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Definition: A decidable predicate R(x,y) is some 
proposition about x and y1, where there is a TM M 
such that 
 
for all x, y, R(x,y) is TRUE   ⇒   M(x,y) accepts 
  R(x,y) is FALSE  ⇒   M(x,y) rejects 
 
We say M “decides” the predicate R. 
 

EXAMPLES:  
R(x,y) = “x + y is less than 100” 

R(<N>,y) = “N halts on y in at most 100 steps” 
Kleene’s T predicate, T(<M>, x, y): M accepts x in y 

steps.  
 1. x, y are positive integers or elements of ∑* 
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Definition: A decidable predicate R(x,y) is some 
proposition about x and y1, where there is a TM M 
such that 
 
for all x, y, R(x,y) is TRUE   ⇒   M(x,y) accepts 
  R(x,y) is FALSE  ⇒   M(x,y) rejects 
 
We say M “decides” the predicate R. 
 
EXAMPLES:  
R(x,y) = “x + y is less than 100” 
R(<N>,y) = “N halts on y in at most 100 steps” 
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.  

 Note: A is decidable ⇔  A = {x | R(x,ε)}, 
            for some decidable predicate R. 
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if and only if there is a decidable predicate R(x, y) 
such that: A = { x | ∃y R(x,y) } 
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Theorem: A language A is semi-decidable  
if and only if there is a decidable predicate R(x, y) 
such that: A = { x | ∃y R(x,y) } 
Proof: 
(1) If A = { x | ∃y R(x,y) } then A is semi-decidable  

Because we can enumerate over all y’s 

(2) If A is semi-decidable, then A = { x | ∃y R(x,y) }  

Let M semi-decide A  
Then, A = { x | ∃y T(<M>, x, y) } 
where 
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.  

(Here M is fixed.) 



∑ 1 
0 

= languages of the form { x | ∃y R(x,y) }  

= languages of the form { x | ∀y R(x,y) }  

Π 1 
0 

∆ 1 
0 

∑ 1 
0 Π 1 

0 ∩ = 

= { semi-decidable sets } 

= { complements of semi-decidable sets } 

= { decidable sets } 

Where R is a decidable predicate 

Theorem 



∑ 2 
0 

= languages of the form { x | ∃y1∀y2 R(x,y1,y2) }  

= languages of the form { x | ∀y1∃y2 R(x,y1,y2) }  
Π 2 

0 

∆ 2 
0 ∑ 2 

0 Π 2 
0 ∩ = 

= { sets semi-decidable in some semi-dec. B } 

= { complements of            sets} ∑ 2 
0 

Theorem 

Where R is a decidable predicate 



∑ n 
0 = languages { x | ∃y1∀y2∃y3…Qyn R(x,y1,…,yn) }  

= languages { x | ∀y1∃y2∀y3…Qyn R(x,y1,…,yn) }  Π n 
0 

∆ n 
0 ∑ n 

0 Π n 
0 ∩ = 

Where R is a decidable predicate 

Theorem 



∑ 1 
0 = languages of the form { x | ∃y R(x,y) }  

We know  that ATM is in  ∑ 1 
0 

Decidable predicate 

Why? 

Show it can be described in this form: 

Example 



∑ 1 
0 = languages of the form { x | ∃y R(x,y) }  

We know  that ATM is in  ∑ 1 
0 

ATM = { <(M,w)> | ∃t [M accepts w in t steps] } 

decidable predicate 

Decidable predicate 

Why? 

Show it can be described in this form: 

Example 



∑ 1 
0 = languages of the form { x | ∃y R(x,y) }  

We know  that ATM is in  ∑ 1 
0 

ATM = { <(M,w)> | ∃t [M accepts w in t steps] } 

decidable predicate 

Decidable predicate 

ATM = { <(M,w)> | ∃t T (<M>, w, t } 

Why? 

Show it can be described in this form: 

Example 



∑ 1 
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We know  that ATM is in  ∑ 1 
0 

ATM = { <(M,w)> | ∃t [M accepts w in t steps] } 

decidable predicate 

Decidable predicate 

ATM = { <(M,w)> | ∃t T (<M>, w, t } 

Why? 

Show it can be described in this form: 

ATM = { <(M,w)> | ∃v (v is an accepting  
            computation history  of M on w}  

Example 
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Π 1 
0 = languages of the form { x | ∀y R(x,y) }  

EMPTY = { M | ∀w∀t [ ¬T(<M>, w, t) ] } 

two quantifiers?? decidable predicate 

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in  Π 1 
0 
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Theorem. There is a 1-1 and onto computable 
function < , >: Σ* x Σ* → Σ*  and  computable 
functions π1 and π2 : Σ* → Σ*  such that  

  z = <w, t>  ⇒  π1 (z) = w and π2(z) = t 

THE PAIRING FUNCTION 

Proof:  Let w = w1…wn  ∈  Σ*, t  ∈  Σ*.  
Let a, b  ∈  Σ, a ≠  b. 

<w, t> := a w1… a wn b t 
 

 π1 (z) := “if z has the form a w1… a wn b t, 
then output w1… wn, else output ε” 

 π2(z) := “if z has the form a w1… a wn b t, 
then output  t, else output ε” 
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Show that FIN = { M | L(M) is finite } is in  

FIN = { M | ∃n∀w∀t [Either |w| < n, or  
                       M doesn’t accept w in t steps] } 

FIN = { M | ∃n∀w∀t ( |w| < n ∨¬ T(<M>,w, t) )} 
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0 = languages of the form { x | ∃y∀z∃u R(x,y,z,u) }  

Show that COF = { M | L(M) is cofinite } is in  

COF = { M | ∃n∀w∃ t [ |w| > n ⇒ M accept w in t steps] } 

COF = { M | ∃n∀w∃ t ( |w|  ≤  n ∨T(<M>,w, t) )} 

decidable predicate 
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Each is m-complete for its level in 
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Each is m-complete for its level in 
hierachy and cannot go lower (by the 
SuperHalting Theorem, which shows 
the hierarchy does not collapse). 

L is m-complete for class C if 
i)  L  ∈ C  and 
ii)  L is m-hard for C, 
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ATM is m-complete for class  C = 
 
i) ATM ∈ C   

 
ii) ATM is m-hard for C, 

 

Suppose L  ∈ C . Show:  L ≤m ATM  
 

Let M semi-decide L.  Then Map         
                   
 where w     (M, w). 
 

Then, w ∈ L ⇔ (M,w) ∈ ATM            QED                              
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FIN is m-complete for class  C = 
 
i) FIN ∈ C   
ii) FIN is m-hard for C, 
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Supose   L ∈           ie L= { w | ∃y∀z R(w,y,z) }  
where R is decided by some TM  D  
 

Show:      L  ≤m FIN 
   

Map              
where     w         ND,w   
    

Define ND,w      On  input s: 
 

1. Write down all strings y of length |s| 
2. For each y, try to find a z such that 
¬ R(w, y, z) and accept if all are successful 
(here use D and w) 

So, w ∈ L ⇔ ND,w ∈ FIN 
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ORACLES not all powerful 
The following problem cannot be decided, even by 
a TM with an oracle for the Halting Problem: 

SUPERHALT = { (M,x) | M, with an oracle for the  
       Halting Problem, halts on x} 



ORACLES not all powerful 
The following problem cannot be decided, even by 
a TM with an oracle for the Halting Problem: 

SUPERHALT = { (M,x) | M, with an oracle for the  
       Halting Problem, halts on x} 

Can use diagonalization here! 
Suppose H decides SUPERHALT (with oracle) 
Define D(X) = “if H(X,X) accepts (with oracle)  
   then LOOP, else ACCEPT.” 
D(D) halts ⇔  H(D,D) accepts ⇔  D(D) loops… 



Proof IDEA: Same idea as the previous slide. 

ORACLES not all powerful 
Theorem: The arithmetic hierarchy is strict. 

That is, the nth level contains a language 
that isn’t in any of the levels below n. 



SUPERHALT0 = HALT = { (M,x) | M halts on x}. 

Theorem: The arithmetic hierarchy is strict. 
That is, the nth level contains a language 
that isn’t in any of the levels below n. 

Proof IDEA: Same idea as the previous slide. 

SUPERHALT1 = { (M,x) | M, with an oracle for the  
       Halting Problem, halts on x} 

 
  SUPERHALTn = { (M,x) | M, with an oracle for   
            SUPERHALTn-1, halts on x} 

ORACLES not all powerful 



WWW.FLAC.WS 
Read Chapter 6.4 for next time 
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