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COMPLEXITY THEORY 
Studies what can and can’t be computed under 

limited resources such as time, space, etc 

Today: Time complexity 



MEASURING TIME COMPLEXITY 
We measure time complexity by counting the 
elementary steps required for a machine to halt 

Consider the language A = { 0k1k | k ≥ 0 } 

1. Scan across the tape and reject if the 
string is not of the form 0i1j 

2. Repeat the following if both 0s and 1s 
remain on the tape: 
 Scan across the tape, crossing off a  
 single 0 and a single 1 

3. If 0s remain after all 1s have been crossed 
off, or vice-versa, reject. Otherwise accept. 

On input of length n: 



MEASURING TIME COMPLEXITY 
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elementary steps required for a machine to halt 

Consider the language A = { 0k1k | k ≥ 0 } 

1. Scan across the tape and reject if the 
string is not of the form 0i1j 

2. Repeat the following if both 0s and 1s 
remain on the tape: 
 Scan across the tape, crossing off a  
 single 0 and a single 1 

3. If 0s remain after all 1s have been crossed 
off, or vice-versa, reject. Otherwise accept. ~n 
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On input of length n: 



Definition: Let M be a TM that halts on all 
inputs. The running time or time-
complexity of M is the function f : N → N, 
where f(n) is the maximum number of steps 
that M uses on any input of length n. 



ASYMPTOTIC ANALYSIS 

5n3 + 2n2 + 22n + 6 = O(n3) 



Let f and g be two functions f, g : N → R+. We say 
that f(n) = O(g(n)) if there exist positive integers 
c and n0 so that for every integer n ≥ n0 

f(n) ≤ cg(n) 
When f(n) = O(g(n)), we say that g(n) is an 
asymptotic upper bound for f(n) 

BIG-O 

f asymptotically NO MORE THAN g 



Let f and g be two functions f, g : N → R+. We say 
that f(n) = O(g(n)) if there exist positive integers 
c and n0 so that for every integer n ≥ n0 

f(n) ≤ cg(n) 
When f(n) = O(g(n)), we say that g(n) is an 
asymptotic upper bound for f(n) 

BIG-O 

5n3 + 2n2 + 22n + 6 = O(n3) 
If c = 6 and n0 = 10, then 5n3 + 2n2 + 22n + 6 ≤ cn3  

f asymptotically NO MORE THAN g 



3nlog2 n + 5n log2log2 n 

2n4.1 + 200283n4 + 2 

nlog10 n78 

= O(n4.1) 

= O(nlog2 n) 

= O(nlog10 n) 



3nlog2 n + 5n log2log2 n 

2n4.1 + 200283n4 + 2 

nlog10 n78 

= O(n4.1) 

= O(nlog2 n) 

= O(nlog10 n) 

log10 n = log2 n / log2 10 

O(nlog2 n) = O(nlog10 n) = O(nlog n) 



Definition: TIME(t(n)) = { L | L is a language 
decided by a O(t(n)) time Turing Machine } 

A = { 0k1k | k ≥ 0 } ∈ TIME(n2) 



A = { 0k1k | k ≥ 0 } ∈ TIME(nlog n) 
Cross off every other 0 and every other 1. If the # 
of 0s and 1s left on the tape is odd, reject 

00000000000001111111111111 
x0x0x0x0x0x0xx1x1x1x1x1x1x 
xxx0xxx0xxx0xxxx1xxx1xxx1x 
xxxxxxx0xxxxxxxxxxxx1xxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxx 



We can prove that a TM cannot 
decide A in less time than O(nlog n) 



We can prove that a TM cannot 
decide A in less time than O(nlog n) 

*7.49  Extra Credit.  Let f(n) = o(nlogn). Then 
Time(f(n)) contains only regular languages. 

where f(n) = o(g(n)) iff limn->∞  f(n)/g(n) = 0 

ie, for all c >0,  ∃ n0 such that f(n) < cg(n) for all n ≥n0  

f asymptotically LESS THAN g 



Can A = { 0k1k | k ≥ 0 } be decided in time 
O(n) with a two-tape TM? 

Scan all 0s and copy them to the second 
tape. Scan all 1s, crossing off a 0 from the 
second tape for each 1. 



Different models of computation 
yield different running times for 

the same language! 



Theorem: Let t(n) be a function such that 
t(n) ≥ n. Then every t(n)-time multi-tape TM 
has an equivalent O(t(n)2) single tape TM 

Claim: Simulating each step in the multi-
tape machine uses at most O(t(n)) steps 
on a single-tape machine.  
Hence total time of simulation is O(t(n)2) . 



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine 

FINITE 
STATE 
CONTROL 

0 0 1 

FINITE 
STATE 
CONTROL 0 0 1 # # # 

. . . 



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine 

FINITE 
STATE 
CONTROL 

0 0 1 

FINITE 
STATE 
CONTROL 0 0 1 # # # 

. . . 



Analysis: (Note,  k, the # of tapes, is  fixed.) 
 
Let S be simulator 
• Put S’s tape in proper format:  O(n) steps 
• Two scans to simulate one step,  
      1. to  optain info for next move O(t(n)) steps, why? 
      2. to simulate it (may need to shift everything 
      over to right possibly  k times): O(t(n)) steps, why? 

Theorem: Let t(n) be a function such that t(n) ≥ n. 
Then every t(n)-time multi-tape TM has an 
equivalent O(t(n)2) single tape TM 



Analysis: (Note,  k, the # of tapes, is  fixed.) 
 
Let S be simulator 
• Put S’s tape in proper format:  O(n) steps 
• Two scans to simulate one step,  
      1. to  optain info for next move O(t(n)) steps, why? 
      2. to simulate it (may need to shift everything 
      over to right possibly  k times): O(t(n)) steps, why? 

Theorem: Let t(n) be a function such that t(n) ≥ n. 
Then every t(n)-time multi-tape TM has an 
equivalent O(t(n)2) single tape TM 

Therefore,  O(n)  + t(n) O (t(n))  = O(t (n)2) steps 
in simulation. 



P =       TIME(nk) ∪ 
k ∈ N 



NON-DETERMINISTIC  
TURING MACHINES AND NP 



0 → 0, R 

read write move 

 → , R 

qaccept 

qreject 

0 → 0, R 

 → , R 



0 → 0, R 

read write move 

 → , R 

qaccept 

qreject 

0 → 0, R 

 → , R 

0 → 0, R 



Definition: A Non-Deterministic TM is a 7-tuple  
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:   

Q is a finite set of states 

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ 

q0 ∈ Q is the start state 

Σ is the input alphabet, where  ∉ Σ  

δ : Q × Γ → 2(Q × Γ × {L,R})  

qaccept ∈ Q is the accept state 

qreject ∈ Q is the reject state, and qreject ≠ qaccept 



NON-DETERMINISTIC TMs 

…are just like standard TMs, except: 

1. The machine may proceed according to 
several possibilities 

2. The machine accepts a string if there 
exists a path from start configuration to an 
accepting configuration 



Deterministic 
Computation 

Non-Deterministic 
Computation 

accept or reject accept 

reject 



Deterministic 
Computation 

Non-Deterministic 
Computation 

accept or reject accept 

reject 

Definition: Let M be a NTM that is a decider, Ie  on all inputes, all 
branches halt (with accept or reject ).  The running time or time-
complexity of M is the function f : N → N, where f(n) is the maximum 
number of steps that M uses on any branch of its computation on any 
input of length n. 



Deterministic 
Computation 

Non-Deterministic 
Computation 

accept or reject accept 

reject 

Theorem: Let t(n) be a function such that t(n) ≥ n. Then 
every t(n)-time nondeterministic single-tape TM has an 
equivalent 2O(t(n)) deterministic single tape TM 



     { L | L is decided by a 
O(t(n))-time non-deterministic Turing machine } 
Definition:  NTIME(t(n))  = 

TIME(t(n)) ⊆ NTIME(t(n)) 



BOOLEAN FORMULAS 

(¬x ∧ y) ∨ z φ = 

logical  
operations 

variables 

parentheses 

A satisfying assignment is a setting of the 
variables that makes the formula true 

x = 1, y = 1, z = 1 is a satisfying assignment for φ 



SAT = { φ | φ is a satisfiable Boolean formula } 

A Boolean formula is satisfiable if there 
exists a satisfying assignment for it 

¬(x ∨ y) ∧ x 

a ∧ b ∧ c ∧ ¬d YES 

NO 



A 3cnf-formula is of the form: 
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1)  

clauses 

(x1 ∨ ¬x2 ∨ x1) 

(x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ ¬x1)  

(x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ x2 ∨ x1) ∨ (x3 ∨ x1 ∨ ¬x1)  

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∧ ¬x2 ∧ ¬x1)  

literals 



A 3cnf-formula is of the form: 
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1)  

clauses 

(x1 ∨ ¬x2 ∨ x1) 

(x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ ¬x1)  

(x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ x2 ∨ x1) ∨ (x3 ∨ x1 ∨ ¬x1)  

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∧ ¬x2 ∧ ¬x1)  

YES 

NO 

NO 

NO 

3SAT = { φ | φ is a satisfiable 3cnf-formula } 

literals 



Theorem: 3SAT ∈ NTIME(n2) 
3SAT = { φ | φ is a satisfiable 3cnf-formula } 

1. Check if the formula is in 3cnf  
On input φ: 

2. For each variable, non-deterministically 
substitute it with 0 or 1 

3. Test if the assignment satisfies φ 

( x ∨ y ¬ ∨ x ) 

( ∨ y ¬ ∨ ) 0 0 ( ∨ y ¬ ∨ ) 1 1 

( ∨ ¬ ∨ ) 0 0 0 ( ∨ ¬ ∨ ) 0 1 0 



NP =       NTIME(nk) ∪ 
k ∈ N 



Theorem: L ∈ NP ⇔ if there exists a poly-time 
Turing machine V(erifier) with 

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts } 



Theorem: L ∈ NP ⇔ if there exists a poly-time 
Turing machine V(erifier) with 

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts } 

Proof: 

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }  
  then L ∈ NP 

(2) If L ∈ NP  then 
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }  
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Because we can guess y and then run V 

(2) If L ∈ NP  then 
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Theorem: L ∈ NP ⇔ if there exists a poly-time 
Turing machine V(erifier) with 

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts } 

Proof: 

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }  
  then L ∈ NP 

Because we can guess y and then run V 

(2) If L ∈ NP  then 
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }  

Let N be a non-deterministic poly-time TM 
that decides L and define V(x,y) to accept if y 
is an accepting computation history of N on x 



3SAT = { φ | ∃y such that y is a satisfying 
assignment to φ and φ is in 3cnf }  

SAT = { φ | ∃y such that y is a satisfying 
assignment to φ }  



A language is in NP if and only if there 
exist polynomial-length certificates* 

for membership to the language 

SAT is in NP because a satisfying 
assignment is a polynomial-length 

certificate that a formula is satisfiable 

* that can be verified in poly-time 



HAMILTONIAN PATHS 
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HAMPATH = { (G,s,t) | G is a directed graph 
with a Hamiltonian path from s to t } 

Theorem: HAMPATH ∈ NP 

The Hamilton path itself is a certificate 



K-CLIQUES 
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a 
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K-CLIQUES 

b 

a 

e 

c 

d f 

g 



CLIQUE = { (G,k) | G is an undirected graph 
with a k-clique } 

Theorem: CLIQUE ∈ NP 

The k-clique itself is a certificate 



NP = all the problems for which 
once you have the answer it is easy 
(i.e. efficient) to verify 



P = NP? 



P = NP? 
$$$ 



POLY-TIME REDUCIBILITY 
f : Σ* → Σ* is a polynomial time computable 
function 

Language A is polynomial time reducible to 
language B, written A ≤P B, if there is a poly-
time computable function f : Σ* → Σ* such that: 

w ∈ A ⇔ f(w) ∈ B 

f is called a polynomial time reduction of A to B 

       if some poly-time Turing machine M, 
on every input w, halts with just f(w) on its tape 



A B 
f 

f 



Theorem: If A ≤P B and B ∈ P, then A ∈ P 

Proof:       Let MB be a poly-time (deterministic) 
TM that decides B and let f be a poly-time 
reduction from A to B  

We build a machine MA that decides A as follows: 

On input w: 

1. Compute f(w) 
2. Run MB on f(w) 



Definition: A language B is NP-complete if: 

1. B ∈ NP 
2. Every A in NP is poly-time reducible to B 
(i.e. B is NP-hard) 



Suppose B is NP-Complete 

P 
NP 

B 

So, if B is NP-Complete and B ∈ P then NP =  P. Why? 



Theorem (Cook-Levin): SAT is NP-complete 
Corollary: SAT ∈ P if and only if P = NP 



WWW.FLAC.WS 
Read Chapter 7.3 of the book for next time 
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