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THE ARITHMETIC HIERARCHY
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Definition: A decidable predicate R(x,y) is some
proposition about x and y*, where thereisa TM M

such that

for all x,y, R(x,y) Is TRUE = M(X,y) accepts
R(X,y) Is FALSE = M(X,y) rejects

We say M “decides” the predicate R.

1. X,y are positive integers or elements of 2.*
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Definition: A decidable predicate R(x,y) is some
proposition about x and y*, where thereisa TM M

such that

for all x,y, R(x,y) Is TRUE = M(X,y) accepts
R(X,y) Is FALSE = M(X,y) rejects

We say M “decides” the predicate R.

EXAMPLES:

R(X,y) =“Xx +y is less than 100"

R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, X, y): M accepts X In Y steps.

Note: A is decidable < A ={x| R(x,£)},
for some decidable predicate R.
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Theorem: A language A is semi-decidable
If and only if there Is a decidable predicate R(X, y)

such that: A ={x|3y R(x,y)}

Proof:

(D) IfA={x|3y R(x,y) } then Ais semi-decidable
Because we can enumerate over all y’s

(2) If Ais semi-decidable, then A={ x| Ay R(x,y) }

Let M semi-decide A

Then, A={x |3y T(<M>,X,Y) } (Here Mis fixed.)
where
Kleene’s T predicate, T(<M>, X, ¥): M accepts X In Yy steps.
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Theorem

Z(Z) = { sets semi-decidable in some semi-dec. B }
= languages of the form { x | Ay,Vy, R(X,y1,Y>) }

Hg = { complements ong sets}
= languages of the form { x | Vy,3y, R(X,y1,¥>) }
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Where R Is a decidable predicate
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Where R Is a decidable predicate
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Example

Decidable predicate

ch) = languages of the form { x |}

We know that A, is inzcl) Why?

Show it can be described in this form:

Ay = { <(M,w)>| 3t [M accepts w in t steps] }

e

decidable predicate

Amy = { <(M,w)>
Ary = { <(M,w)>

AT (<M>, w, t}

Jv (v Is an accepting

computation history of M on wj}
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Show that EMPTY (ie, Ery) = { M| L(M) =@ }is in 1‘[(1)
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H(j = languages of the form { x | Vy R(x,y) }

Show that EMPTY (ie, Ery) = { M| L(M) =@ }is in 1‘[(1)

EMPTY ={ M | YwVt [ -T(<M>, w, t) ] }

/

two quantifiers?? decidable predicate
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THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable
function <, > 2*x £* > 2* and computable
functions &, and &, : Z* > Z* such that

Z=<w,1> = 7w, (z) =w and =n,(z2) =t

Proof: Letw=w,..w, € 2*;t € 2*
Leta,b € 2,a= Db.
<w,t>:=aw,..aw,bt

7, (z) :="“If z has the formaw,... aw,b t,
then output w;... w,, else output €”
n,(z) :="“If z has the forma w,... aw,bt,
then output t, else output €”
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Hg = languages of the form { x | Vy3z R(X,y,z) }

Show that TOTAL ={ M | M halts on all inputs }

is in 1‘[(2)

TOTAL={M | Vw3t [ T(<M>, w, 1) ] }

decidable predicate
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Zg = languages of the form { x | AyVz R(x,y,z) }

Show that FIN = { M | L(M) is finite } is in 22

FIN ={ M | AnVwVt [Either |w| <n, or
M doesn’t accept w in t steps] }

FIN ={ M | InvwVt ( |w| < n V= T(<M>,w, t) )}

b

decidable predicate
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Zg = languages of the form { x | Ayvz3au R(x,y,z,u) ]

Show that COF ={ M | L(M) is cofinite } is in zg

COF={M|3anvw3t][|w|>n= M acceptwint steps] }

COF={ M |3nvwat (|w| < n VT(M>w, t) )}

b

decidable predicate
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Each is m-complete for its level In
hierachy and cannot go lower (by the
SuperHalting Theorem, which shows
the hierarchy does not collapse).



Each is m-complete for its level In
hierachy and cannot go lower (by the
SuperHalting Theorem, which shows
the hierarchy does not collapse).

L Is m-complete for class C if

) L C and
1) Lis m-hard for C,

le,forallLl’ e C,L' <, L
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Ary is m-complete for class C= X
) Ap,eC

I1) Ay 1S m-hard for C,
SupposelL € C.Show: L < A,
Let M semi-decide L. Then Map
Z* 9 Z*
wherew =2 (M, w).
Then,w € L & (M,w) € Aqy, QED



FIN is m-complete for class C =Z(2)

1) FIN eC
1) FINis m-hard for C,

SupposelL € C.Show: L < FIN
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Supose LeX . iel={w]|3yvzR(Wwyz)}
where R Is decided by some TM D

Show: L <, FIN

Map 2% > 27
where w 2> Np,

Define Np,,  On inputs:

1. Write down all strings y of length |s|

2. For each vy, try to find a z such that

— R(w, vy, z) and accept if all are successful
(here use D and w)

So,welL< Np, € FIN



ORACLES not all powerful

The following problem cannot be decided, even by
a TM with an oracle for the Halting Problem:

SUPERHALT ={ (M,x) | M, with an oracle for the
Halting Problem, halts on x}



ORACLES not all powerful

The following problem cannot be decided, even by
a TM with an oracle for the Halting Problem:

SUPERHALT ={ (M,x) | M, with an oracle for the
Halting Problem, halts on x}

Can use diagonalization here!
Suppose H decides SUPERHALT (with oracle)

Define D(X) = “1f H(X,X) accepts (with oracle)
then LOOP, else ACCEPT.”

D(D) halts & H(D,D) accepts < D(D) loops...



ORACLES not all powerful

Theorem: The arithmetic hierarchy is strict.
That is, the nth level contains a language
that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.



ORACLES not all powerful

Theorem: The arithmetic hierarchy is strict.
That is, the nth level contains a language
that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALTO = HALT ={ (M,x) | M halts on x}.

SUPERHALT?! ={ (M,x) | M, with an oracle for the
Halting Problem, halts on x}

SUPERHALT" ={ (M,x) | M, with an oracle for
SUPERHALT"!, halts on x}
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Read Chapter 6.4 for next time
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