
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

TIME COMPLEXITY AND
POLYNOMIAL TIME;

NON DETERMINISTIC TURING
MACHINES AND NP

THURSDAY Mar 20

COMPLEXITY THEORY
Studies what can and can’t be computed under

limited resources such as time, space, etc

Today: Time complexity

MEASURING TIME COMPLEXITY
We measure time complexity by counting the
elementary steps required for a machine to halt

Consider the language A = { 0k1k | k ≥ 0 }

1. Scan across the tape and reject if the
string is not of the form 0i1j

2. Repeat the following if both 0s and 1s
remain on the tape:
 Scan across the tape, crossing off a
 single 0 and a single 1

3. If 0s remain after all 1s have been crossed
off, or vice-versa, reject. Otherwise accept.

On input of length n:

MEASURING TIME COMPLEXITY
We measure time complexity by counting the
elementary steps required for a machine to halt

Consider the language A = { 0k1k | k ≥ 0 }

1. Scan across the tape and reject if the
string is not of the form 0i1j

2. Repeat the following if both 0s and 1s
remain on the tape:
 Scan across the tape, crossing off a
 single 0 and a single 1

3. If 0s remain after all 1s have been crossed
off, or vice-versa, reject. Otherwise accept. ~n

~n2

~n

On input of length n:

Definition: Let M be a TM that halts on all
inputs. The running time or time-
complexity of M is the function f : N → N,
where f(n) is the maximum number of steps
that M uses on any input of length n.

ASYMPTOTIC ANALYSIS

5n3 + 2n2 + 22n + 6 = O(n3)

Let f and g be two functions f, g : N → R+. We say
that f(n) = O(g(n)) if there exist positive integers
c and n0 so that for every integer n ≥ n0

f(n) ≤ cg(n)
When f(n) = O(g(n)), we say that g(n) is an
asymptotic upper bound for f(n)

BIG-O

f asymptotically NO MORE THAN g

Let f and g be two functions f, g : N → R+. We say
that f(n) = O(g(n)) if there exist positive integers
c and n0 so that for every integer n ≥ n0

f(n) ≤ cg(n)
When f(n) = O(g(n)), we say that g(n) is an
asymptotic upper bound for f(n)

BIG-O

5n3 + 2n2 + 22n + 6 = O(n3)
If c = 6 and n0 = 10, then 5n3 + 2n2 + 22n + 6 ≤ cn3

f asymptotically NO MORE THAN g

3nlog2 n + 5n log2log2 n

2n4.1 + 200283n4 + 2

nlog10 n78

= O(n4.1)

= O(nlog2 n)

= O(nlog10 n)

3nlog2 n + 5n log2log2 n

2n4.1 + 200283n4 + 2

nlog10 n78

= O(n4.1)

= O(nlog2 n)

= O(nlog10 n)

log10 n = log2 n / log2 10

O(nlog2 n) = O(nlog10 n) = O(nlog n)

Definition: TIME(t(n)) = { L | L is a language
decided by a O(t(n)) time Turing Machine }

A = { 0k1k | k ≥ 0 } ∈ TIME(n2)

A = { 0k1k | k ≥ 0 } ∈ TIME(nlog n)
Cross off every other 0 and every other 1. If the #
of 0s and 1s left on the tape is odd, reject

00000000000001111111111111
x0x0x0x0x0x0xx1x1x1x1x1x1x
xxx0xxx0xxx0xxxx1xxx1xxx1x
xxxxxxx0xxxxxxxxxxxx1xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

We can prove that a TM cannot
decide A in less time than O(nlog n)

We can prove that a TM cannot
decide A in less time than O(nlog n)

*7.49 Extra Credit. Let f(n) = o(nlogn). Then
Time(f(n)) contains only regular languages.

where f(n) = o(g(n)) iff limn->∞ f(n)/g(n) = 0

ie, for all c >0, ∃ n0 such that f(n) < cg(n) for all n ≥n0

f asymptotically LESS THAN g

Can A = { 0k1k | k ≥ 0 } be decided in time
O(n) with a two-tape TM?

Scan all 0s and copy them to the second
tape. Scan all 1s, crossing off a 0 from the
second tape for each 1.

Different models of computation
yield different running times for

the same language!

Theorem: Let t(n) be a function such that
t(n) ≥ n. Then every t(n)-time multi-tape TM
has an equivalent O(t(n)2) single tape TM

Claim: Simulating each step in the multi-
tape machine uses at most O(t(n)) steps
on a single-tape machine.
Hence total time of simulation is O(t(n)2) .

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE
CONTROL

0 0 1

FINITE
STATE
CONTROL 0 0 1 # # #

. . .

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE
CONTROL

0 0 1

FINITE
STATE
CONTROL 0 0 1 # # #

. . .

Analysis: (Note, k, the # of tapes, is fixed.)

Let S be simulator
• Put S’s tape in proper format: O(n) steps
• Two scans to simulate one step,
 1. to optain info for next move O(t(n)) steps, why?
 2. to simulate it (may need to shift everything
 over to right possibly k times): O(t(n)) steps, why?

Theorem: Let t(n) be a function such that t(n) ≥ n.
Then every t(n)-time multi-tape TM has an
equivalent O(t(n)2) single tape TM

Analysis: (Note, k, the # of tapes, is fixed.)

Let S be simulator
• Put S’s tape in proper format: O(n) steps
• Two scans to simulate one step,
 1. to optain info for next move O(t(n)) steps, why?
 2. to simulate it (may need to shift everything
 over to right possibly k times): O(t(n)) steps, why?

Theorem: Let t(n) be a function such that t(n) ≥ n.
Then every t(n)-time multi-tape TM has an
equivalent O(t(n)2) single tape TM

Therefore, O(n) + t(n) O (t(n)) = O(t (n)2) steps
in simulation.

P = TIME(nk) ∪
k ∈ N

NON-DETERMINISTIC
TURING MACHINES AND NP

0 → 0, R

read write move

 → , R

qaccept

qreject

0 → 0, R

 → , R

0 → 0, R

read write move

 → , R

qaccept

qreject

0 → 0, R

 → , R

0 → 0, R

Definition: A Non-Deterministic TM is a 7-tuple
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

Q is a finite set of states

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where  ∉ Σ

δ : Q × Γ → 2(Q × Γ × {L,R})

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

NON-DETERMINISTIC TMs

…are just like standard TMs, except:

1. The machine may proceed according to
several possibilities

2. The machine accepts a string if there
exists a path from start configuration to an
accepting configuration

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Definition: Let M be a NTM that is a decider, Ie on all inputes, all
branches halt (with accept or reject). The running time or time-
complexity of M is the function f : N → N, where f(n) is the maximum
number of steps that M uses on any branch of its computation on any
input of length n.

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Theorem: Let t(n) be a function such that t(n) ≥ n. Then
every t(n)-time nondeterministic single-tape TM has an
equivalent 2O(t(n)) deterministic single tape TM

 { L | L is decided by a
O(t(n))-time non-deterministic Turing machine }
Definition: NTIME(t(n)) =

TIME(t(n)) ⊆ NTIME(t(n))

BOOLEAN FORMULAS

(¬x ∧ y) ∨ z φ =

logical
operations

variables

parentheses

A satisfying assignment is a setting of the
variables that makes the formula true

x = 1, y = 1, z = 1 is a satisfying assignment for φ

SAT = { φ | φ is a satisfiable Boolean formula }

A Boolean formula is satisfiable if there
exists a satisfying assignment for it

¬(x ∨ y) ∧ x

a ∧ b ∧ c ∧ ¬d YES

NO

A 3cnf-formula is of the form:
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

clauses

(x1 ∨ ¬x2 ∨ x1)

(x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

(x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ x2 ∨ x1) ∨ (x3 ∨ x1 ∨ ¬x1)

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∧ ¬x2 ∧ ¬x1)

literals

A 3cnf-formula is of the form:
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

clauses

(x1 ∨ ¬x2 ∨ x1)

(x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

(x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ x2 ∨ x1) ∨ (x3 ∨ x1 ∨ ¬x1)

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∧ ¬x2 ∧ ¬x1)

YES

NO

NO

NO

3SAT = { φ | φ is a satisfiable 3cnf-formula }

literals

Theorem: 3SAT ∈ NTIME(n2)
3SAT = { φ | φ is a satisfiable 3cnf-formula }

1. Check if the formula is in 3cnf
On input φ:

2. For each variable, non-deterministically
substitute it with 0 or 1

3. Test if the assignment satisfies φ

(x ∨ y ¬ ∨ x)

(∨ y ¬ ∨) 0 0 (∨ y ¬ ∨) 1 1

(∨ ¬ ∨) 0 0 0 (∨ ¬ ∨) 0 1 0

NP = NTIME(nk) ∪
k ∈ N

Theorem: L ∈ NP ⇔ if there exists a poly-time
Turing machine V(erifier) with

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts }

Theorem: L ∈ NP ⇔ if there exists a poly-time
Turing machine V(erifier) with

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts }

Proof:

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }
 then L ∈ NP

(2) If L ∈ NP then
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }

Theorem: L ∈ NP ⇔ if there exists a poly-time
Turing machine V(erifier) with

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts }

Proof:

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }
 then L ∈ NP

Because we can guess y and then run V

(2) If L ∈ NP then
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }

Theorem: L ∈ NP ⇔ if there exists a poly-time
Turing machine V(erifier) with

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts }

Proof:

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }
 then L ∈ NP

Because we can guess y and then run V

(2) If L ∈ NP then
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }

Let N be a non-deterministic poly-time TM
that decides L and define V(x,y) to accept if y
is an accepting computation history of N on x

3SAT = { φ | ∃y such that y is a satisfying
assignment to φ and φ is in 3cnf }

SAT = { φ | ∃y such that y is a satisfying
assignment to φ }

A language is in NP if and only if there
exist polynomial-length certificates*

for membership to the language

SAT is in NP because a satisfying
assignment is a polynomial-length

certificate that a formula is satisfiable

* that can be verified in poly-time

HAMILTONIAN PATHS

b

a

e

c

d

f

h i

g

HAMILTONIAN PATHS

b

a

e

c

d

f

h i

g

HAMPATH = { (G,s,t) | G is a directed graph
with a Hamiltonian path from s to t }

Theorem: HAMPATH ∈ NP

The Hamilton path itself is a certificate

K-CLIQUES

b

a

e

c

d f

g

K-CLIQUES

b

a

e

c

d f

g

CLIQUE = { (G,k) | G is an undirected graph
with a k-clique }

Theorem: CLIQUE ∈ NP

The k-clique itself is a certificate

NP = all the problems for which
once you have the answer it is easy
(i.e. efficient) to verify

P = NP?

P = NP?
$$$

POLY-TIME REDUCIBILITY
f : Σ* → Σ* is a polynomial time computable
function

Language A is polynomial time reducible to
language B, written A ≤P B, if there is a poly-
time computable function f : Σ* → Σ* such that:

w ∈ A ⇔ f(w) ∈ B

f is called a polynomial time reduction of A to B

 if some poly-time Turing machine M,
on every input w, halts with just f(w) on its tape

A B
f

f

Theorem: If A ≤P B and B ∈ P, then A ∈ P

Proof: Let MB be a poly-time (deterministic)
TM that decides B and let f be a poly-time
reduction from A to B

We build a machine MA that decides A as follows:

On input w:

1. Compute f(w)
2. Run MB on f(w)

Definition: A language B is NP-complete if:

1. B ∈ NP
2. Every A in NP is poly-time reducible to B
(i.e. B is NP-hard)

Suppose B is NP-Complete

P
NP

B

So, if B is NP-Complete and B ∈ P then NP = P. Why?

Theorem (Cook-Levin): SAT is NP-complete
Corollary: SAT ∈ P if and only if P = NP

WWW.FLAC.WS
Read Chapter 7.3 of the book for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65

