
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

THE ARITHMETIC HIERARCHY

THURSDAY, MAR 6

∆ 1
0

THE ARITHMETIC HIERARCHY

∑ 1
0

Π n
0

∆ n+1
0

= { semi-decidable sets }

= { decidable sets } (sets =
languages)

= { sets semi-decidable in some B ∈ }

= { sets decidable in some B ∈ }

= { complements of sets in }

∑ n+1
0 ∑

n
0

∑
n
0

∑ n
0

∆ 1
0

∑ 1
0 Π 1

0

Decidable Languages

Semi-
decidable
Languages

Co-semi-
decidable
Languages

∑
1
0 Π

1
0 ∩ =

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π
3
0

∆ 2
0

∆
3
0

Semi-
decidable
Languages

Co-semi-
decidable
Languages

∆ 1
0

Decidable Languages

∑
1
0 Π

1
0 ∩ =

Definition: A decidable predicate R(x,y) is some
proposition about x and y1, where there is a TM M
such that

for all x, y, R(x,y) is TRUE ⇒ M(x,y) accepts
 R(x,y) is FALSE ⇒ M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:
R(x,y) = “x + y is less than 100”

R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, x, y): M accepts x in y

steps.
 1. x, y are positive integers or elements of ∑*

Definition: A decidable predicate R(x,y) is some
proposition about x and y1, where there is a TM M
such that

for all x, y, R(x,y) is TRUE ⇒ M(x,y) accepts
 R(x,y) is FALSE ⇒ M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:
R(x,y) = “x + y is less than 100”
R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

1. x, y are positive integers or elements of ∑*

Definition: A decidable predicate R(x,y) is some
proposition about x and y1, where there is a TM M
such that

for all x, y, R(x,y) is TRUE ⇒ M(x,y) accepts
 R(x,y) is FALSE ⇒ M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:
R(x,y) = “x + y is less than 100”
R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

 Note: A is decidable ⇔ A = {x | R(x,ε)},
 for some decidable predicate R.

Theorem: A language A is semi-decidable
if and only if there is a decidable predicate R(x, y)
such that: A = { x | ∃y R(x,y) }
Proof:

Theorem: A language A is semi-decidable
if and only if there is a decidable predicate R(x, y)
such that: A = { x | ∃y R(x,y) }
Proof:
(1) If A = { x | ∃y R(x,y) } then A is semi-decidable

(2) If A is semi-decidable, then A = { x | ∃y R(x,y) }

Theorem: A language A is semi-decidable
if and only if there is a decidable predicate R(x, y)
such that: A = { x | ∃y R(x,y) }
Proof:
(1) If A = { x | ∃y R(x,y) } then A is semi-decidable

Because we can enumerate over all y’s

(2) If A is semi-decidable, then A = { x | ∃y R(x,y) }

Theorem: A language A is semi-decidable
if and only if there is a decidable predicate R(x, y)
such that: A = { x | ∃y R(x,y) }
Proof:
(1) If A = { x | ∃y R(x,y) } then A is semi-decidable

Because we can enumerate over all y’s

(2) If A is semi-decidable, then A = { x | ∃y R(x,y) }

Let M semi-decide A
Then, A = { x | ∃y T(<M>, x, y) }
where
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

(Here M is fixed.)

∑ 1
0

= languages of the form { x | ∃y R(x,y) }

= languages of the form { x | ∀y R(x,y) }

Π 1
0

∆ 1
0

∑ 1
0 Π 1

0 ∩ =

= { semi-decidable sets }

= { complements of semi-decidable sets }

= { decidable sets }

Where R is a decidable predicate

Theorem

∑ 2
0

= languages of the form { x | ∃y1∀y2 R(x,y1,y2) }

= languages of the form { x | ∀y1∃y2 R(x,y1,y2) }
Π 2

0

∆ 2
0 ∑ 2

0 Π 2
0 ∩ =

= { sets semi-decidable in some semi-dec. B }

= { complements of sets} ∑ 2
0

Theorem

Where R is a decidable predicate

∑ n
0 = languages { x | ∃y1∀y2∃y3…Qyn R(x,y1,…,yn) }

= languages { x | ∀y1∃y2∀y3…Qyn R(x,y1,…,yn) } Π n
0

∆ n
0 ∑ n

0 Π n
0 ∩ =

Where R is a decidable predicate

Theorem

∑ 1
0 = languages of the form { x | ∃y R(x,y) }

We know that ATM is in ∑ 1
0

Decidable predicate

Why?

Show it can be described in this form:

Example

∑ 1
0 = languages of the form { x | ∃y R(x,y) }

We know that ATM is in ∑ 1
0

ATM = { <(M,w)> | ∃t [M accepts w in t steps] }

decidable predicate

Decidable predicate

Why?

Show it can be described in this form:

Example

∑ 1
0 = languages of the form { x | ∃y R(x,y) }

We know that ATM is in ∑ 1
0

ATM = { <(M,w)> | ∃t [M accepts w in t steps] }

decidable predicate

Decidable predicate

ATM = { <(M,w)> | ∃t T (<M>, w, t }

Why?

Show it can be described in this form:

Example

∑ 1
0 = languages of the form { x | ∃y R(x,y) }

We know that ATM is in ∑ 1
0

ATM = { <(M,w)> | ∃t [M accepts w in t steps] }

decidable predicate

Decidable predicate

ATM = { <(M,w)> | ∃t T (<M>, w, t }

Why?

Show it can be described in this form:

ATM = { <(M,w)> | ∃v (v is an accepting
 computation history of M on w}

Example

∆ 1
0

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π 3
0

∆ 2
0

∆
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑ 2
0 Π 2

0 ∩ =

ATM

Π 1
0 = languages of the form { x | ∀y R(x,y) }

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in Π 1
0

Π 1
0 = languages of the form { x | ∀y R(x,y) }

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] }

decidable predicate

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in Π 1
0

Π 1
0 = languages of the form { x | ∀y R(x,y) }

EMPTY = { M | ∀w∀t [¬T(<M>, w, t)] }

decidable predicate

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in Π 1
0

Π 1
0 = languages of the form { x | ∀y R(x,y) }

EMPTY = { M | ∀w∀t [¬T(<M>, w, t)] }

two quantifiers?? decidable predicate

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in Π 1
0

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] }

EMPTY = { M | ∀z[M doesn’t accept π1 (z) in π2(z) steps]}

THE PAIRING FUNCTION

EMPTY = { M | ∀z[¬T(<M>, π1 (z) , π2(z))] }

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

THE PAIRING FUNCTION

Proof: Let w = w1…wn ∈ Σ*, t ∈ Σ*.
Let a, b ∈ Σ, a ≠ b.

<w, t> := a w1… a wn b t

 π1 (z) := “if z has the form a w1… a wn b t,
then output w1… wn, else output ε”

 π2(z) := “if z has the form a w1… a wn b t,
then output t, else output ε”

∆ 1
0

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π 3
0

∆ 2
0

∆
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑ 2
0 Π 2

0 ∩ =

ATM EMPTY

Π 2
0 = languages of the form { x | ∀y∃z R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
is in Π 2

0

Π 2
0 = languages of the form { x | ∀y∃z R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
is in

TOTAL = { M | ∀w ∃t [M halts on w in t steps] }

Π 2
0

decidable predicate

Π 2
0 = languages of the form { x | ∀y∃z R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
is in

TOTAL = { M | ∀w ∃t [T(<M>, w, t)] }

Π 2
0

decidable predicate

∆ 1
0

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π 3
0

∆ 2
0

∆
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑ 2
0 Π 2

0 ∩ =

ATM

TOTAL

EMPTY

∑ 2
0 = languages of the form { x | ∃y∀z R(x,y,z) }

Show that FIN = { M | L(M) is finite } is in ∑ 2
0

∑ 2
0 = languages of the form { x | ∃y∀z R(x,y,z) }

Show that FIN = { M | L(M) is finite } is in

FIN = { M | ∃n∀w∀t [Either |w| < n, or
 M doesn’t accept w in t steps] }

FIN = { M | ∃n∀w∀t (|w| < n ∨¬ T(<M>,w, t))}

decidable predicate

∑ 2
0

∆ 1
0

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π 3
0

∆ 2
0

∆
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑ 2
0 Π 2

0 ∩ =

ATM

TOTAL

EMPTY

FIN

∑ 3
0 = languages of the form { x | ∃y∀z∃u R(x,y,z,u) }

Show that COF = { M | L(M) is cofinite } is in ∑ 2
0

∑ 3
0 = languages of the form { x | ∃y∀z∃u R(x,y,z,u) }

Show that COF = { M | L(M) is cofinite } is in

COF = { M | ∃n∀w∃ t [|w| > n ⇒ M accept w in t steps] }

COF = { M | ∃n∀w∃ t (|w| ≤ n ∨T(<M>,w, t))}

decidable predicate

∑ 2
0

∆ 1
0

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π 3
0

∆ 2
0

∆
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑ 2
0 Π 2

0 ∩ =

ATM

TOTAL

EMPTY

FIN

COF

∆ 1
0

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π 3
0

∆ 2
0

∆
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑ 2
0 Π 2

0 ∩ =

ATM

TOTAL

EMPTY

FIN

REG

∆ 1
0

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π 3
0

∆ 2
0

∆
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑ 2
0 Π 2

0 ∩ =

ATM

TOTAL

EMPTY

FIN

DEC

∆ 1
0

∑ 1
0

∑ 3
0

∑ 2
0

Π 1
0

Π 2
0

Π 3
0

∆ 2
0

∆
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑ 2
0 Π 2

0 ∩ =

ATM

TOTAL

EMPTY

FIN

CFL

Each is m-complete for its level in
hierachy and cannot go lower (by the
SuperHalting Theorem, which shows
the hierarchy does not collapse).

Each is m-complete for its level in
hierachy and cannot go lower (by the
SuperHalting Theorem, which shows
the hierarchy does not collapse).

L is m-complete for class C if
i) L ∈ C and
ii) L is m-hard for C,

 ie, for all L’ ∈ C , L’ ≤m L

ATM is m-complete for class C =

i) ATM ∈ C

ii) ATM is m-hard for C,

∑ 1
0

ATM is m-complete for class C =

i) ATM ∈ C

ii) ATM is m-hard for C,

Suppose L ∈ C . Show: L ≤m ATM

Let M semi-decide L. Then Map
 
 where w  (M, w).

Then, w ∈ L ⇔ (M,w) ∈ ATM QED

∑* ∑*

∑ 1
0

FIN is m-complete for class C =

i) FIN ∈ C
ii) FIN is m-hard for C,

Suppose L ∈ C . Show: L ≤m FIN

∑ 2
0

Supose L ∈ ie L= { w | ∃y∀z R(w,y,z) }
where R is decided by some TM D

Show: L ≤m FIN

∑
2
0

Supose L ∈ ie L= { w | ∃y∀z R(w,y,z) }
where R is decided by some TM D

Show: L ≤m FIN

Map 
where w  ND,w

∑* ∑*

∑
2
0

Supose L ∈ ie L= { w | ∃y∀z R(w,y,z) }
where R is decided by some TM D

Show: L ≤m FIN

Map 
where w  ND,w

Define ND,w On input s:

1. Write down all strings y of length |s|
2. For each y, try to find a z such that
¬ R(w, y, z) and accept if all are successful
(here use D and w)

So, w ∈ L ⇔ ND,w ∈ FIN

∑* ∑*

∑
2
0

ORACLES not all powerful
The following problem cannot be decided, even by
a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the
 Halting Problem, halts on x}

ORACLES not all powerful
The following problem cannot be decided, even by
a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the
 Halting Problem, halts on x}

Can use diagonalization here!
Suppose H decides SUPERHALT (with oracle)
Define D(X) = “if H(X,X) accepts (with oracle)
 then LOOP, else ACCEPT.”
D(D) halts ⇔ H(D,D) accepts ⇔ D(D) loops…

Proof IDEA: Same idea as the previous slide.

ORACLES not all powerful
Theorem: The arithmetic hierarchy is strict.

That is, the nth level contains a language
that isn’t in any of the levels below n.

SUPERHALT0 = HALT = { (M,x) | M halts on x}.

Theorem: The arithmetic hierarchy is strict.
That is, the nth level contains a language
that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALT1 = { (M,x) | M, with an oracle for the
 Halting Problem, halts on x}

 SUPERHALTn = { (M,x) | M, with an oracle for
 SUPERHALTn-1, halts on x}

ORACLES not all powerful

WWW.FLAC.WS
Read Chapter 6.4 for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57

