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CAN WE QUANTIFY HOW MUCH 
INFORMATION IS IN A STRING? 

A = 01010101010101010101010101010101 
 
B = 110010011101110101101001011001011 

Idea: The more we can “compress” a string, 
the less “information” it contains…. 



INFORMATION AS DESCRIPTION 

INFORMATION IN A STRING: 
SHORTEST DESCRIPTION OF THE STRING 

How can we “describe” strings? 

Turing machines with inputs! 



INFORMATION AS DESCRIPTION 

INFORMATION IN A STRING: 
SHORTEST DESCRIPTION OF THE STRING 

How can we “describe” strings? 

Turing machines with inputs! 

Definition: Let x be in {0,1}*. The shortest 
description of x, denoted as d(x), is the 
lexicographically shortest string <M,w> s.t. M(w) 
halts with x on tape. 
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KOLMOGOROV COMPLEXITY 

Definition: The Kolmogorov complexity of x, 
denoted as K(x), is |d(x)|. 

Definition: Let x in {0,1}*. The shortest description 
of x, denoted as d(x), is the lexicographically 
shortest string <M,w> s.t. M(w) halts with x on tape. 

How to code <M,w>? 
Assume w in {0,1}* and we have a binary encoding of M 



Theorem. There is a 1-1 and onto computable 
function <,>: Σ* x Σ* → Σ*  and computable 
functions π1 and π2 : Σ* → Σ*  such that: 

 z = <M,w>  ⇒  π1 (z) = M and π2(z) = w 

THE PAIRING FUNCTION 

Let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1 
Then: 

<M,w> := Z(M) w 



Theorem. There is a 1-1 and onto computable 
function <,>: Σ* x Σ* → Σ*  and computable 
functions π1 and π2 : Σ* → Σ*  such that: 

 z = <M,w>  ⇒  π1 (z) = M and π2(z) = w 

THE PAIRING FUNCTION 

Note that  |<M,w>| = 2|M| + |w| + 1 

Let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1 
Then: 

<M,w> := Z(M) w 

(Example: <10110,101> = 01000101001101) 
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Let b(n) be the binary encoding of n 
Again let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1 
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A BETTER PAIRING FUNCTION 
Let b(n) be the binary encoding of n 
Again let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1 

<M,w> := Z(b(|M|)) M w 

Example: Let  <M,w> =  <10110,101> 
So, b(|10110|) = 101 
So, <10110,101> = 010001110110101 
 



A BETTER PAIRING FUNCTION 

Now,  |<M,w>| = 2 log(|M|) + |M| + |w| + 1 

Let b(n) be the binary encoding of n 
Again let Z(x1 x2 … xk) = 0 x1 0 x2 … 0 xk 1 

<M,w> := Z(b(|M|)) M w 

Example: Let  <M,w> =  <10110,101> 
So, b(|10110|) = 101 
So, <10110,101> = 010001110110101 
 
We can still decode 10110 and 101 from this! 



KOLMOGOROV COMPLEXITY 

EXAMPLES?? 
Let’s start by figuring out some properties of K. 
Examples will fall out of this. 

Definition: The Kolmogorov complexity of x, 
denoted as K(x), is |d(x)|. 

Definition: Let x in {0,1}*. The shortest description 
of x, denoted as d(x), is the lexicographically 
shortest string <M,w> s.t. M(w) halts with x on tape. 



KOLMOGOROV COMPLEXITY 

Theorem: There is a fixed c so that for all x in {0,1}*,  
K(x) ≤  |x| + c 

 “The amount of information in x isn’t much more than |x|” 



KOLMOGOROV COMPLEXITY 

Theorem: There is a fixed c so that for all x in {0,1}*,  
K(x) ≤  |x| + c 

Proof: Define M = “On w, halt.”  
On any string x, M(x) halts with x on its tape! 
This implies 

K(x) ≤   |<M,x>|  ≤   2|M| + |x| + 1  ≤   c + |x| 
(Note: M is fixed for all x. So |M| is constant) 

 “The amount of information in x isn’t much more than |x|” 



REPETITIVE STRINGS 

Theorem: There is a fixed c so that for all x in {0,1}*,  
K(xx) ≤  K(x) + c 

 “The information in xx isn’t much more than that in x” 



REPETITIVE STRINGS 

Theorem: There is a fixed c so that for all x in {0,1}*,  
K(xx) ≤  K(x) + c 

Proof: Let N = “On <M,w>, let s=M(w). Print ss.”  
Let <M,w’> be the shortest description of x.   
Then <N,<M,w’>> is a description of xx 
Therefore 
K(xx) ≤   |<N,<M,w’>>|  ≤   2|N| + K(x) + 1  ≤   c + K(x) 

 “The information in xx isn’t much more than that in x” 



 “The information in xn isn’t much more than that in x” 

REPETITIVE STRINGS 

Corollary: There is a fixed c so that for all n,  
and all  x ∈  {0,1}*,  

K(xn) ≤  K(x) + c log2 n 



Proof:  
An intuitive way to see this: 
Define M: “On <x, n>, print x for n times”.  

Now take <M,<x,n>> as a description of xn. 

In binary, n takes O(log n) bits to write down, so we 
have K(x) + O(log n) as an upper bound on K(xn). 
 
 
 

 “The information in xn isn’t much more than that in x” 

REPETITIVE STRINGS 

Corollary: There is a fixed c so that for all n,  
and all  x ∈  {0,1}*,  

K(xn) ≤  K(x) + c log2 n 



REPETITIVE STRINGS 

Recall: 
A = 01010101010101010101010101010101 

 
For w = (01)n, K(w) ≤ K(01) + c log2 n 

 “The information in xn isn’t much more than that in x” 

Corollary: There is a fixed c so that for all n,  
and all  x ∈  {0,1}*,  

K(xn) ≤  K(x) + c log2 n 



CONCATENATION of STRINGS 

Theorem: There is a fixed c so that for all x , y in 
{0,1}*, 

K(xy) ≤ 2K(x) + K(y) + c 
 

Better: K(xy) ≤ 2 logK(x) +K(x) +  K(y) + c 
 



DOES THE LANGUAGE MATTER? 
Turing machines are one programming language. 
If we use other programming languages, can we get 
shorter descriptions? 

An interpreter is a  (partial) computable function  
p : Σ* → Σ* 
Takes programs as input, and prints their outputs 
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DOES THE LANGUAGE MATTER? 
Turing machines are one programming language. 
If we use other programming languages, can we get 
shorter descriptions? 

An interpreter is a  (partial) computable function  
p : Σ* → Σ* 
Takes programs as input, and prints their outputs 

Definition: Let x ∈ {0,1}*. The shortest description 
of x under p, (dp(x)), is the lexicographically 
shortest string for which p(dp(x)) = x. 

Definition: Kp(x) = |dp(x)|. 



Theorem: For every interpreter p, there is a fixed c 
so that for all x ∈ {0,1}*,  

K(x) ≤ Kp(x) + c 

Using any other programming language would  
only change K(x) by some constant 

DOES THE LANGUAGE MATTER? 



Theorem: For every interpreter p, there is a fixed c 
so that for all x ∈ {0,1}*,  

K(x) ≤ Kp(x) + c 

Using any other programming language would  
only change K(x) by some constant 

Proof: Define Mp = “On w, output p(w)” 
Then <Mp, dp(x)> is a description of x, and 

K(x) ≤ |<Mp,dp(x)>|  
 ≤2|Mp| + Kp(x) + 1 ≤ c + Kp(x) 

DOES THE LANGUAGE MATTER? 



INCOMPRESSIBLE STRINGS 

“There are incompressible strings of every length” 

Theorem: For all n, there is an x ∈ {0,1}n such that  
K(x) ≥ n 



INCOMPRESSIBLE STRINGS 

“There are incompressible strings of every length” 

Theorem: For all n, there is an x ∈ {0,1}n such that  
K(x) ≥ n 

Proof: (Number of binary strings of length n) = 2n  
 

     (Number of descriptions of length < n)  
 ≤   (Number of binary strings of length < n)   
 =  2n – 1. 
 

Therefore: there’s at least one n-bit string that 
doesn’t have a description of length < n 



INCOMPRESSIBLE STRINGS 

“Most strings are fairly incompressible” 

Theorem: For all n and c, 
Prx ∈ {0,1}^n[ K(x) ≥ n-c ] ≥ 1 – 1/2c 

 

Proof: (Number of binary strings of length n) = 2n  
 

     (Number of descriptions of length < n-c)  
 ≤   (Number of binary strings of length < n-c)   
 =  2n-c – 1. 
 

So the probability that a random x has K(x) < n-c 
is at most (2n-c – 1)/2n < 1/2c. 



A QUIZ 
 

Give short algorithms for generating: 
 
1.  01000110110000010100111001011101110000 
 
2.  123581321345589144233377610  
 
3.  12624120720504040320362880 
 
 This seems hard in general. Why? 
We’ll give a formal answer in just one moment… 



DETERMINING COMPRESSIBILITY 

Theorem: COMPRESS is undecidable! 

Can an algorithm help us compress strings? 
Can an algorithm tell us when a string is compressible? 

 COMPRESS = {(x,c) | K(x) ≤ c} 



DETERMINING COMPRESSIBILITY 

Theorem: COMPRESS is undecidable! 

Can an algorithm help us compress strings? 
Can an algorithm tell us when a string is compressible? 

 COMPRESS = {(x,c) | K(x) ≤ c} 

Berry Paradox: “The first string whose shortest 
description cannot be written in less than fifteen words.” 



DETERMINING COMPRESSIBILITY 

Theorem: COMPRESS is undecidable! 
COMPRESS = {(x,n) | K(x) ≤ n} 

Proof:  
M = “On input x ∈ {0,1}*, 
 Interpret x as integer n. (|x| ≤ log n) 
 Find first y ∈ {0,1}* in lexicographical order,  
 s.t. (y,n) ∉  COMPRESS, then print y and halt.” 
 
 
 
 

M(x) prints the first string y* with K(y*) > n. 
Thus <M,x> describes y*, and |<M,x>| ≤ c + log n 
So n < K(y*) ≤ c + log n.  CONTRADICTION! 



DETERMINING COMPRESSIBILITY 

Theorem: K is not computable 

Proof:  
M = “On input x ∈ {0,1}*, 
 Interpret x as integer n. (|x| ≤ log n) 
 Find first y ∈ {0,1}* in lexicographical order,  
 s. t. K(y) > n , then print y and halt.” 
 
 
 
 

M(x) prints the first string y* with K(y*) > n. 
Thus <M,x> describes y*, and |<M,x>| ≤ c + log n 
So n < K(y*) ≤ c + log n.  CONTRADICTION! 



SO WHAT CAN YOU DO WITH THIS? 

Theorem: There are infinitely many primes. 

Many results in mathematics can be proved 
very simply using incompressibility. 

IDEA: Finitely many primes ⇒ can compress everything! 



SO WHAT CAN YOU DO WITH THIS? 

Theorem: There are infinitely many primes. 

Many results in mathematics can be proved 
very simply using incompressibility. 

Proof: Suppose not. Let p1, … , pk be the primes. 
Let x be incompressible. Think of n = x as integer. 
Then there are ei s.t.  

n = p1
e1 … pk

ek  
For all i, ei ≤ log n, so |ei| ≤ log log n 
Can describe n (and x) with k log log n + c bits! 
But x was incompressible… CONTRADICTION! 

IDEA: Finitely many primes ⇒ can compress everything! 



WWW.FLAC.WS 
Read Chapter 7.1 for next time 
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