
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

KOLMOGOROV-CHAITIN
(descriptive) COMPLEXITY

TUESDAY, MAR 18

CAN WE QUANTIFY HOW MUCH
INFORMATION IS IN A STRING?

A = 01010101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can “compress” a string,
the less “information” it contains….

INFORMATION AS DESCRIPTION

INFORMATION IN A STRING:
SHORTEST DESCRIPTION OF THE STRING

How can we “describe” strings?

Turing machines with inputs!

INFORMATION AS DESCRIPTION

INFORMATION IN A STRING:
SHORTEST DESCRIPTION OF THE STRING

How can we “describe” strings?

Turing machines with inputs!

Definition: Let x be in {0,1}*. The shortest
description of x, denoted as d(x), is the
lexicographically shortest string <M,w> s.t. M(w)
halts with x on tape.

KOLMOGOROV COMPLEXITY

Definition: The Kolmogorov complexity of x,
denoted as K(x), is |d(x)|.

Definition: Let x in {0,1}*. The shortest description
of x, denoted as d(x), is the lexicographically
shortest string <M,w> s.t. M(w) halts with x on tape.

KOLMOGOROV COMPLEXITY

Definition: The Kolmogorov complexity of x,
denoted as K(x), is |d(x)|.

Definition: Let x in {0,1}*. The shortest description
of x, denoted as d(x), is the lexicographically
shortest string <M,w> s.t. M(w) halts with x on tape.

How to code <M,w>?
Assume w in {0,1}* and we have a binary encoding of M

Theorem. There is a 1-1 and onto computable
function <,>: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that:

 z = <M,w> ⇒ π1 (z) = M and π2(z) = w

THE PAIRING FUNCTION

Let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1
Then:

<M,w> := Z(M) w

Theorem. There is a 1-1 and onto computable
function <,>: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that:

 z = <M,w> ⇒ π1 (z) = M and π2(z) = w

THE PAIRING FUNCTION

Note that |<M,w>| = 2|M| + |w| + 1

Let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1
Then:

<M,w> := Z(M) w

(Example: <10110,101> = 01000101001101)

A BETTER PAIRING FUNCTION
Let b(n) be the binary encoding of n
Again let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1

<M,w> := Z(b(|M|)) M w

A BETTER PAIRING FUNCTION
Let b(n) be the binary encoding of n
Again let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1

<M,w> := Z(b(|M|)) M w

Example: Let <M,w> = <10110,101>
So, b(|10110|) = 101
So, <10110,101> = 010001110110101

A BETTER PAIRING FUNCTION

Now, |<M,w>| = 2 log(|M|) + |M| + |w| + 1

Let b(n) be the binary encoding of n
Again let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1

<M,w> := Z(b(|M|)) M w

Example: Let <M,w> = <10110,101>
So, b(|10110|) = 101
So, <10110,101> = 010001110110101

We can still decode 10110 and 101 from this!

KOLMOGOROV COMPLEXITY

EXAMPLES??
Let’s start by figuring out some properties of K.
Examples will fall out of this.

Definition: The Kolmogorov complexity of x,
denoted as K(x), is |d(x)|.

Definition: Let x in {0,1}*. The shortest description
of x, denoted as d(x), is the lexicographically
shortest string <M,w> s.t. M(w) halts with x on tape.

KOLMOGOROV COMPLEXITY

Theorem: There is a fixed c so that for all x in {0,1}*,
K(x) ≤ |x| + c

 “The amount of information in x isn’t much more than |x|”

KOLMOGOROV COMPLEXITY

Theorem: There is a fixed c so that for all x in {0,1}*,
K(x) ≤ |x| + c

Proof: Define M = “On w, halt.”
On any string x, M(x) halts with x on its tape!
This implies

K(x) ≤ |<M,x>| ≤ 2|M| + |x| + 1 ≤ c + |x|
(Note: M is fixed for all x. So |M| is constant)

 “The amount of information in x isn’t much more than |x|”

REPETITIVE STRINGS

Theorem: There is a fixed c so that for all x in {0,1}*,
K(xx) ≤ K(x) + c

 “The information in xx isn’t much more than that in x”

REPETITIVE STRINGS

Theorem: There is a fixed c so that for all x in {0,1}*,
K(xx) ≤ K(x) + c

Proof: Let N = “On <M,w>, let s=M(w). Print ss.”
Let <M,w’> be the shortest description of x.
Then <N,<M,w’>> is a description of xx
Therefore
K(xx) ≤ |<N,<M,w’>>| ≤ 2|N| + K(x) + 1 ≤ c + K(x)

 “The information in xx isn’t much more than that in x”

 “The information in xn isn’t much more than that in x”

REPETITIVE STRINGS

Corollary: There is a fixed c so that for all n,
and all x ∈ {0,1}*,

K(xn) ≤ K(x) + c log2 n

Proof:
An intuitive way to see this:
Define M: “On <x, n>, print x for n times”.

Now take <M,<x,n>> as a description of xn.

In binary, n takes O(log n) bits to write down, so we
have K(x) + O(log n) as an upper bound on K(xn).

 “The information in xn isn’t much more than that in x”

REPETITIVE STRINGS

Corollary: There is a fixed c so that for all n,
and all x ∈ {0,1}*,

K(xn) ≤ K(x) + c log2 n

REPETITIVE STRINGS

Recall:
A = 01010101010101010101010101010101

For w = (01)n, K(w) ≤ K(01) + c log2 n

 “The information in xn isn’t much more than that in x”

Corollary: There is a fixed c so that for all n,
and all x ∈ {0,1}*,

K(xn) ≤ K(x) + c log2 n

CONCATENATION of STRINGS

Theorem: There is a fixed c so that for all x , y in
{0,1}*,

K(xy) ≤ 2K(x) + K(y) + c

Better: K(xy) ≤ 2 logK(x) +K(x) + K(y) + c

DOES THE LANGUAGE MATTER?
Turing machines are one programming language.
If we use other programming languages, can we get
shorter descriptions?

An interpreter is a (partial) computable function
p : Σ* → Σ*
Takes programs as input, and prints their outputs

DOES THE LANGUAGE MATTER?
Turing machines are one programming language.
If we use other programming languages, can we get
shorter descriptions?

An interpreter is a (partial) computable function
p : Σ* → Σ*
Takes programs as input, and prints their outputs

Definition: Let x ∈ {0,1}*. The shortest description
of x under p, (dp(x)), is the lexicographically
shortest string for which p(dp(x)) = x.

DOES THE LANGUAGE MATTER?
Turing machines are one programming language.
If we use other programming languages, can we get
shorter descriptions?

An interpreter is a (partial) computable function
p : Σ* → Σ*
Takes programs as input, and prints their outputs

Definition: Let x ∈ {0,1}*. The shortest description
of x under p, (dp(x)), is the lexicographically
shortest string for which p(dp(x)) = x.

Definition: Kp(x) = |dp(x)|.

Theorem: For every interpreter p, there is a fixed c
so that for all x ∈ {0,1}*,

K(x) ≤ Kp(x) + c

Using any other programming language would
only change K(x) by some constant

DOES THE LANGUAGE MATTER?

Theorem: For every interpreter p, there is a fixed c
so that for all x ∈ {0,1}*,

K(x) ≤ Kp(x) + c

Using any other programming language would
only change K(x) by some constant

Proof: Define Mp = “On w, output p(w)”
Then <Mp, dp(x)> is a description of x, and

K(x) ≤ |<Mp,dp(x)>|
 ≤2|Mp| + Kp(x) + 1 ≤ c + Kp(x)

DOES THE LANGUAGE MATTER?

INCOMPRESSIBLE STRINGS

“There are incompressible strings of every length”

Theorem: For all n, there is an x ∈ {0,1}n such that
K(x) ≥ n

INCOMPRESSIBLE STRINGS

“There are incompressible strings of every length”

Theorem: For all n, there is an x ∈ {0,1}n such that
K(x) ≥ n

Proof: (Number of binary strings of length n) = 2n

 (Number of descriptions of length < n)
 ≤ (Number of binary strings of length < n)
 = 2n – 1.

Therefore: there’s at least one n-bit string that
doesn’t have a description of length < n

INCOMPRESSIBLE STRINGS

“Most strings are fairly incompressible”

Theorem: For all n and c,
Prx ∈ {0,1}^n[K(x) ≥ n-c] ≥ 1 – 1/2c

Proof: (Number of binary strings of length n) = 2n

 (Number of descriptions of length < n-c)
 ≤ (Number of binary strings of length < n-c)
 = 2n-c – 1.

So the probability that a random x has K(x) < n-c
is at most (2n-c – 1)/2n < 1/2c.

A QUIZ

Give short algorithms for generating:

1. 01000110110000010100111001011101110000

2. 123581321345589144233377610

3. 12624120720504040320362880

 This seems hard in general. Why?
We’ll give a formal answer in just one moment…

DETERMINING COMPRESSIBILITY

Theorem: COMPRESS is undecidable!

Can an algorithm help us compress strings?
Can an algorithm tell us when a string is compressible?

 COMPRESS = {(x,c) | K(x) ≤ c}

DETERMINING COMPRESSIBILITY

Theorem: COMPRESS is undecidable!

Can an algorithm help us compress strings?
Can an algorithm tell us when a string is compressible?

 COMPRESS = {(x,c) | K(x) ≤ c}

Berry Paradox: “The first string whose shortest
description cannot be written in less than fifteen words.”

DETERMINING COMPRESSIBILITY

Theorem: COMPRESS is undecidable!
COMPRESS = {(x,n) | K(x) ≤ n}

Proof:
M = “On input x ∈ {0,1}*,
 Interpret x as integer n. (|x| ≤ log n)
 Find first y ∈ {0,1}* in lexicographical order,
 s.t. (y,n) ∉ COMPRESS, then print y and halt.”

M(x) prints the first string y* with K(y*) > n.
Thus <M,x> describes y*, and |<M,x>| ≤ c + log n
So n < K(y*) ≤ c + log n. CONTRADICTION!

DETERMINING COMPRESSIBILITY

Theorem: K is not computable

Proof:
M = “On input x ∈ {0,1}*,
 Interpret x as integer n. (|x| ≤ log n)
 Find first y ∈ {0,1}* in lexicographical order,
 s. t. K(y) > n , then print y and halt.”

M(x) prints the first string y* with K(y*) > n.
Thus <M,x> describes y*, and |<M,x>| ≤ c + log n
So n < K(y*) ≤ c + log n. CONTRADICTION!

SO WHAT CAN YOU DO WITH THIS?

Theorem: There are infinitely many primes.

Many results in mathematics can be proved
very simply using incompressibility.

IDEA: Finitely many primes ⇒ can compress everything!

SO WHAT CAN YOU DO WITH THIS?

Theorem: There are infinitely many primes.

Many results in mathematics can be proved
very simply using incompressibility.

Proof: Suppose not. Let p1, … , pk be the primes.
Let x be incompressible. Think of n = x as integer.
Then there are ei s.t.

n = p1
e1 … pk

ek
For all i, ei ≤ log n, so |ei| ≤ log log n
Can describe n (and x) with k log log n + c bits!
But x was incompressible… CONTRADICTION!

IDEA: Finitely many primes ⇒ can compress everything!

WWW.FLAC.WS
Read Chapter 7.1 for next time

	Slide Number 1
	Slide Number 2
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 36
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

