1,a  ∨ xi+1,j-1,a  ∨ xi+1,j,a  ∨ xi+1,j+1,a )  1 2 3 4 5 6 
- - - - - - 

the (i, j) window is legal =  

This is a conjunct over all (≤ |C|6 ) illegal sequences (a1, …, a6). 



Theorem (Cook-Levin):   SAT is NP-complete 

Corollary:   SAT ∈ P if and only if P = NP 



Theorem (Cook-Levin): 3SAT is NP-complete 

Corollary: 3SAT ∈ P if and only if P = NP 



3-SAT? 
How do we convert the whole thing into 
a 3-cnf formula? 
 
Everything was an AND of ORs 
We just need to make those ORs with 3 literals 

 a ≡ (a ∨ a ∨ a),  (a ∨ b) ≡ (a ∨ b ∨ b) 
If a clause has less than three variables: 



3-SAT? 
How do we convert the whole thing into 
a 3-cnf formula? 
 
Everything was an AND of ORs 
We just need to make those ORs with 3 literals 

 a ≡ (a ∨ a ∨ a),  (a ∨ b) ≡ (a ∨ b ∨ b) 
If a clause has less than three variables: 

(a ∨ b ∨ c ∨ d) ≡(a ∨ b ∨ z) ∧ (¬z ∨ c ∨ d)  
If a clause has more than three variables: 

(a1 ∨ a2 ∨ … ∨ at )  ≡ 
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧… (¬zt-3 ∨ at-1 ∨ zt) 



A 3SAT 
f 

f 

Given A in NP. The reduction f turned a string w into a 
3-cnf formula φ such that:  w ∈ A ⇔ φ ∈ 3SAT.  

w φ 



A 3SAT 
f 

f 

The reduction f  is poly time. WHY? 

w φ 



3-SAT is NP-Complete 

P 
NP 

3-SAT 

A 



Theorem (Cook-Levin): 3SAT is NP-complete 

Corollary: 3SAT ∈ P if and only if P = NP 
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